生态环境学报 ›› 2022, Vol. 31 ›› Issue (5): 875-884.DOI: 10.16258/j.cnki.1674-5906.2022.05.003
张恒宇1,2(), 孙树臣1,*(
), 吴元芝2,3,*(
), 安娟, 宋红丽
收稿日期:
2021-12-15
出版日期:
2022-05-18
发布日期:
2022-07-12
通讯作者:
吴元芝(1982年生),女,副教授,博士,主要从事土壤物理与生态水文相关研究。E-mail: wuyuanzhi05@163.com作者简介:
张恒宇(1997年生),女,硕士研究生,主要从事土壤水分与植物作用关系研究。E-mail: 18765497953@163.com
基金资助:
ZHANG Hengyu1,2(), SUN Shuchen1,*(
), WU Yuanzhi2,3,*(
), AN Juan, SONG Hongli
Received:
2021-12-15
Online:
2022-05-18
Published:
2022-07-12
摘要:
研究黄土高原典型植被不同密度条件下土壤水分、碳、氮剖面分布特征,探讨水、碳、氮剖面分布的耦合关系,为植被恢复密度选择提供依据。在神木县六道沟小流域,选取3个种植密度处理的柠条(Caragana korshinskii)林地和沙柳(Salix psammophyllum)林地,人工打土钻取样,分析土壤含水量、有机碳和全氮含量剖面分布特征。结果表明,(1)柠条林地剖面土层平均土壤含水量为低密度 (9.34%)>中密度 (8.35%)>高密度 (7.90%),土壤储水量也为低密度 (367.50 mm)>中密度 (326.98 mm)>高密度 (317.97 mm);沙柳林地剖面土层平均土壤含水量与储水量也均为低密度>中密度>高密度,分别为12.10、9.93、9.03%,502.48、400.30、361.03 mm;低密度柠条林地各土层含水量均为最高,且在100—150 cm和150—300 cm土层显著高于中、高密度,低密度处理沙柳林地各土层的含水量均显著高于高密度处理;各密度柠条林地及中、高密度沙柳林地在100 cm深度以下出现了土壤干燥化现象,且沙柳干燥化程度较柠条轻。(2)2种植被条件下土壤剖面有机碳和全氮含量的分布具有不同程度的表聚现象,柠条林地70 cm以上土层有机碳和全氮含量较深层高,而沙柳林地仅30 cm以上土层有机碳和全氮含量明显较高。两种植被各土层有机碳及全氮储量均为低密度处理最高,柠条林地分别为8.21、0.80 kg∙m-2,沙柳林地分别为6.60、0.65 kg∙m-2;高密度处理最低,柠条林地分别为5.39、0.60 kg∙m-2,沙柳林地分别为5.77、0.48 kg∙m-2,且各密度处理柠条林地的土壤有机碳和全氮储量均高于沙柳林地。(3)柠条林地土壤有机碳和全氮含量与土壤含水量呈显著正相关关系,且低密度处理土壤有机碳和全氮含量受土壤含水量的影响更加明显,但沙柳林地各密度处理土壤有机碳和全氮含量受土壤含水量的影响不明显。由以上结果可知,柠条林土壤有机碳和氮的积累高,但容易受到土壤干燥化的限制,进行植被恢复时要特别注意种植密度的控制。
中图分类号:
张恒宇, 孙树臣, 吴元芝, 安娟, 宋红丽. 黄土高原不同植被密度条件下土壤水、碳、氮分布特征[J]. 生态环境学报, 2022, 31(5): 875-884.
ZHANG Hengyu, SUN Shuchen, WU Yuanzhi, AN Juan, SONG Hongli. Distribution Characteristics of Soil Water, Carbon and Nitrogen under Different Vegetation Densities in Loess Plateau[J]. Ecology and Environment, 2022, 31(5): 875-884.
植被类型 Vegetation type | 密度 Density | 平均株高 Average plant height/ cm | 平均基径 Average base diameter/ mm | 标准枝条数 The amounts of standard ranch |
---|---|---|---|---|
柠条 Caragana korshinskii | 低密度 Low density | 131.2±3.1a | 9.18±0.08a | 205 |
中密度 Medium density | 106.7±2.3b | 7.27±0.04b | 300 | |
高密度 High density | 104.6±2.0b | 7.35±0.07b | 270 | |
沙柳 Salix psammophyllum | 低密度 Low density | 177.4±4.9a | 11.28±0.07a | 58 |
中密度 Medium density | 177.1±5.1a | 10.65±0.07b | 65 | |
高密度 High density | 166.1±5.6b | 7.17±0.04c | 58 |
表1 柠条和沙柳标准枝的平均株高和基径及标准枝枝条数
Table 1 Average plant height, average base diameter and the amounts of standard ranch for Caragana korshinskii and Salix psammophyllum
植被类型 Vegetation type | 密度 Density | 平均株高 Average plant height/ cm | 平均基径 Average base diameter/ mm | 标准枝条数 The amounts of standard ranch |
---|---|---|---|---|
柠条 Caragana korshinskii | 低密度 Low density | 131.2±3.1a | 9.18±0.08a | 205 |
中密度 Medium density | 106.7±2.3b | 7.27±0.04b | 300 | |
高密度 High density | 104.6±2.0b | 7.35±0.07b | 270 | |
沙柳 Salix psammophyllum | 低密度 Low density | 177.4±4.9a | 11.28±0.07a | 58 |
中密度 Medium density | 177.1±5.1a | 10.65±0.07b | 65 | |
高密度 High density | 166.1±5.6b | 7.17±0.04c | 58 |
植被类型 Vegetation type | 土层深度Soil depth/ cm | 土壤含水量θ/% | |||
---|---|---|---|---|---|
低密度 Low density | 中密度 Medium density | 高密度 High density | |||
柠条林地 Caragana korshinskii | 0-50 | 13.05±0.73a | 12.41±2.04a | 12.02±0.87a | |
50-100 | 10.42±1.85ab | 11.57±2.28a | 8.37±2.52b | ||
100-150 | 8.02±0.44a | 5.30±0.31b | 5.49±0.34b | ||
150-300 | 7.61±0.69a | 6.24±0.21c | 6.82±0.52b | ||
沙柳林地 Salix psammophyllum | 0-50 | 12.06±1.03a | 9.94±1.91b | 9.63±1.06b | |
50-100 | 12.91±0.92a | 10.79±0.97b | 10.61±0.74b | ||
100-150 | 10.48±1.36a | 10.48±0.87a | 8.52±1.17b | ||
150-300 | 12.52±1.20a | 9.23±0.45b | 8. 18±0.41c |
表2 不同植被密度条件下土壤含水量差异方差分析
Table 2 Variance analysis of soil water content differences under different vegetation densities
植被类型 Vegetation type | 土层深度Soil depth/ cm | 土壤含水量θ/% | |||
---|---|---|---|---|---|
低密度 Low density | 中密度 Medium density | 高密度 High density | |||
柠条林地 Caragana korshinskii | 0-50 | 13.05±0.73a | 12.41±2.04a | 12.02±0.87a | |
50-100 | 10.42±1.85ab | 11.57±2.28a | 8.37±2.52b | ||
100-150 | 8.02±0.44a | 5.30±0.31b | 5.49±0.34b | ||
150-300 | 7.61±0.69a | 6.24±0.21c | 6.82±0.52b | ||
沙柳林地 Salix psammophyllum | 0-50 | 12.06±1.03a | 9.94±1.91b | 9.63±1.06b | |
50-100 | 12.91±0.92a | 10.79±0.97b | 10.61±0.74b | ||
100-150 | 10.48±1.36a | 10.48±0.87a | 8.52±1.17b | ||
150-300 | 12.52±1.20a | 9.23±0.45b | 8. 18±0.41c |
植被类型 vegetation type | 土层深度 Soil depth/ cm | 土壤储水量W/mm | |||
---|---|---|---|---|---|
低密度 Low density | 中密度 Medium density | 高密度 High density | |||
柠条林地 Caragana korshinskii | 0-50 | 88.75 | 84.40 | 81.74 | |
50-100 | 70.85 | 78.67 | 56.90 | ||
100-150 | 54.54 | 36.05 | 37.33 | ||
150-300 | 153.37 | 127.87 | 142.00 | ||
0-300 | 367.50 | 326.98 | 317.97 | ||
沙柳林地 Salix psammophyllum | 0-50 | 82.04 | 67.62 | 65.50 | |
50-100 | 87.79 | 73.36 | 72.13 | ||
100-150 | 71.29 | 71.27 | 57.96 | ||
150-300 | 261.36 | 188.06 | 165.44 | ||
0-300 | 502.48 | 400.30 | 361.03 |
表3 不同植被密度条件下土壤储水量
Table 3 Soil water storage under different vegetation densities
植被类型 vegetation type | 土层深度 Soil depth/ cm | 土壤储水量W/mm | |||
---|---|---|---|---|---|
低密度 Low density | 中密度 Medium density | 高密度 High density | |||
柠条林地 Caragana korshinskii | 0-50 | 88.75 | 84.40 | 81.74 | |
50-100 | 70.85 | 78.67 | 56.90 | ||
100-150 | 54.54 | 36.05 | 37.33 | ||
150-300 | 153.37 | 127.87 | 142.00 | ||
0-300 | 367.50 | 326.98 | 317.97 | ||
沙柳林地 Salix psammophyllum | 0-50 | 82.04 | 67.62 | 65.50 | |
50-100 | 87.79 | 73.36 | 72.13 | ||
100-150 | 71.29 | 71.27 | 57.96 | ||
150-300 | 261.36 | 188.06 | 165.44 | ||
0-300 | 502.48 | 400.30 | 361.03 |
植被类型 Vegetation type | 土层深度 Soil depth/ cm | 土壤有机碳含量Si/(g∙kg-1) | ||
---|---|---|---|---|
低密度 Low density | 中密度 Medium density | 高密度 High density | ||
柠条林地 Caragana korshinskii | 0-50 | 3.94±1.39a | 3.05±2.19a | 2.36±1.15a |
50-100 | 2.46±0.66a | 1.96±0.12ab | 1.52±0.10b | |
100-300 | 1.43±0.11b | 1.60±0.13a | 1.21±0.08c | |
沙柳林地 Salix psammophyllum | 0-50 | 1.49±0.35a | 2.17±1.23a | 1.99±1.29a |
50-100 | 1.52±0.18a | 1.24±0.08b | 1.33±0.08b | |
100-300 | 1.66±0.13a | 1.44±0.12b | 1.31±0.11c |
表4 不同植被密度条件下土壤有机碳含量方差分析
Table 4 Variance analysis of soil organic carbon content under different vegetation densities
植被类型 Vegetation type | 土层深度 Soil depth/ cm | 土壤有机碳含量Si/(g∙kg-1) | ||
---|---|---|---|---|
低密度 Low density | 中密度 Medium density | 高密度 High density | ||
柠条林地 Caragana korshinskii | 0-50 | 3.94±1.39a | 3.05±2.19a | 2.36±1.15a |
50-100 | 2.46±0.66a | 1.96±0.12ab | 1.52±0.10b | |
100-300 | 1.43±0.11b | 1.60±0.13a | 1.21±0.08c | |
沙柳林地 Salix psammophyllum | 0-50 | 1.49±0.35a | 2.17±1.23a | 1.99±1.29a |
50-100 | 1.52±0.18a | 1.24±0.08b | 1.33±0.08b | |
100-300 | 1.66±0.13a | 1.44±0.12b | 1.31±0.11c |
植被类型 Vegetation type | 土层深度 Soil depth/ cm | 有机碳密度 Socd/(kg•m-2) | ||
---|---|---|---|---|
低密度 Low density | 中密度 Medium density | 高密度 High density | ||
柠条林地 Caragana korshinskii | 0-50 | 2.68 | 2.08 | 1.61 |
50-100 | 1.67 | 1.33 | 1.04 | |
100-300 | 3.86 | 4.34 | 3.29 | |
0-300 | 8.21 | 7.75 | 5.93 | |
沙柳林地 Salix psammophyllum | 0-50 | 1.01 | 1.48 | 1.35 |
50-100 | 1.03 | 0.84 | 0.90 | |
100-300 | 4.56 | 3.87 | 3.51 | |
0-300 | 6.60 | 6.19 | 5.77 |
表5 不同植被密度条件下土壤有机碳密度差异
Table 5 Differences of soil organic carbon density under different vegetation densities
植被类型 Vegetation type | 土层深度 Soil depth/ cm | 有机碳密度 Socd/(kg•m-2) | ||
---|---|---|---|---|
低密度 Low density | 中密度 Medium density | 高密度 High density | ||
柠条林地 Caragana korshinskii | 0-50 | 2.68 | 2.08 | 1.61 |
50-100 | 1.67 | 1.33 | 1.04 | |
100-300 | 3.86 | 4.34 | 3.29 | |
0-300 | 8.21 | 7.75 | 5.93 | |
沙柳林地 Salix psammophyllum | 0-50 | 1.01 | 1.48 | 1.35 |
50-100 | 1.03 | 0.84 | 0.90 | |
100-300 | 4.56 | 3.87 | 3.51 | |
0-300 | 6.60 | 6.19 | 5.77 |
植被类型 Vegetation type | 土层深度 Soil depth/ cm | 全氮含量Ti/(g∙kg-1) | ||
---|---|---|---|---|
低密度 Low density | 中密度 Medium density | 高密度 High density | ||
柠条林地 Caragana korshinskii | 0-50 | 0.39±0.16a | 0.28±0.22a | 0.23±0.09a |
50-100 | 0.22±0.08a | 0.20±0.05a | 0.14±0.02a | |
100-300 | 0.14±0.02a | 0.15±0.01a | 0.12±0.02b | |
沙柳林地 Salix psammophyllum | 0-50 | 0.18±0.12a | 0.17±0.12a | 0.16±0.10a |
50-100 | 0.13±0.01a | 0.09±0.01b | 0.09±0.01b | |
100-300 | 0.15±0.05a | 0.12±0.02b | 0.11±0.01b |
表6 不同植被密度条件下土壤全氮质量分数方差分析
Table 6 Variance analysis of soil total nitrogen mass fraction under different vegetation densities
植被类型 Vegetation type | 土层深度 Soil depth/ cm | 全氮含量Ti/(g∙kg-1) | ||
---|---|---|---|---|
低密度 Low density | 中密度 Medium density | 高密度 High density | ||
柠条林地 Caragana korshinskii | 0-50 | 0.39±0.16a | 0.28±0.22a | 0.23±0.09a |
50-100 | 0.22±0.08a | 0.20±0.05a | 0.14±0.02a | |
100-300 | 0.14±0.02a | 0.15±0.01a | 0.12±0.02b | |
沙柳林地 Salix psammophyllum | 0-50 | 0.18±0.12a | 0.17±0.12a | 0.16±0.10a |
50-100 | 0.13±0.01a | 0.09±0.01b | 0.09±0.01b | |
100-300 | 0.15±0.05a | 0.12±0.02b | 0.11±0.01b |
植被类型 Vegetation type | 土层深度 Soil depth/ cm | 全氮密度Tnd/(kg∙m-2) | ||
---|---|---|---|---|
低密度 Low density | 中密度 Medium density | 高密度 High density | ||
柠条林地 Caragana korshinskii | 0-50 | 0.26 | 0.19 | 0.16 |
50-100 | 0.15 | 0.14 | 0.10 | |
100-300 | 0.39 | 0.41 | 0.35 | |
0-300 | 0.80 | 0.74 | 0.60 | |
沙柳林地 Salix psammophyllum | 0-50 | 0.13 | 0.12 | 0.11 |
50-100 | 0.09 | 0.06 | 0.06 | |
100-300 | 0.44 | 0.32 | 0.31 | |
0-300 | 0.65 | 0.50 | 0.48 |
表7 不同植被密度条件下土壤全氮密度差异
Table 7 Soil total nitrogen density differences under different vegetation densities
植被类型 Vegetation type | 土层深度 Soil depth/ cm | 全氮密度Tnd/(kg∙m-2) | ||
---|---|---|---|---|
低密度 Low density | 中密度 Medium density | 高密度 High density | ||
柠条林地 Caragana korshinskii | 0-50 | 0.26 | 0.19 | 0.16 |
50-100 | 0.15 | 0.14 | 0.10 | |
100-300 | 0.39 | 0.41 | 0.35 | |
0-300 | 0.80 | 0.74 | 0.60 | |
沙柳林地 Salix psammophyllum | 0-50 | 0.13 | 0.12 | 0.11 |
50-100 | 0.09 | 0.06 | 0.06 | |
100-300 | 0.44 | 0.32 | 0.31 | |
0-300 | 0.65 | 0.50 | 0.48 |
植被类型 Vegetation type | 密度 Density | 相关系数及显著性 Correlation coefficient and significance | 土壤有机碳含量 Si | 全氮含量 Ti | |
---|---|---|---|---|---|
柠条林地 Caragana korshinskii | 低密度 Low density | 土壤含水量θ | r | 0.957** | 0.939** |
P | 0.000 | 0.000 | |||
中密度 Medium density | r | 0.767** | 0.642** | ||
P | 0.000 | 0.001 | |||
高密度 High density | r | 0.751** | 0.840** | ||
P | 0.000 | 0.000 | |||
沙柳林地 Salix psammophyllum | 低密度 Low density | 土壤含水量θ | r | -0.099 | 0.206 |
P | 0.654 | 0.345 | |||
中密度 Medium density | r | -0.353 | -0.038 | ||
P | 0.099 | 0.865 | |||
高密度 High density | r | 0.025 | -0.609* | ||
P | 0.911 | 0.002 |
表8 不同植被类型下土壤有机碳含量、全氮含量与土壤含水量相关性分析
Table 8 Correlation analysis between soil organic carbon content, total nitrogen content and soil water content in different vegetation type
植被类型 Vegetation type | 密度 Density | 相关系数及显著性 Correlation coefficient and significance | 土壤有机碳含量 Si | 全氮含量 Ti | |
---|---|---|---|---|---|
柠条林地 Caragana korshinskii | 低密度 Low density | 土壤含水量θ | r | 0.957** | 0.939** |
P | 0.000 | 0.000 | |||
中密度 Medium density | r | 0.767** | 0.642** | ||
P | 0.000 | 0.001 | |||
高密度 High density | r | 0.751** | 0.840** | ||
P | 0.000 | 0.000 | |||
沙柳林地 Salix psammophyllum | 低密度 Low density | 土壤含水量θ | r | -0.099 | 0.206 |
P | 0.654 | 0.345 | |||
中密度 Medium density | r | -0.353 | -0.038 | ||
P | 0.099 | 0.865 | |||
高密度 High density | r | 0.025 | -0.609* | ||
P | 0.911 | 0.002 |
[1] |
CROW S E, LAJTHA K, BOWDEN R D, et al., 2009. Increased coniferous needle inputs accelerate decomposition of soil carbon in an old-growth forest[J]. Forest Ecology and Management, 258(10): 2224-2232.
DOI URL |
[2] |
CHANG R Y, FU B J, LIU G H, et al., 2012. The effects of afforestation on soil organic and inorganic carbon: A case study of the Loess Plateau of China[J]. Catena, 95: 145-152.
DOI URL |
[3] |
DAVIDSON E A, TRUMBORE S E, AMUNDSON R, 2000. Soil warmingand organic carbon content[J]. Nature, 408: 789-790.
DOI URL |
[4] | DAVID R L, REZAUL M, DELPHIS F L, et al., 2011. Soil moisture: A central and unifying theme in physical geography[J]. Progress in Physical Geography, 35(1): 65-86. |
[5] |
FU B J, WANG S, LIU Y, et al., 2017. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China[J]. Annual Review of Earth and Planetary Sciences, 45(1): 223-243.
DOI URL |
[6] |
FU W, HUANG M B, GALLICHAND J, et al., 2012. Optimization of plant coverage in relation to water balance in the Loess Plateau of China[J]. Geoderma, 173-174: 134-144.
DOI URL |
[7] | LIANG H B, SHI J W, LIN Z S, et al., 2018. Evaluation of soil desiccation intensity in different ages of Caragana korshinskii Kom. in loess hilly region, Northwestern Shanxi[J]. Research of Soil and Water Conservation, 25(2): 87-93. |
[8] |
WANG Y F, FU B J, LV Y H, et al., 2011. Effects of vegetation restoration on soil organic carbon sequestration at multiple scales in semi-arid Loess plateau, China[J]. Catena, 85(1): 58-66.
DOI URL |
[9] |
WANG Y Q, SHAO M A, LIU Z P, et al., 2012. Investigation of factors controlling the regional-scale distribution of dried soil layers under forestland on the Loess Plateau, China[J]. Hydrological Sciences Journal, 57(2): 265-281.
DOI URL |
[10] |
YANG L, WEI W, CHEN L D, et al., 2014. Response of temporal variation of soil moisture to vegetation restoration in semi-arid Loess Plateau, China[J]. Catena, 115: 123-133.
DOI URL |
[11] |
ZHANG G Q, ZHANG P, CAO Y, 2018. Ecosystem carbon and nitrogen storage following farmland afforestation with black locust (Robinia pseudoacacia) on the Loess Plateau, China[J]. Journal of Forestry Research, 29(3): 761-771.
DOI URL |
[12] |
ZHOU Z C, ZHANG X Y, GAN Z T, 2015. Changes in soil organic carbon and nitrogen after 26 years of farmland management on the Loess Plateau of China[J]. Journal of Arid Land, 7(6): 806-813.
DOI URL |
[13] | 陈洪松, 邵明安, 王克林, 2005. 黄土区深层土壤干燥化与土壤水分循环特征[J]. 生态学报, 25(10): 2491-2498. |
CHEN H S, SHAO M A, WANG K L, 2005. Characteristics of deep soil desiccation and soil water cycle in loess region[J]. Acta Ecologica Sinica, 25(10): 2491-2498. | |
[14] | 冯棋, 杨磊, 王晶, 等, 2019. 黄土丘陵区植被恢复的土壤碳水效应[J]. 生态学报, 39(18): 6598-6609. |
FENG Q, YANG L, WANG J, et al., 2019. Effects of soil carbon and water on vegetation restoration in loess hilly region[J]. Acta Ecologica Sinica, 39(18): 6598-6609. | |
[15] | 兰志龙, 赵英, 张建国, 等, 2018. 陕北黄土丘陵区不同土地利用方式下土壤碳剖面分布特征[J]. 环境科学, 39(1): 339-347. |
LAN Z L, ZHAO Y, ZHANG J G, et al., 2018. Distribution characteristics of soil carbon profile under different land use patterns in loess hilly-gully region of northern Shaanxi[J]. Environmental Science, 39(1): 339-347.
DOI URL |
|
[16] | 李荣磊, 黄来明, 裴艳武, 等, 2021. 毛乌素沙地圪丑沟小流域沙柳水分利用来源研究[J]. 水土保持学报, 35(2): 122-130. |
LI R L, HUANG L M, PEI Y W, et al., 2021. Study on water utilization sources of Salix psammophyllum in Geecugou Watershed of Mu US Sandy Land[J]. Journal of Soil and Water Conservation, 35(2): 122-130. | |
[17] | 刘丙霞, 2015. 黄土区典型灌草植被土壤水分时空分布及其植被承载力研究[D]. 杨凌: 中国科学院研究生院 (教育部水土保持与生态环境研究中心). |
LIU B X, 2015. Spatial and temporal distribution of soil water and vegetation carrying capacity of typical shrub-grass vegetation in loess region[D]. Yangling: Graduate University of Chinese Academy of Sciences (Research Center for Soil and Water Conservation and Eco-Environment. | |
[18] | 刘学彤, 魏艳春, 杨宪龙, 等, 2016. 水蚀风蚀交错带不同退耕模式对土壤有机碳及全氮的影响[J]. 应用生态学报, 27(1): 91-98. |
LIU X T, WEI Y C, YANG X L, et al., 2016. Effects of different tillage patterns on soil organic carbon and total nitrogen in wind-water erosion zone[J]. Chinese Journal of Applied Ecology, 27(1): 91-98. | |
[19] | 刘志鹏, 邵明安, 2010. 黄土高原小流域土壤水分及全氮的垂直变异[J]. 农业工程学报, 26(5): 71-77. |
LIU Z P, SHAO M A, 2010. Vertical variation of soil moisture and total nitrogen in a small watershed of the Loess Plateau[J]. Transactions of the Chinese Society of Agricultural Engineering, 26(5): 71-77. | |
[20] | 任悦, 高广磊, 丁国栋, 等, 2018. 沙地樟子松人工林叶片-枯落物-土壤有机碳含量特征[J]. 北京林业大学学报, 40(7): 36-44. |
REN Y, GAO G L, DING G D, et al., 2018. Characteristics of leaf, litter and soil organic carbon content in mongolian scots pine plantation[J]. Journal of Beijing Forestry University, 40(7): 36-44. | |
[21] | 史利江, 高杉, 姚晓军, 等, 2021. 晋西北黄土丘陵区不同植被恢复下的土壤碳氮累积特征[J]. 生态环境学报, 30(9): 1787-1796. |
SHI L J, GAO S, YAO X J, et al., 2021. Characteristics of soil carbon and nitrogen accumulation under different vegetation restoration in loess hilly-gully region of northwest Shanxi Province[J]. Journal of Ecology and Environment, 30(9): 1787-1796. | |
[22] | 舒维花, 蒋齐, 王占军, 等, 2012. 宁夏盐池沙地不同密度人工柠条林土壤水分时空变化分析[J]. 干旱区资源与环境, 26(12): 172-176. |
SHU W H, JIANG Q, WANG Z J, et al., 2012. Temporal and spatial variation of soil moisture in artificial Caragana korshinskii forest with different densities in Yanchi Sandy Land, Ningxia[J]. Journal of Arid Land Resources and Environment, 26(12): 172-176. | |
[23] | 索立柱, 黄明斌, 段良霞, 等, 2017. 黄土高原不同土地利用类型土壤含水量的地带性与影响因素[J]. 生态学报, 37(6): 2045-2053. |
SUO L Z, HUANG M B, DUAN L X, et al., 2017. Zonality and influencing factors of soil water content in different land use types on the Loess Plateau[J]. Acta Ecologica Sinica, 37(6): 2045-2053. | |
[24] | 王岩松, 马保明, 高海平, 等, 2020. 晋西黄土区油松和刺槐人工林土壤养分及其化学计量比对林分密度的响应[J]. 北京林业大学学报, 42(8): 81-93. |
WANG Y S, MA B M, GAO H P, et al., 2020. Response of soil nutrients and stoichiometric ratio to stand density in Pinus tabulaeformis and Robinia pseudoacacia plantations in loess region of Western Shanxi Province[J]. Journal of Beijing Forestry University, 42(8): 81-93. | |
[25] | 吴多洋, 焦菊英, 于卫洁, 等, 2017. 陕北刺槐林木生长及林下植被与土壤水分对种植密度的响应特征[J]. 西北植物学报, 37(2): 346-355. |
WU D Y, JIAO J Y, YU W J, et al., 2017. Response characteristics of Robinia pseudoacacia tree growth, understory vegetation and soil moisture to planting density in northern Shaanxi[J]. Acta Botanica Boreali-Occidentalia Sinica, 37(2): 346-355. | |
[26] | 夏光辉, 郭青霞, 卢庆民, 等, 2020. 黄土丘陵区不同土地利用方式下土壤养分及生态化学计量特征[J]. 水土保持通报, 40(2): 140-147, 153. |
XIA G H, GUO Q X, LU Q M, et al., 2020. Soil nutrients and ecological stoichiometry under different land use patterns in loess hilly region[J]. Bulletin of Soil and Water Conservation, 40(2): 140-147, 153. | |
[27] | 杨帆, 潘成忠, 鞠洪秀, 2016. 晋西黄土丘陵区不同土地利用类型对土壤碳氮储量的影响[J]. 水土保持研究, 23(4): 318-324. |
YANG F, PAN C Z, JU H X, 2016. Effects of different land use types on soil carbon and nitrogen storage in loess hilly-gully region of western Shanxi Province[J]. Research of Soil and Water Conservation, 23(4): 318-324. | |
[28] | 杨国敏, 王爱, 王力, 2018. 六道沟流域2种典型灌木不同季节水分来源及利用效率[J]. 西北植物学报, 38(1): 140-149. |
YANG G M, WANG A, WANG L, 2018. Water sources and utilization efficiency of two typical shrubs in different seasons in Liudaogou Watershed[J]. Acta Botanica Sinica of Northwest China, 38(1): 140-149. | |
[29] | 杨磊, 张子豪, 李宗善, 2019. 黄土高原植被建设与土壤干燥化: 问题与展望[J]. 生态学报, 39(20): 7382-7388. |
YANG L, ZHANG Z H, LI Z S, 2019. Vegetation construction and soil desiccation on the Loess Plateau: Problems and prospects[J]. Acta Ecologica Sinica, 39(20): 7382-7388. | |
[30] | 杨丽霞, 陈少锋, 安娟娟, 等, 2014. 陕北黄土丘陵区不同植被类型群落多样性与土壤有机质、全氮关系研究[J]. 草地学报, 22(2): 291-298. |
YANG L X, CHEN S F, AN J J, et al., 2014. Relationship between community diversity of different vegetation types and total nitrogen of soil organic matter in loess hilly-gully region of northern Shaanxi province[J]. Acta Agrestia Sinica, 22(2): 291-298. | |
[31] | 杨勇, 宋向阳, 咏梅, 等, 2015. 不同干扰方式对内蒙古典型草原土壤有机碳和全氮的影响[J]. 生态环境学报, 24(2): 204-210. |
YANG Y, SONG X Y, YONG M, et al., 2015. Effects of different disturbance modes on soil organic carbon and total nitrogen in typical steppe of Inner Mongolia[J]. Journal of Ecology and Environment, 24(2): 204-210. | |
[32] | 于双, 许冬梅, 许爱云, 等, 2019. 不同恢复措施对宁夏荒漠草原土壤碳氮储量的影响[J]. 草业学报, 28(3): 12-19. |
YU S, XU D M, XU A Y, et al., 2019. Effects of different restoration measures on soil carbon and nitrogen storage in desert steppe of Ningxia[J]. Acta Prataculturae Sinica, 28(3): 12-19. | |
[33] | 张文文, 郭忠升, 宁婷, 等, 2015. 黄土丘陵半干旱区柠条林密度对土壤水分和柠条生长的影响[J]. 生态学报, 35(3): 725-732. |
ZHANG W W, GUO Z S, NING T, et al., 2015. Effects of caragana korshinskii forest density on soil moisture and growth of Caragana korshinskii in semi-arid region of Loess Hill[J]. Acta Ecologica Sinica, 35(3): 725-732. | |
[34] | 张智勇, 王瑜, 艾宁, 等, 2020. 陕北黄土区不同植被类型土壤有机碳分布特征及其影响因素[J]. 北京林业大学学报, 42(11): 56-63. |
ZHANG Z Y, WANG Y, AI N, et al., 2020. Distribution characteristics and influencing factors of soil organic carbon under different vegetation types in the loess region of northern Shaanxi province[J]. Journal of Beijing Forestry University, 42(11): 56-63. | |
[35] | 张富荣, 柳洋, 史常明, 等, 2021. 不同恢复年限刺槐林土壤碳、氮、磷含量及其生态化学计量特征[J]. 生态环境学报, 30(3): 485-491. |
ZHANG F R, LIU Y, SHI C M, et al., 2021. Soil carbon, nitrogen, phosphorus content and their ecological stoichiometric characteristics in different plantation ages[J]. Journal of Ecology and Environment, 30(3): 485-491. | |
[36] | 赵发珠, 韩新辉, 杨改河, 等, 2012. 黄土丘陵区不同退耕还林地土壤有机碳、氮密度变化特征[J]. 水土保持研究, 19(4): 43-47. |
ZHAO F Z, HAN X H, YANG G H, et al., 2012. Change characteristics of soil organic carbon and nitrogen density in different returning farmland to forestland in loess hilly region[J]. Research of Soil and Water Conservation, 19(4): 43-47. |
[1] | 王琳, 卫伟. 黄土高原典型县域生态系统服务变化特征及驱动因素[J]. 生态环境学报, 2023, 32(6): 1140-1148. |
[2] | 李传福, 朱桃川, 明玉飞, 杨宇轩, 高舒, 董智, 李永强, 焦树英. 有机肥与脱硫石膏对黄河三角洲盐碱地土壤团聚体及其有机碳组分的影响[J]. 生态环境学报, 2023, 32(5): 878-888. |
[3] | 周沁苑, 董全民, 王芳草, 刘玉祯, 冯斌, 杨晓霞, 俞旸, 张春平, 曹铨, 刘文亭. 放牧方式对高寒草地瑞香狼毒根际土壤团聚体及有机碳特征的影响[J]. 生态环境学报, 2023, 32(4): 660-667. |
[4] | 张林, 齐实, 周飘, 伍冰晨, 张岱, 张岩. 北京山区针阔混交林地土壤有机碳含量的影响因素研究[J]. 生态环境学报, 2023, 32(3): 450-458. |
[5] | 何亚婷, 何友均, 王鹏, 谢和生. 不同经营模式对蒙古栎林土壤有机碳组分的长效性影响[J]. 生态环境学报, 2023, 32(1): 11-17. |
[6] | 秦艳培, 徐少君, 田耀武. 黄河流域河南段植被和土壤及其碳密度空间分异研究[J]. 生态环境学报, 2022, 31(9): 1745-1753. |
[7] | 肖国举, 李秀静, 郭占强, 胡延斌, 王静. 贺兰山东麓土壤有机碳对玉米生长发育及水分利用的影响[J]. 生态环境学报, 2022, 31(9): 1754-1764. |
[8] | 王钊, 张曼胤, 胡宇坤, 刘魏魏, 张苗苗. 盐度对典型滨海湿地沉积物汞甲基化的影响[J]. 生态环境学报, 2022, 31(9): 1876-1884. |
[9] | 齐月, 张强, 胡淑娟, 蔡迪花, 赵福年, 陈斐, 张凯, 王鹤龄, 王润元. 黄土高原地区气候变化及其对冬小麦生产潜力的影响[J]. 生态环境学报, 2022, 31(8): 1521-1529. |
[10] | 马辉英, 李昕竹, 马鑫钰, 贡璐. 新疆天山北麓中段不同植被类型下土壤有机碳组分特征及其影响因素[J]. 生态环境学报, 2022, 31(6): 1124-1131. |
[11] | 王超, 杨倩楠, 张池, 李祥东, 陈静, 张晓龙, 陈金洁, 刘科学. 东南湿润区典型丹霞地貌土壤有机碳组分及其敏感性研究[J]. 生态环境学报, 2022, 31(6): 1132-1140. |
[12] | 龚玲玄, 王丽丽, 赵建宁, 刘红梅, 杨殿林, 张贵龙. 不同覆盖作物模式对茶园土壤理化性质及有机碳矿化的影响[J]. 生态环境学报, 2022, 31(6): 1141-1150. |
[13] | 陈丽娟, 周文君, 易艳芸, 宋清海, 张一平, 梁乃申, 鲁志云, 温韩东, MOHD Zeeshan, 沙丽清. 云南哀牢山亚热带常绿阔叶林土壤CH4通量特征[J]. 生态环境学报, 2022, 31(5): 949-960. |
[14] | 杜雪, 王海燕, 邹佳何, 孟海, 赵晗, 崔雪, 董齐琪. 长白山北坡云冷杉阔叶混交林土壤有机碳分布特征及其影响因素[J]. 生态环境学报, 2022, 31(4): 663-669. |
[15] | 胡靓达, 周海菊, 黄永珍, 姚贤宇, 叶绍明, 喻素芳. 不同杉木林分类型植物多样性及其土壤碳氮关系的研究[J]. 生态环境学报, 2022, 31(3): 451-459. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||