生态环境学报 ›› 2021, Vol. 30 ›› Issue (12): 2380-2386.DOI: 10.16258/j.cnki.1674-5906.2021.12.013
王亚琢1,2,5(), 周翔3, 修磊4, 单锐1,2,*(
), 袁浩然1,2
收稿日期:
2021-08-04
出版日期:
2021-12-18
发布日期:
2022-01-04
通讯作者:
*E-mail: shanrui@ms.giec.ac.cn作者简介:
王亚琢(1985年生),男,高级工程师,博士研究生,主要研究方向为有机固废资源化利用。E-mail: wangyz@ms.giec.ac.cn
基金资助:
WANG Yazhuo1,2,5(), ZHOU Xiang3, XIU Lei4, SHAN Rui1,2,*(
), YUAN Haoran1,2
Received:
2021-08-04
Online:
2021-12-18
Published:
2022-01-04
摘要:
随着工业化的发展,金属铬Cd(Ⅱ)的过量排放将对人类和环境造成巨大的危害。以花生壳为原料制备生物炭,并用高铁酸钾(K2FeO4)对其进行改性,制备了磁性吸附剂(Fe-BC)用于吸附并降低水体中的Cd(II)。实验探究了吸附时间、溶液pH、Cd(II)质量浓度和生物炭添加量对吸附效果的影响。研究发现,当溶液pH为6、吸附饱和时间为2 h、饱和Cd(II)质量浓度为300 mg∙L-1、吸附剂添加量为4.0 g∙L-1时,Cd(II)最大吸附量可达到153.28 mg∙g-1。较高的pH值会导致Cd(II)以沉淀的形式析出。同时,多种表征手段表明,改性剂K2FeO4改善了生物炭表面的孔径结构,增加了生物炭表面C=C、C=O和-OH官能团的数量,FTIR还证明了吸附过程中官能团与Cd(II)发生络合作用,从而有效提高吸附效率。Fe-BC在第4次脱附-吸附实验中对Cd(II)的吸附量达79.38 mg∙g-1,该生物炭具有良好的重复利用性能。为了进一步研究该生物炭的吸附性能,对该吸附过程进行了吸附动力学和吸附等温线的研究,结果表明Fe-BC生物炭对Cd(II)的吸附属于单层表面的吸附,以化学吸附为主、物理吸附为辅。综上所述,Fe-BC生物炭材料制备简单、经济环保,具有吸附速率快、吸附容量大、吸附效率高、化学稳定性好的优点,能够有效降低水体中Cd(II)含量,降低其生态风险,为废弃生物质资源化以及水体污染治理提供了参考。
中图分类号:
王亚琢, 周翔, 修磊, 单锐, 袁浩然. 高铁酸钾改性生物炭的制备及其对水体中Cd(Ⅱ)的吸附特性[J]. 生态环境学报, 2021, 30(12): 2380-2386.
WANG Yazhuo, ZHOU Xiang, XIU Lei, SHAN Rui, YUAN Haoran. Preparation of K2FeO4 Modified Biochar and Its Adsorption Characteristics for Cd(Ⅱ) in Aqueous Solution[J]. Ecology and Environment, 2021, 30(12): 2380-2386.
吸附等温线参数 Adsorption isotherms parameters | 吸附动力学参数 Adsorption kinetic model parameters | |||
---|---|---|---|---|
Freundlich 模型 | Langmuir 模型 | 拟一级吸附 动力学 | 拟二级吸附 动力学 | |
KF=26.2909 mg∙g-1 nF=0.3254 r2=0.8935 | qmax=183.1970 mg∙g-1 KL=0.0221 L∙g-1 r2=0.9858 | qe=153.7083 mg∙g-1 k1=0.0555 r2=0.9701 | qe=174.4224 mg∙g-1 k2=1.8056 r2=0.9962 |
表1 吸附等温线和吸附动力学模型参数
Table1 Adsorption isotherms and adsorption kinetic model parameters
吸附等温线参数 Adsorption isotherms parameters | 吸附动力学参数 Adsorption kinetic model parameters | |||
---|---|---|---|---|
Freundlich 模型 | Langmuir 模型 | 拟一级吸附 动力学 | 拟二级吸附 动力学 | |
KF=26.2909 mg∙g-1 nF=0.3254 r2=0.8935 | qmax=183.1970 mg∙g-1 KL=0.0221 L∙g-1 r2=0.9858 | qe=153.7083 mg∙g-1 k1=0.0555 r2=0.9701 | qe=174.4224 mg∙g-1 k2=1.8056 r2=0.9962 |
[1] |
AGHABABAEI A, NCIBI M C, SILLANPAA M, 2017. Optimized removal of oxytetracycline and cadmium from contaminated waters using chemically-activated and pyrolyzed biochars from forest and wood-processing residues[J]. Bioresource Technology, 239: 28-36.
DOI URL |
[2] |
DROUSSI Z, D'ORAZIO V, PROVENZANO M R, et al., 2009. Study of the biodegradation and transformation of olive-mill residues during composting using FTIR spectroscopy and differential scanning calorimetry[J]. Journal of Hazardous Materials, 164(2-3): 1281-1285.
DOI URL |
[3] |
FANG C, ZHANG T, LI P, et al., 2014. Application of Magnesium Modified Corn Biochar for Phosphorus Removal and Recovery from Swine Wastewater[J]. International Journal of Environmental Research and Public Health, 11(9): 9217-9237.
DOI URL |
[4] |
HANSEN H K, ARANCIBIA F, GUTIERREZ C, 2010. Adsorption of copper onto agriculture waste materials[J]. Journal of Hazardous Materials, 180(1): 442-448.
DOI URL |
[5] |
HE J S, MA P, XIE A T, et al., 2016. From black liquor to highly porous carbon adsorbents with tunable microstructure and excellent adsorption of tetracycline from water: Performance and mechanism study[J]. Journal of the Taiwan Institute of Chemical Engineers, 63: 295-302.
DOI URL |
[6] |
HU J W, LI Z, ZHANG A, et al., 2020. Using a strong chemical oxidant, potassium ferrate (K2FeO4), in waste activated sludge treatment: A review[J]. Environmental Research, DOI: 10.1016/j.envres.2020.109764.
DOI |
[7] |
HUANG D L, LIU L S, ZENG G M, et al., 2017. The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal-contaminated sediment[J]. Chemosphere, 174: 545-553.
DOI URL |
[8] |
HUANG X X, LIU Y G, LIU S B, et al., 2016. Effective removal of Cr(VI) using β-cyclodextrin-chitosan modified biochars with adsorption/reduction bifuctional roles[J]. RSC Advances, 6(1): 94-104.
DOI URL |
[9] |
KHAN M A, ALQADAMI A A, OTERO M, et al., 2019. Heteroatom- doped magnetic hydrochar to remove post-transition and transition metals from water: Synthesis, characterization, and adsorption studies[J]. Chemosphere, 218: 1089-1099.
DOI URL |
[10] |
LI R H, LIANG W, HUANG H, et al., 2018. Removal of cadmium(Ⅱ) cations from an aqueous solution with aminothiourea chitosan strengthened magnetic biochar[J]. Journal of Applied Polymer Science, DOI: 10.1002/app.46239.
DOI |
[11] |
LIU H K, XU F, XIE Y L, et al., 2018. Effect of modified coconut shell biochar on availability of heavy metals and biochemical characteristics of soil in multiple heavy metals contaminated soil[J]. The Science of the Total Environment, 645: 702-709.
DOI URL |
[12] |
LIU P Y, RAO D, ZOU L Y, et al., 2021. Capacity and potential mechanisms of Cd(Ⅱ) adsorption from aqueous solution by blue algae-derived biochars[J]. The Science of the Total Environment, DOI: 10.1016/j.scitotenv.2021.145447.
DOI |
[13] |
LUO M K, LIN H, LI B, et al., 2018. A novel modification of lignin on corncob-based biochar to enhance removal of cadmium from water[J]. Bioresource Technology, 259: 312-318.
DOI URL |
[14] |
MA Y J, LIU Y, BIAN Y, et al., 2018. Controlling shape anisotropy of hexagonal CdS for highly stable and efficient photocatalytic H2 evolution and photoelectrochemical water splitting[J]. Journal of Colloid and Interface Science, 518: 140-148.
DOI URL |
[15] |
MOYNIHAN M, PETERSON K E, CANTORAL A, et al., 2017. Dietary predictors of urinary cadmium among pregnant women and children[J]. The Science of the Total Environment, 575: 1255-1262.
DOI URL |
[16] |
OFOMAJA A E, UNNUABONAH E I, OLADOJA N A, 2010. Competitive modeling for the biosorptive removal of copper and lead ions from aqueous solution by Mansonia wood sawdust[J]. Bioresource Technology, 101(11): 3844-3852.
DOI URL |
[17] |
TAN X F, LIU Y G, ZENG G M, et al., 2015. Application of biochar for the removal of pollutants from aqueous solutions[J]. Chemosphere, 125: 70-85.
DOI URL |
[18] |
WANG J L, WANG S Z, 2019. Preparation, modification and environmental application of biochar: A review[J]. Journal of Cleaner Production, 227: 1002-1022.
DOI URL |
[19] |
WANG P, CHEN H P, KOPITTKE P M, et al., 2019. Cadmium contamination in agricultural soils of China and the impact on food safety[J]. Environmental Pollution, 249: 1038-1048.
DOI URL |
[20] | WONGROD S, SIMON S, VAN HULLEBUSCH E D, et al., 2018. Changes of sewage sludge digestate-derived biochar properties after chemical treatments and influence on As(Ⅲ and V) and Cd(Ⅱ) sorption[J]. International Biodeterioration & Biodegradation, 135: 96-102. |
[21] |
XIANG J X, LIN Q T, YAO X S, et al., 2021. Removal of Cd from aqueous solution by chitosan coated MgO-biochar and its in-situ remediation of Cd-contaminated soil[J]. Environmental Research, DOI: 10.1016/j.envres.2020.110650.
DOI |
[22] |
YANG D X, VELAMAKANNI A, BOZOKLU G, et al., 2009. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy[J]. Carbon, 47(1): 145-152.
DOI URL |
[23] |
YANG T T, XU Y M, HUANG Q Q, et al., 2021. Adsorption characteristics and the removal mechanism of two novel Fe-Zn composite modified biochar for Cd(Ⅱ) in water[J]. Bioresource Technology, 333: 125078.
DOI URL |
[24] |
YAO Y, GAO B, INYANG M, et al., 2011. Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings[J]. Journal of Hazardous Materials, 190(1-3): 501-507.
DOI URL |
[25] |
YIN G C, SONG X W, TAO L, et al., 2020. Novel Fe-Mn binary oxide-biochar as an adsorbent for removing Cd(Ⅱ) from aqueous solutions[J]. Chemical Engineering Journal, DOI: 10.1016/j.cej.2020.124465.
DOI |
[26] |
YIN Z B, XU S, LIU S, et al., 2020. A novel magnetic biochar prepared by K2FeO4-promoted oxidative pyrolysis of pomelo peel for adsorption of hexavalent chromium[J]. Bioresource Technology, DOI: 10.1016/j.biortech.2019.122680.
DOI |
[27] |
ZHANG C, LAI C, ZENG G M, et al., 2016. Efficacy of carbonaceous nanocomposites for sorbing ionizable antibiotic sulfamethazine from aqueous solution[J]. Water Research, 95: 103-112.
DOI URL |
[28] |
ZHANG C, SHAN B Q, TANG W Z, et al., 2017. Comparison of cadmium and lead sorption by Phyllostachys pubescens biochar produced under a low-oxygen pyrolysis atmosphere[J]. Bioresource Technology, 238: 352-360.
DOI URL |
[29] |
ZHANG H Y, YUE X P, LI F, et al., 2018. Preparation of rice straw-derived biochar for efficient cadmium removal by modification of oxygen-containing functional groups[J]. The Science of the Total Environment, 631-632: 795-802.
DOI URL |
[30] |
ZHANG L K, GUO J Y, HUANG X M, et al., 2019. Functionalized biochar-supported magnetic MnFe2O4 nanocomposite for the removal of Pb(Ⅱ) and Cd(Ⅱ)[J]. RSC Advances, 9(1): 365-376.
DOI URL |
[31] | 郭琳颖, 王凯男, 王梦寒, 等, 2020. 芦苇生物质炭对镉的吸附及机制[J]. 农业资源与环境学报, 37(1): 66-73. |
GUO L Y, WANG K N, WANG M H, et al., 2020. Adsorption mechanisms of cadmium onto reed-derived biochar[J]. Journal of Agricultural Resources and Enviornment, 37(1): 66-73. | |
[32] | 李佳霜, 冒国龙, 赵松炎, 等, 2019. 改性生物炭吸附废水中Sb(V)的特性[J]. 江苏农业科学, 47(8): 289-295. |
LI J S, MAO G L, ZHAO S Y, et al., 2019. Adsorption of Sb(V) in waste water by modified biochar[J]. Jiangsu Agricultural Sciences, 47(8): 289-295. | |
[33] | 王道涵, 李景阳, 汤家喜, 2020. 不同热解温度生物炭对溶液中镉的吸附性能研究[J]. 工业水处理, 40(1): 18-23. |
WANG D H, LI J Y, TANG J X, 2020. Adsorption of cadmium in solution by biochar at different pyrolysis temperatures[J]. Industrial Water Treatment, 40(1): 18-23. |
[1] | 赵维彬, 唐丽, 王松, 刘玲玲, 王树凤, 肖江, 陈光才. 两种生物炭对滨海盐碱土的改良效果[J]. 生态环境学报, 2023, 32(4): 678-686. |
[2] | 游宏建, 张文文, 兰正芳, 马兰, 张宝娣, 穆晓坤, 李文慧, 曹云娥. 蚯蚓原位堆肥与生物炭对黄瓜根结线虫及根际微生物的影响[J]. 生态环境学报, 2023, 32(1): 99-109. |
[3] | 李晓晖, 艾仙斌, 李亮, 王玺洋, 辛在军, 孙小艳. 新型改性稻壳生物炭材料对镉污染土壤钝化效果的研究[J]. 生态环境学报, 2022, 31(9): 1901-1908. |
[4] | 陶玲, 黄磊, 周怡蕾, 李中兴, 任珺. 污泥-凹凸棒石共热解生物炭对矿区土壤重金属生物有效性和环境风险的影响[J]. 生态环境学报, 2022, 31(8): 1637-1646. |
[5] | 房献宝, 张智钧, 赖阳晴, 叶脉, 刁增辉. 新型污泥生物炭对土壤重金属Cr和Cd的修复研究[J]. 生态环境学报, 2022, 31(8): 1647-1656. |
[6] | 钱莲文, 余甜甜, 梁旭军, 王义祥, 陈永山. 茶园土壤酸化改良中生物炭应用5 a后的稳定性研究[J]. 生态环境学报, 2022, 31(7): 1442-1447. |
[7] | 张慧琦, 李子忠, 秦艳. 玉米秸秆生物炭用量对砂土孔隙和持水性的影响[J]. 生态环境学报, 2022, 31(6): 1272-1277. |
[8] | 邓晓, 武春媛, 杨桂生, 李怡, 李勤奋. 椰壳生物炭对海南滨海土壤的改良效果[J]. 生态环境学报, 2022, 31(4): 723-731. |
[9] | 魏岚, 黄连喜, 李翔, 王泽煌, 陈伟盛, 黄庆, 黄玉芬, 刘忠珍. 生物炭基质可显著地促进香蕉幼苗生长[J]. 生态环境学报, 2022, 31(4): 732-739. |
[10] | 赵超凡, 周丹丹, 孙建财, 钱坤鹏, 李芳芳. 生物炭中可溶性组分对其吸附镉的影响[J]. 生态环境学报, 2022, 31(4): 814-823. |
[11] | 程文远, 李法云, 吕建华, 吝美霞, 王玮. 碱改性向日葵秸秆生物炭对多环芳烃菲吸附特性研究[J]. 生态环境学报, 2022, 31(4): 824-834. |
[12] | 苏焱, 全妍红, 宦紫嫣, 姚佳, 苏小娟. 磷改性生物炭对云南某铅锌矿周边农田铅锌污染土壤修复效果的影响[J]. 生态环境学报, 2022, 31(3): 593-602. |
[13] | 丛鑫, 王宇, 李瑶, 何洋洋. 生物炭及氧化石墨烯/生物炭复合材料对水中抗生素吸附性能研究[J]. 生态环境学报, 2022, 31(2): 326-334. |
[14] | 秦坤, 王志康, 王章鸿, 杨成, 刘杰刚, 沈德魁. 木质素-聚乙烯共热解生物炭对Cd(II)的吸附性能[J]. 生态环境学报, 2022, 31(2): 344-353. |
[15] | 梅闯, 蔡昆争, 黎紫珊, 徐美丽, 黄飞. 稻秆生物炭对稻田土壤Cd形态转化和微生物群落的影响[J]. 生态环境学报, 2022, 31(2): 380-390. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||