生态环境学报 ›› 2022, Vol. 31 ›› Issue (2): 335-343.DOI: 10.16258/j.cnki.1674-5906.2022.02.014
收稿日期:
2021-08-09
出版日期:
2022-02-18
发布日期:
2022-04-14
通讯作者:
*作者简介:
汤家喜(1986年生),男,副教授,博士,主要从事水体污染控制理论与技术方面的研究。E-mail: tangjiaxi1986@163.com
基金资助:
TANG Jiaxi*(), XIANG Biao, LI Yu, TAN Ting, ZHU Yongle, GAN Jianping
Received:
2021-08-09
Online:
2022-02-18
Published:
2022-04-14
摘要:
中国高浓度含氟水分布广泛且危害严重,水体除氟迫在眉睫。研发除氟效果好、价格便宜的吸附材料是一项艰巨的任务,对水体除氟具有重大的意义。硅藻土(Diatomite)因其特有的物理和化学性质,作为一种新型的吸附型、环保型材料近年来在工业中已经得到了普遍的应用。以硅藻土作为吸附剂对水体中的氟化物(F-)进行吸附研究,采用了SEM、XRD、FTIR对其进行表征,分析其结构特性;探究了投加量、溶液pH、溶液初始质量浓度对硅藻土吸附F-的影响,对其进行吸附和动力学拟合,并设计正交实验,得出最优条件以及最优组合。结果表明:硅藻土表面具有丰富的孔隙结构且孔洞清晰,比表面积大,二氧化硅含量较高,且含有丰富的含氧官能团;硅藻土对氟离子的吸附过程能够更好的符合Freundlich模型,r值可达0.993,说明硅藻土对F-的吸附过程是吸附-络合相互作用,为表面吸附和多分子层吸附;准二级动力学模型对硅藻土吸附F-的过程拟合效果优于准一级动力学模型、W-M动力学模型,r值为0.999,表明硅藻土对F-的吸附过程是化学吸附作用。其中最大吸附量可达到32.2 mg∙g-1,根据正交实验得出各影响因素大小依次为:投加量>质量浓度>pH;当氟化物质量浓度为100 mg∙L-1,pH值为6.0,投加量为4.0 g∙L-1时,硅藻土对F-的去除率可达到91.8%。因此,硅藻土可作为高效、廉价、环保的除氟吸附剂,可为以后的含氟水体治理提供理论依据。
中图分类号:
汤家喜, 向彪, 李玉, 谭婷, 朱永乐, 甘建平. 硅藻土对水中氟化物的吸附特性研究[J]. 生态环境学报, 2022, 31(2): 335-343.
TANG Jiaxi, XIANG Biao, LI Yu, TAN Ting, ZHU Yongle, GAN Jianping. Study on Adsorption Characteristics of Fluoride in Water by Diatomite[J]. Ecology and Environment, 2022, 31(2): 335-343.
Freundlich模型 Freundlich model | Langmuir模型 Langmuir model | Temkin模型 Temkin model | ||||||
---|---|---|---|---|---|---|---|---|
logKf | n | r | KL | Qm | r | AT | BT | r |
0.717 | 1.15 | 0.993 | 0.0311 | 32.2 | 0.887 | 1.85 | 0.19 | 0.863 |
表1 硅藻土对F-吸附的拟合参数
Table 1 Fitting parameters of F- adsorption on diatomite
Freundlich模型 Freundlich model | Langmuir模型 Langmuir model | Temkin模型 Temkin model | ||||||
---|---|---|---|---|---|---|---|---|
logKf | n | r | KL | Qm | r | AT | BT | r |
0.717 | 1.15 | 0.993 | 0.0311 | 32.2 | 0.887 | 1.85 | 0.19 | 0.863 |
硅藻土 Diatomite | qe | K1/K2/Kip | r |
---|---|---|---|
Quasi-first-order kinetic model 准一级动力学模型 | 3.60 | 0.0182 | 0.988 |
Quasi-second-order kinetic model 准二级动力学模型 | 22.3 | 0.0199 | 0.999 |
W-M dynamics model W-M 动力学模型 | — | 0.0734 | 0.961 |
表2 硅藻土对F-吸附动力学拟合参数
Table 2 Fitting parameters of adsorption kinetics of diatomite on F-
硅藻土 Diatomite | qe | K1/K2/Kip | r |
---|---|---|---|
Quasi-first-order kinetic model 准一级动力学模型 | 3.60 | 0.0182 | 0.988 |
Quasi-second-order kinetic model 准二级动力学模型 | 22.3 | 0.0199 | 0.999 |
W-M dynamics model W-M 动力学模型 | — | 0.0734 | 0.961 |
项目 Items | 硅藻土投加量 (A) A dosage/g | 溶液pH (B) B pH | F-质量浓度 (C) C ρ/(mg∙L-1) | F-去除率 Removal rate of F-/% |
---|---|---|---|---|
1 | 0.06 | 5.0 | 150 | 62.8 |
2 | 0.06 | 6.0 | 60 | 81.2 |
3 | 0.06 | 7.0 | 100 | 73.9 |
4 | 0.08 | 5.0 | 100 | 86.8 |
5 | 0.08 | 6.0 | 150 | 75.1 |
6 | 0.08 | 7.0 | 60 | 48.9 |
7 | 0.1 | 5.0 | 60 | 80.4 |
8 | 0.1 | 6.0 | 100 | 91.8 |
9 | 0.1 | 7.0 | 150 | 84.6 |
K1 | 217 | 230 | 222 | |
K2 | 210 | 247 | 211 | |
K3 | 255 | 207 | 251 | |
k1 | 72.6 | 76.7 | 74.1 | |
k2 | 70.3 | 82.3 | 70.2 | |
k3 | 85.2 | 69.1 | 83.8 | |
R | 14.9 | 5.65 | 13.6 |
表3 硅藻土对F–吸附的正交实验结果
Table 3 Orthogonal experimental results of F–adsorption on diatomite
项目 Items | 硅藻土投加量 (A) A dosage/g | 溶液pH (B) B pH | F-质量浓度 (C) C ρ/(mg∙L-1) | F-去除率 Removal rate of F-/% |
---|---|---|---|---|
1 | 0.06 | 5.0 | 150 | 62.8 |
2 | 0.06 | 6.0 | 60 | 81.2 |
3 | 0.06 | 7.0 | 100 | 73.9 |
4 | 0.08 | 5.0 | 100 | 86.8 |
5 | 0.08 | 6.0 | 150 | 75.1 |
6 | 0.08 | 7.0 | 60 | 48.9 |
7 | 0.1 | 5.0 | 60 | 80.4 |
8 | 0.1 | 6.0 | 100 | 91.8 |
9 | 0.1 | 7.0 | 150 | 84.6 |
K1 | 217 | 230 | 222 | |
K2 | 210 | 247 | 211 | |
K3 | 255 | 207 | 251 | |
k1 | 72.6 | 76.7 | 74.1 | |
k2 | 70.3 | 82.3 | 70.2 | |
k3 | 85.2 | 69.1 | 83.8 | |
R | 14.9 | 5.65 | 13.6 |
[1] | AKAFU T, CHIMDI A, GOMORO K, 2019. Removal of fluoride from drinking water by sorption using diatomite modified with aluminum hydroxide[J]. Journal of Analytical Methods in Memistry, 2019(Part 2): 1-11. |
[2] |
ALBIN P, JURKA B, JANEZ L, 2001. Integrated ion exchange/catalytic process for efficient removal of nitrates from drinking water[J]. Chemical Engineering Science, 56(4): 1551-1559.
DOI URL |
[3] |
AMINI M, MUELLER K, ABBASPOUR K C, et al., 2008. Statistical modeling of global geogenic fluoride contamination in groundwaters[J]. Environmental Science & Technology, 42(10): 3662-3668.
DOI URL |
[4] | ANTHONY A I, WILSON M, GITARI J R G, 2016. Defluoridation of groundwater using diatomaceous earth: Optimization of adsorption conditions, kinetics and leached metals risk assessment[J]. Desalination and Water Treatment, 57(36): 16745-16757. |
[5] |
ANU M, MIKKO V, MIKA S, 2010. Natural organic matter removal by coagulation during drinking water treatment: A review[J]. Advances in Colloid and Interface Science, 159(2): 189-197.
DOI URL |
[6] |
CUI L L, MENG Q Q, ZHENG J Y, et al., 2013. Adsorption of Cr(VI) on 1, 2-ethylenediamine-aminated macroporous polystyrene particles[J]. Vacuum, 89(1): 1-6.
DOI URL |
[7] |
DATSKO T Y, ZELENTSOV V I, 2016. Fluorine sorption by aluminosilicate-modified diatomite from highly concentrated fluorine solutions: 1. Adsorption equilibrium[J]. Surface Engineering and Applied Electrochemistry, 52(3): 300-311.
DOI URL |
[8] | FIREMPONG C, NSIAH K, AWUNYO-VITOR D, et al., 2013. Soluble fluoride levels in drinking water-a major risk factor of dental fluorosis among children in Bongo community of Ghana[J]. Ghana Medical Journal, 47(1): 16-23. |
[9] | GOMORO K, FELEKE Z, BERND H, et al., 2012. Fluoride removal by adsorption on thermally treated lateritic soils[J]. Bulletin of the Chemical Society of Ethiopia, 26(3): 361-372. |
[10] | KASSIM T A T, SIMONEIT B R T, 2001. Pollutant-solid phase interactions mechanisms, chemistry and modeling[M]. Berlin, Heidelberg: Springer: 172-377. |
[11] |
LIU C C, LIU J C, 2016. Coupled precipitation-ultrafiltration for treatment of high fluoride-content wastewater[J]. Journal of the Taiwan Institute of Chemical Engineers, 58: 259-263.
DOI URL |
[12] |
LU H L, ZHANG W H, YANG Y X, et al., 2012. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar[J]. Water Research, 46(3):854-862.
DOI URL |
[13] |
MEENAKSHI A, MAHESHWARI R C, 2006. Fluoride in drinking water and its removal[J]. Journal of Hazardous Materials, 137(1): 456-463.
DOI URL |
[14] |
NARADA B D, LIYANAGE A S, PITTMAN C U, et al., 2018. Fast nitrate and fluoride adsorption and magnetic separation from water on α-Fe2O3 and Fe3O4 dispersed on Douglas fir biochar[J]. Bioresource Technology, 263: 258-265.
DOI URL |
[15] |
SINGH G, BABITA K, GEETGOVIND S, et al., 2018. Fluoride distribution and contamination in the water, soil and plants continuum and its remedial technologies, an Indian perspective- a review[J]. Environmental Pollution, 239: 95-108.
DOI URL |
[16] |
SWAIN S K, TANUSHREE P, SINGH V K, et al., 2011. Kinetics, equilibrium and thermodynamic aspects of removal of fluoride from drinking water using meso-structured zirconium phosphate[J]. Chemical Engineering Journal, 171(3): 1218-1226.
DOI URL |
[17] |
TENG S X, WANG S G, GONG W X, et al., 2009. Removal of fluoride by hydrous manganese oxide-coated alumina: Performance and mechanism[J]. Journal of Hazardous Materials, 168(2-3): 1004-1011.
DOI URL |
[18] |
VELIZAROV S, 2013. Transport of arsenate through anion-exchange membranes in Donnan dialysis[J]. Journal of Membrane Science, 425-426: 243-250.
DOI URL |
[19] |
XU L, GAO X L, LI Z K, 2015. Removal of fluoride by nature diatomite from high-fluorine water: An appropriate pretreatment for nanofiltration process[J]. Desalination, 369: 97-104.
DOI URL |
[20] |
ZHAO N, LIU K Y, YAN B F, 2021. Chlortetracycline hydrochloride removal by different biochar/Fe composites: A comparative study[J]. Journal of Hazardous Materials, 403: 123889-112901.
DOI URL |
[21] | 范世锁, 刘文浦, 王锦涛, 等, 2020. 茶渣生物炭制备及其对溶液中四环素的去除特性[J]. 环境科学, 41(3): 1308-1318. |
FAN S S, LIU W P, WANG J T, et al., 2020. Preparation of tea residue biochar and its removal characteristics of tetracycline in solution[J]. Environmental Science, 41(3): 1308-1318. | |
[22] | 宫有圣, 2020. 含氟废水处理零排放工艺技术优化探讨[J]. 有机氟工业 (1): 39-43. |
GONG Y S, 2020. Discussion on optimization of zero-discharge process technology for fluorine-containing wastewater treatment[J]. Organo-Fluorine Industry (1): 39-43. | |
[23] | 胡家朋, 2016. 羟基磷灰石复合改性材料的制备及其除氟性能研究[D]. 南昌: 南昌大学:163. |
HU J P, 2016. Preparation of hydroxyapatite composite modified material and its fluorine removal performance[D]. Nanchang: Nanchang University:163. | |
[24] | 矫娜, 王东升, 段晋明, 等, 2012. 改性硅藻土对三种有机染料的吸附作用研究[J]. 环境科学学报, 32(6): 1364-1369. |
JIAO N, WANG D S, DUAN J M, et al., 2012. Adsorption of three organic dyes on modified diatomite[J]. Acta Scientiae Circumstantiae, 32(6): 1364-1369. | |
[25] | 李排伟, 戴欣, 张尚玺, 等, 2020. 两种改性聚合物微球对Pb2+的等温吸附行为研究[J]. 南昌工程学院学报, 39(1): 115-118. |
LI P W, DAI X, ZHANG S X, et al., 2020. Study on Pb2+ isothermal adsorption behavior of two modified polymer microspheres[J]. Journal of Nanchang Institute of Technology, 39(1): 115-118. | |
[26] | 林俊雄, 2007. 硅藻土基吸附剂的制备、表征及其染料吸附特性研究[D]. 杭州: 浙江大学:142. |
LIN J X, 2007. Preparation, characterization and dye adsorption characteristics of diatomite-based adsorbent[D]. Hangzhou: Zhejiang University:142. | |
[27] | 刘吉明, 2015. 层状双金属氢氧化物的制备、表征及硫酸根和氟离子吸附性能研究[D]. 太原: 太原理工大学:117. |
LIU J M, 2015. Preparation and characterization of layered double hydroxides and study on the adsorption properties of sulfate and fluoride ions[D]. Taiyuan: Taiyuan University of Technology:117. | |
[28] | 刘思微, 杨志军, 曾璇, 等, 2017. 有机改性硅藻土对甲基橙、酸性绿两种阴离子的吸附实验研究[J]. 矿产与地质, 31(2): 420-426. |
LIU S W, YANG Z J, ZENG X, et al., 2017. Experimental study on the adsorption of two anions of methyl orange and acid green by organically modified diatomite[J]. Mineral Resources and Geology, 31(2): 420-426. | |
[29] | 聂文博, 郭敏, 李林霜, 等, 2015. 高氟水处理吸附剂的研究进展[J]. 广州化工, 43(20): 1-6, 35. |
NIE W B, GUO M, LI L S, et al., 2015. Research progress of adsorbents for high-fluorine water treatment[J]. Guangzhou Chemical Industry, 43(20): 1-6, 35. | |
[30] | 彭进平, 赖焕然, 程高, 等, 2010. 改性硅藻土的制备、表征及其在富营养化水体除磷中的应用[J]. 生态环境学报, 19(8): 1936-1940. |
PENG J P, LAI H R, CHENG G, et al., 2010. Preparation and characterization of modified diatomite and its application in phosphorus removal from eutrophic waters[J]. Ecology and Environmental Sciences, 19(8): 1936-1940. | |
[31] | 钱程, 刘兴勇, 杨虎, 等, 2018. 锆柱撑膨润土对水中磷的吸附和再生性能研究[J]. 四川理工学院学报(自然科学版), 31(3): 7-15. |
QIAN C, LIU X Y, YANG H, et al., 2018. Study on the adsorption and regeneration performance of zirconium pillared bentonite for phosphorus in water[J]. Journal of Sichuan University of Science & Technology (Natural Science Edition), 31(3): 7-15. | |
[32] | 史先威, 黄志达, 邵建雷, 等, 2019. 氟污染水体生态修复技术研究进展[J]. 环境科技, 32(4): 74-78. |
SHI X W, HUANG Z D, SHAO J L, et al., 2019. Research progress on ecological restoration technology of fluorine-polluted water bodies[J]. Environmental Science and Technology, 32(4): 74-78. | |
[33] | 苏龙, 张海波, 程红艳, 等, 2021. 木耳菌糠生物炭对阳离子染料的吸附性能研究[J]. 中国环境科学, 41(2): 693-703. |
SU L, ZHANG H B, CHENG H Y, et al., 2021. Study on the adsorption of cationic dyes on fungus chaff biochar[J]. China Environmental Science, 41(2): 693-703. | |
[34] | 唐芳, 陈玲, 项朋志, 等, 2020. 壳聚糖/羟基磷灰石复合材料对氟离子吸附研究[J]. 广州化工, 48(2): 54-58. |
TANG F, CHEN L, XIANG P Z, et al., 2020. Adsorption of fluoride ion by chitosan/hydroxyapatite composite materials[J]. Guangzhou Chemical Industry, 48(2): 54-58. | |
[35] | 汤家喜, 朱永乐, 李梦雪, 等, 2020. 不同生物炭对水中氟离子的吸附特征研究[J]. 生态环境学报, 29(11): 2270-2278. |
TANG J X, ZHU Y L, LI M X, et al., 2020. Study on adsorption characteristics of fluorine ions in water by different biochars[J]. Ecology and Environmental Sciences, 29(11): 2270-2278. | |
[36] | 汪勇强, 张小平, 魏燕富, 等, 2019. 硅藻土负载镧对水体中磷酸根的吸附研究[J]. 工业水处理, 39(1): 41-44. |
WANG Y Q, ZHANG X P, WEI Y F, et al., 2019. The adsorption of lanthanum on diatomite to phosphate in water[J]. Industrial Water Treatment, 39(1): 41-44. | |
[37] | 王甜, 张佩聪, 巨力, 等, 2019. Fe3O4改性硅藻土的制备及其对钒吸附性能研究[J]. 山西化工, 39(2): 11-12. |
WANG T, ZHANG P C, JU L, et al., 2019. Preparation of Fe3O4 modified diatomite and its adsorption performance for vanadium[J]. Shanxi Chemical Industry, 39(2): 11-12. | |
[38] | 王薇, 刘竟成, 霍旺晨, 等, 2020. C掺杂纳米硅藻土@TiO2催化剂吸附-光催化降解油田废水[J]. 材料导报, 34(23): 23027-23032. |
WANG W, LIU J C, HUO W C, et al., 2020. C-doped nano-diatomite@TiO2 catalyst adsorption-photocatalytic degradation of oilfield wastewater[J]. Materials Review, 34(23): 23027-23032. | |
[39] | 王震宇, 刘国成, 李锋民, 等, 2014. 不同热解温度生物炭对Cd(Ⅱ)的吸附特性[J]. 环境科学, 35(12): 4735-4744. |
WANG Z Y, LIU G C, LI F M, et al., 2014. Adsorption characteristics of Cd(Ⅱ) on biochar with different pyrolysis temperature[J]. Environmental Science, 35(12): 4735-4744. | |
[40] | 杨明顺, 解强, 邢雯雯, 等, 2010. 铁系添加剂对煤基磁性活性炭性能的影响[J]. 中国矿业大学学报, 39(6): 897-901. |
YANG M S, XIE Q, XING W W, et al., 2010. The effect of iron-based additives on the performance of coal-based magnetic activated carbon[J]. Journal of China University of Mining & Technology, 9(6): 897-901. | |
[41] | 阴文敏, 关卓, 刘琛, 等, 2019. 生物炭施用及老化对紫色土中抗生素吸附特征的影响[J]. 环境科学, 40(6): 2920-2929. |
YIN W M, GUAN Z, LIU C, et al., 2019. The effect of biochar application and aging on the adsorption characteristics of antibiotics in purple soil[J]. Environmental Science, 40(6): 2920-2929. | |
[42] | 赵芳玉, 薛洪海, 李哲, 等, 2010. 低品位硅藻土吸附重金属的研究[J]. 生态环境学报, 19(12): 2978-2981. |
ZHAO F Y, XUE H H, LI Z, et al., 2010. Adsorption of heavy metals by low-grade diatomite[J]. Ecology and Environmental Sciences, 19(12): 2978-2981. | |
[43] | 曾雪, 罗学刚, 周建, 等, 2016. 负载Zr(Ⅳ)的水解废弃皮革对氟离子的吸附性能[J]. 化工学报, 67(4): 1368-1377. |
ZENG X, LUO X G, ZHOU J, et al., 2016. Adsorption performance of Zr(Ⅳ)-loaded hydrolyzed waste leather for fluoride ion[J]. CIESC Journal, 67(4): 1368-1377. | |
[44] | 赵艳锋, 苏鑫, 张文华, 等, 2018. 改性硅藻土吸附处理含磷废水的研究[J]. 应用化工, 47(5): 883-886. |
ZHAO Y F, SU X, ZHANG W H, et al., 2018. Research on the adsorption treatment of phosphorus-containing wastewater by modified diatomite[J]. Applied Chemical Industry, 47(5): 883-886. |
[1] | 杨宇, 邓仁健, 隆佩, 黄中杰, 任伯帜, 王政华. 砷氧化菌Pseudomonas sp. AO-1的分离鉴定及其对As(Ⅲ)的氧化性能研究[J]. 生态环境学报, 2023, 32(3): 619-626. |
[2] | 马闯, 王雨阳, 周通, 吴龙华. 污染土壤颗粒态有机质镉锌富集特征及其解吸行为研究[J]. 生态环境学报, 2022, 31(9): 1892-1900. |
[3] | 龚玲玄, 王丽丽, 赵建宁, 刘红梅, 杨殿林, 张贵龙. 不同覆盖作物模式对茶园土壤理化性质及有机碳矿化的影响[J]. 生态环境学报, 2022, 31(6): 1141-1150. |
[4] | 赵超凡, 周丹丹, 孙建财, 钱坤鹏, 李芳芳. 生物炭中可溶性组分对其吸附镉的影响[J]. 生态环境学报, 2022, 31(4): 814-823. |
[5] | 程文远, 李法云, 吕建华, 吝美霞, 王玮. 碱改性向日葵秸秆生物炭对多环芳烃菲吸附特性研究[J]. 生态环境学报, 2022, 31(4): 824-834. |
[6] | 刘沙沙, 陈诺, 杨晓茵. 微塑料对有机污染物的吸附-解吸特性及其复合毒性效应研究进展[J]. 生态环境学报, 2022, 31(3): 610-620. |
[7] | 丛鑫, 王宇, 李瑶, 何洋洋. 生物炭及氧化石墨烯/生物炭复合材料对水中抗生素吸附性能研究[J]. 生态环境学报, 2022, 31(2): 326-334. |
[8] | 秦坤, 王志康, 王章鸿, 杨成, 刘杰刚, 沈德魁. 木质素-聚乙烯共热解生物炭对Cd(II)的吸附性能[J]. 生态环境学报, 2022, 31(2): 344-353. |
[9] | 秦秦, 段海芹, 宋科, 孙丽娟, 孙雅菲, 周斌, 薛永. 常规施肥对土壤水稳性团聚体镉吸附解吸特性及化学形态的影响研究[J]. 生态环境学报, 2022, 31(12): 2403-2413. |
[10] | 张义, 朱吉颖, 张聪, 王柔, 邹羿菱云, 吴振斌. 硅藻土在环境领域的研究和应用[J]. 生态环境学报, 2022, 31(12): 2441-2448. |
[11] | 姜晶, 阮呈杰, 陈霄宇, 吴仪, 汪永创. 微塑料模拟老化及其对污染物吸附行为影响研究进展[J]. 生态环境学报, 2022, 31(11): 2263-2274. |
[12] | 雷雅杰, 李雪, 常春艳, 毛雪飞. 聚苯乙烯微塑料对水中汞离子的吸附研究[J]. 生态环境学报, 2022, 31(10): 2048-2057. |
[13] | 姜晶, 邓精灵, 盛光遥. 生物炭老化及其对重金属吸附影响研究进展[J]. 生态环境学报, 2022, 31(10): 2089-2100. |
[14] | 张苏明, 张建强, 周凯, 陈志良. 铁基改性椰壳生物炭对砷的吸附效果及机制研究[J]. 生态环境学报, 2021, 30(7): 1503-1512. |
[15] | 张兵兵, 杨照, 薛斌, 丁小艳, 娄金分, 王盛, 陈蔚洁, 徐国敏. 薏仁米秸秆生物炭对水中Hg2+的吸附特性及机制[J]. 生态环境学报, 2021, 30(5): 1051-1059. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||