生态环境学报 ›› 2022, Vol. 31 ›› Issue (5): 865-874.DOI: 10.16258/j.cnki.1674-5906.2022.05.002
符裕红1(), 张代杰2, 项蛟1, 周焱1, 黄宗胜3,*(
), 喻理飞4
收稿日期:
2021-05-16
出版日期:
2022-05-18
发布日期:
2022-07-12
通讯作者:
* 黄宗胜(1972年生),男,教授,博士,主要从事景观生态方面的研究。E-mail: 527690165@qq.com作者简介:
符裕红(1982年生),女,副教授,博士,主要从事生态恢复方面的研究。E-mail: 53813350@qq.com
基金资助:
FU Yuhong1(), ZHANG Daijie2, XIANG Jiao1, ZHOU Yan1, HUANG Zongsheng3,*(
), YU Lifei4
Received:
2021-05-16
Online:
2022-05-18
Published:
2022-07-12
摘要:
喀斯特生境高度异质,根系分布复杂,为揭示喀斯特地下生境植物根系分布特征,明确地下生境剖面植物根系拓扑结构,探索喀斯特地区植物与生境的适应机制,为喀斯特石漠化区植物生长研究、树种选择和植被恢复技术提供依据和指导。以地下生境类型及其根系分布特征为主线,在贵州区域范围内开展野外剖面调查,涉及39个区域共152个剖面样点,创新性地结合AutoCAD软件技术分析不同剖面生境的基本特征、植物根系的分布特点、根系拓扑构型特征等,探讨不同生境特征与根系拓扑特征间的关系,分析不同地下生境类型植物根系拓扑结构特征的异同。结果表明,(1)喀斯特植物根系分布与地下生境特征存在相互影响,岩石破碎度指数、土层深度、裂缝宽度、根系分布宽度、岩石斑块数、根系分布长度是导致生境类型差异性的重要表现因素。(2)通过生境指标及植物根系拓扑参数分类,剖面生境可划分为:表层空间类型、单层空间类型,多层空间类型,且多层空间类型数量最多;结合岩石类型和植被类型细分,将表层空间类型细分为2类,单层空间类型细分为4类,多层空间类型细分为4类。(3)喀斯特地下空间类型影响植物根系分布,并受岩石裂隙控制,多层空间中表现更为明显,乔木树种根系分布更为突出。(4)不同生境类型植物根系分支相对复杂,次级分支相对较多,植物根系的分叉分级受制于生境结构,根系拓扑指数范围为0.54—0.77,叉状型分布占66.78%,鱼尾型分布占33.22%,叉状型分支更占优势,植物主要采取多方向分支扩展的觅食性策略适应特殊生境。
中图分类号:
符裕红, 张代杰, 项蛟, 周焱, 黄宗胜, 喻理飞. 喀斯特不同地下生境剖面植物根系拓扑结构特征[J]. 生态环境学报, 2022, 31(5): 865-874.
FU Yuhong, ZHANG Daijie, XIANG Jiao, ZHOU Yan, HUANG Zongsheng, YU Lifei. Topological Structure of Plant Roots of Different Underground Habitat Profiles in Karst Areas[J]. Ecology and Environment, 2022, 31(5): 865-874.
指标 Indices | Gr | a | Pe | V0 |
---|---|---|---|---|
lr | 0.210** | 0.237** | 0.172* | 0.259** |
br | 0.244** | 0.210** | 0.289** | 0.403** |
dr | 0.071 | 0.052 | 0.067 | 0.133 |
Sr | -0.151 | -0.179* | -0.178* | -0.158 |
hs | -0.078 | -0.021 | -0.101 | -0.112 |
bc | -0.196* | -0.077 | -0.134 | -0.150 |
Ss | 0.023 | 0.007 | 0.102 | 0.074 |
n | 0.112 | 0.066 | 0.08 | 0.097 |
Fi | 0.131 | 0.140 | 0.165* | 0.140 |
表1 生境指标与根系拓扑指标相关性
Table 1 Correlation between habitat indices and root topological indices
指标 Indices | Gr | a | Pe | V0 |
---|---|---|---|---|
lr | 0.210** | 0.237** | 0.172* | 0.259** |
br | 0.244** | 0.210** | 0.289** | 0.403** |
dr | 0.071 | 0.052 | 0.067 | 0.133 |
Sr | -0.151 | -0.179* | -0.178* | -0.158 |
hs | -0.078 | -0.021 | -0.101 | -0.112 |
bc | -0.196* | -0.077 | -0.134 | -0.150 |
Ss | 0.023 | 0.007 | 0.102 | 0.074 |
n | 0.112 | 0.066 | 0.08 | 0.097 |
Fi | 0.131 | 0.140 | 0.165* | 0.140 |
组件 Component | 初始特征值 Initial eigenvalues | 提取载荷平方和 Extraction sums of squared loadings | 旋转载荷平方和 Rotating sums of squared loadings | |||||
---|---|---|---|---|---|---|---|---|
总计 Total | 累积% % of variance | 总计 Total | 累积% % of variance | 总计 Total | 累积% % of variance | |||
1 | 3.978 | 30.604 | 3.978 | 30.604 | 3.140 | 24.150 | ||
2 | 2.501 | 49.840 | 2.501 | 49.840 | 2.847 | 46.048 | ||
3 | 1.965 | 64.955 | 1.965 | 64.955 | 2.308 | 63.800 | ||
4 | 1.188 | 74.097 | 1.188 | 74.097 | 1.339 | 74.097 |
表2 剖面根系指标主成分分析
Table 2 Principal component analysis of root index of profile
组件 Component | 初始特征值 Initial eigenvalues | 提取载荷平方和 Extraction sums of squared loadings | 旋转载荷平方和 Rotating sums of squared loadings | |||||
---|---|---|---|---|---|---|---|---|
总计 Total | 累积% % of variance | 总计 Total | 累积% % of variance | 总计 Total | 累积% % of variance | |||
1 | 3.978 | 30.604 | 3.978 | 30.604 | 3.140 | 24.150 | ||
2 | 2.501 | 49.840 | 2.501 | 49.840 | 2.847 | 46.048 | ||
3 | 1.965 | 64.955 | 1.965 | 64.955 | 2.308 | 63.800 | ||
4 | 1.188 | 74.097 | 1.188 | 74.097 | 1.339 | 74.097 |
图3 调查样点PCA排序图 (a)指标PCA排序图;(b)样点PCA排序图;(c)指标样点PCA排序图 1:表层空间类型(类型1);2:单层空间类型(类型2);3:多层空间类型(类型3)
Figure 3 PCA sequence diagram of survey sampling points (a) PCA sequence diagram of indicators; (b) PCA sequence diagram of sample points; (c) PCA sequence diagram of indicators and sample points 1: Surface space type (Type 1); 2: Single-layer space type (Type 2); 3: Multi-layer space type (Type 3)
图4 不同剖面类型根长度变化 1-1-1:表层空间白云岩灌木类型;1-1-2:表层空间白云岩乔木类型;2-1-1:单层空间白云岩灌木类型;2-1-2:单层空间白云岩乔木类型;2-2-1:单层空间石灰岩灌木类型;2-2-2:单层空间石灰岩乔木类型;3-1-1:多层空间白云岩灌木类型;3-1-2:多层空间白云岩乔木类型;3-2-1:多层空间石灰岩灌木类型;3-2-2:多层空间石灰岩乔木类型
Figure 4 Variation of root length in different profile types 1-1-1: Surface space type of shrub in dolomite; 1-1-2: Surface space type of trees in dolomite; 2-1-1: Single-layer space type of shrub in dolomite; 2-1-2: Single-layer space type of tree in dolomite; 2-2-1: Single-layer space type of shrub in limestone; 2-2-2: Single-layer space type of tree in limestone; 3-1-1: Multi-layer space type of shrub in dolomite; 3-1-2: Multi-layer space type of tree in dolomite; 3-2-1: Multi-layer space type of shrub in limestone; 3-2-2: Multi-layer space type of tree in limestone
类型 Type | A | b | Pe | M | qa | qb | Ti |
---|---|---|---|---|---|---|---|
1-1-1 | 4.33±2.52a | 1.88±0.36a | 22.33±8.39c | 11.67±2.08c | -0.07±0.31a | -1.04±0.30a | 0.54±0.23a |
1-1-2 | 7.00±3.06a | 1.92±0.23a | 41.14±28.14ac | 21.29±14.44ac | 0.10±0.16a | -0.80±0.48a | 0.65±0.09a |
2-1-1 | 7.56±4.59a | 2.00±0.23a | 29.33±22.72bc | 15.00±12.00bc | 0.35±0.55a | -1.33±0.91a | 0.77±0.22a |
2-1-2 | 4.36±2.84a | 1.85±0.20a | 16.64±13.92c | 8.45±6.53c | 0.34±0.60a | -4.19±4.59a | 0.76±0.24a |
2-2-1 | 6.60±3.85a | 1.85±0.27a | 30.60±10.41bc | 17.00±6.67bc | 0.09±0.32a | -0.78±0.35a | 0.61±0.23a |
2-2-2 | 4.67±1.94a | 1.94±0.41a | 17.56±10.25c | 9.56±5.81c | 0.23±0.61a | -1.96±4.34a | 0.74±0.21a |
3-1-1 | 7.00±4.50a | 1.81±0.28a | 32.70±21.86b | 17.70±10.00b | 0.01±0.55a | -1.80±3.34a | 0.66±0.15a |
3-1-2 | 6.83±3.33a | 1.94±0.49a | 29.79±21.06b | 14.72±7.85bc | 0.25±0.45a | -1.56±2.31a | 0.72±0.18a |
3-2-1 | 6.63±5.22a | 2.02±0.43a | 33.16±19.42b | 17.84±11.53b | 0.18±0.32a | -1.16±1.56a | 0.66±0.20a |
3-2-2 | 6.00±3.02a | 1.83±0.26a | 31.86±17.76b | 17.54±9.79b | 0.13±0.33a | -1.15±1.59a | 0.64±0.18a |
表3 不同剖面类型植物根系拓扑结构参数
Table 3 Root topological structure parameters of plants of different profile types
类型 Type | A | b | Pe | M | qa | qb | Ti |
---|---|---|---|---|---|---|---|
1-1-1 | 4.33±2.52a | 1.88±0.36a | 22.33±8.39c | 11.67±2.08c | -0.07±0.31a | -1.04±0.30a | 0.54±0.23a |
1-1-2 | 7.00±3.06a | 1.92±0.23a | 41.14±28.14ac | 21.29±14.44ac | 0.10±0.16a | -0.80±0.48a | 0.65±0.09a |
2-1-1 | 7.56±4.59a | 2.00±0.23a | 29.33±22.72bc | 15.00±12.00bc | 0.35±0.55a | -1.33±0.91a | 0.77±0.22a |
2-1-2 | 4.36±2.84a | 1.85±0.20a | 16.64±13.92c | 8.45±6.53c | 0.34±0.60a | -4.19±4.59a | 0.76±0.24a |
2-2-1 | 6.60±3.85a | 1.85±0.27a | 30.60±10.41bc | 17.00±6.67bc | 0.09±0.32a | -0.78±0.35a | 0.61±0.23a |
2-2-2 | 4.67±1.94a | 1.94±0.41a | 17.56±10.25c | 9.56±5.81c | 0.23±0.61a | -1.96±4.34a | 0.74±0.21a |
3-1-1 | 7.00±4.50a | 1.81±0.28a | 32.70±21.86b | 17.70±10.00b | 0.01±0.55a | -1.80±3.34a | 0.66±0.15a |
3-1-2 | 6.83±3.33a | 1.94±0.49a | 29.79±21.06b | 14.72±7.85bc | 0.25±0.45a | -1.56±2.31a | 0.72±0.18a |
3-2-1 | 6.63±5.22a | 2.02±0.43a | 33.16±19.42b | 17.84±11.53b | 0.18±0.32a | -1.16±1.56a | 0.66±0.20a |
3-2-2 | 6.00±3.02a | 1.83±0.26a | 31.86±17.76b | 17.54±9.79b | 0.13±0.33a | -1.15±1.59a | 0.64±0.18a |
图7 不同剖面类型植物根系总体构型、近鱼尾型、近叉状型数量分布图
Figure 7 Distribution of root architecture, near-fishtail type and near-forklike type of plants in different profile types
[1] |
CERMAK P, FER F, 2007. Root systems of forest tree species and their soil-conservation functions on the Krusne Hory Mts. slopes disturbed by mining[J]. Journal of Forest Science, 53(12): 561-566.
DOI URL |
[2] |
FITTER A H, STICKLAND T R, HARVEY M L, et al., 1991. Architectural analysis of plant root systems of Architectural correlates of exploitation efficiency[J]. New Phytologist, 118(3): 383-389.
DOI URL |
[3] |
FITTER A H, 1987. An architectural approach to the comparative ecology of plant root systems[J]. New Phytologist, 106(1): 61-77.
DOI URL |
[4] |
OPPELT A L, KURTH W, GODBOLD D L, 2001. Topology, scaling relations and Leonardo’s rule in root systems from African tree species[J]. Tree Physiology, 21(2-3): 117-128.
DOI URL |
[5] |
OPPELT A L, KURTH W, GODBOLD D L, 2005. Contrasting rooting patterns of some arid-zone fruit tree species from Botswana-II. Coarse root distribution[J]. Agroforestry Systems 64: 13-24.
DOI URL |
[6] |
OPPELT A L, WINFRIED K, HELGE D, et al., 2000. Structure and fractal dimensions of root systems of four co-occurring fruit tree species from Botswana[J]. Annals of Forest Science, 57(5): 463-475.
DOI URL |
[7] | 符裕红, 黄宗胜, 喻理飞, 2012b. 岩溶区典型根系地下生境的土壤质量分析[J]. 水土保持研究, 19(3): 67-73. |
FU Y H, HUANG Z S, YU L F, 2012b. Analysis on the soil quality of different typical underground root habitat types in karst areas[J]. Research of Soil and Water Conservation, 19(3): 67-73. | |
[8] | 符裕红, 黄宗胜, 喻理飞, 2012c. 岩溶石漠化区3种根系地下生境类型的群落优势种白栎叶片δ13C值的研究[J]. 应用生态学报, 23(11): 2961-2967. |
FU Y H, HUANG Z S, YU L F, 2012c. Changes of foliar δ13C value of Quercus fabric in different root underground habitat types in Karst area[J]. Chinese Journal of Applied Ecology, 23(11): 2961-2967. | |
[9] | 符裕红, 黄宗胜, 喻理飞, 2012d. 岩溶区典型根系地下生境类型中土壤酶活性研究[J]. 土壤学报, 49(6): 133-140. |
FU Y H, HUANG Z S, YU L F, 2012d. Soil enzyme activities in type of root underground habitat typical of Karst areas[J]. Acta Pedologica Sinica, 49(6): 133-140. | |
[10] | 符裕红, 喻理飞, 黄宗胜, 等, 2012a. 典型岩溶石漠化区根系生境及其类型研究[J]. 中国水土保持科学, 10(2): 66-72. |
FU Y H, YU L F, HUANG Z S, et al., 2012a. Study on root habitat and types in typical karst rocky desertification areas[J]. Science of Soil and Water Conservation, 10(2): 66-72. | |
[11] | 高建花, 郭娜, 孙正圆, 等, 2015. 石漠化区地埂桑根系分布特征及其与土壤养分的关系[J]. 西南大学学报 (自然科学版), 37(7): 23-29. |
GAO J H, GUO N, SUN Z G, 2015. Root distribution of Ridge mulberry and its relationship with soil nutrients in Karst rocky desertification areas[J]. Journal of Southwest University (Natural Science Edition), 37(7): 23-29. | |
[12] | 贵州省地质矿产局, 1982. 贵州省区域地质志[M]. 北京: 地质出版社: 404-440. |
Guizhou Provincial Bureau of Geology and Mineral Resources, 1982. Regional geology of Guizhou province[M]. Beijing: Geological Publishing Press: 404-440. | |
[13] | 郝凯婕, 2019. 干旱山区油松幼林根系分布特征研究[J]. 山西林业科技, 48(3): 16-18. |
HAO K J, 2019. Root distribution characteristics of Pinus tabulaeformis young forest in arid mountainous area[J]. Shangxi Forestry Science and Technology, 48(3): 16-18. | |
[14] | 黄同丽, 唐丽霞, 陈龙, 等, 2019. 喀斯特区3种灌木根系构型及其生态适应策略[J]. 中国水土保持科学, 17(1): 89-94. |
HUANG T L, TANG L X, CHEN L, et al., 2019. Root architecture and ecological adaptation strategy of three shrubs in karst area[J]. Science of Soil and Water Conservation, 17(1): 89-94. | |
[15] | 李子敬, 陈晓, 舒健骅, 等, 2015. 树木根系分布与结构研究方法综述[J]. 世界林业研究, 28(3): 13-18. |
LI Z J, CHEN X, SHU J Y, et al., 2015. Research methods for tree root system distribution and structure: A review[J]. World Forestry Research, 28(3): 13-18. | |
[16] | 刘方, 王世杰, 罗海波, 等, 2008. 喀斯特森林生态系统的小生境及其土壤异质性[J]. 土壤学报, 45(6): 1056-1062. |
LIU F, WANG S J, LUO H B, et al., 2008. Karst forest ecosystem niche and soil heterogeneity[J]. Acta Pedologica Sinica, 45(6): 1056-1062. | |
[17] | 刘建军, 1998. 林木根系生态研究综述[J]. 西北林学院学报, 13(3): 74-78. |
LIU J J, 1998. A Review on root ecology of forest trees[J]. Journal of Northwest Forestry College, 13(3): 74-78. | |
[18] | 鲁少波, 刘秀萍, 鲁绍伟, 等, 2006. 林木根系形态分布及其影响因素[J]. 林业调查规划, 31(3): 105-108. |
LU S B, LIU X P, LU S W, et al., 2006. The Form distribution and influential factors of woods’ root system[J]. Forest Inventory and Planning, 31(3): 105-108. | |
[19] | 牛牧, 陈俊华, 周大松, 等, 2020. 川中丘陵区4种乡土阔叶树根系拓扑结构特征[J]. 南京林业大学学报 (自然科学版), 44(2): 125-132. |
NIU M, CHEN J H, ZHOU D S, et al., 2020. Topological characteristics of the root systems of four native broad-leaved trees in the central Sichuan hilly region[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 44(2): 125-132. | |
[20] | 潘天辉, 杜峰, 王月, 2020. 陕北黄土区护坡植物根系分布和抗剪增强分析[J]. 水土保持研究, 27(3): 357-371. |
PAN T H, DU F, WANG Y, 2020. Analysis of root distributions and shear strengths of slope protection plants in the loess region of northern Shanxi[J]. Research of Soil and Water Conservation, 27(3): 357-371. | |
[21] | 宋维峰, 王希群, 2007. 林木根系研究综述[J]. 西南林学院学报, 27(5): 8-13. |
SONG W F, WANG X Q, 2007. Review of researches on wood root system[J]. Journal of Southwest Forestry College, 27(5): 8-13. | |
[22] | 苏樑, 杜虎, 王华, 等, 2018. 喀斯特峰丛洼地不同植被恢复阶段优势种根系构型特征[J]. 西北植物学报, 38(1): 150-157. |
SU L, DU H, WANG H, et al., 2018. Root architecture of the dominant species in various vegetation restoration processes in Karst peak-cluster depression[J]. Acta Botanica Boreali-occidentalia Sinica, 38(1): 150-157. | |
[23] | 孙多, 1994. 苏南丘陵天然次生栎林根系分布特征和生物量结构的研究[C]// 中国森林生态系统定位研究. 哈尔滨: 东北林业大学出版社: 517-523. |
SUN D, 1994. Study on root distribution and biomass structure of natural secondary oak forest in the hills of southern Jiangsu Province[C]// Study on forest ecosystem positioning in China. Haerbin: Northeast Forestry University Press: 517-523. | |
[24] | 陶俊, 2013. 三峡库区不同护坡草本根系分布对土壤理化性质的时间尺度效应[D]. 重庆: 西南大学: 3-12. |
TAO J, 2013. Time-scale effect of different herb plant roots distribution on soil physical and chemical properties in the three gorges reservoir area[D]. Chongqing: Southwest University: 3-12. | |
[25] | 王世杰, 季宏兵, 欧阳自远, 等, 1999. 碳酸盐岩风化成土作用初步研究[J]. 中国科学(D辑), 29(5): 441-449. |
WANG S J, JI H B, OUYANG Z Y, et al., 1999. Preliminary study on weathering and soil-forming of carbonate rocks[J]. Science in China (Series D), 29(5): 441-449. | |
[26] | 王文全, 王世绩, 刘雅荣, 等, 1994. 粉煤灰复田立地上杨、柳、榆、刺槐根系的分布和生长特点[J]. 林业科学, 30(1): 25-33. |
WANG W Q, WANG S J, LIU Y R, et al., 1994. Distribution and growth characteristics of the root systems of poplar, willow, elm and locust on site of renewed land by fine ash of coal[J]. Scientia Silvae Sinicae, 30(1): 25-33. | |
[27] | 魏华炜, 罗海波, 张玉环, 2011. 狗牙根根系分布特征及其抗拉强度试验研究[J]. 水土保持通报, 31(4): 185-189. |
WEI H W, LUO H B, ZHANG Y H, 2011. Root distribution characteristics and tensile strength of Cynodon dactylon L.[J]. Bulletin of Soil and Water Conservation, 31(4): 185-189. | |
[28] | 吴华丽, 代小燕, 2014. 喀斯特地区石漠化生境特征与植被恢复的植物选择探讨[J]. 水土保持应用技术 (4): 39-42. |
WU H L, DAI X Y, 2014. Habitat characteristics of rocky desertification and plant selection for vegetation restoration in karst areas[J]. Technology of Soil and Water Conservation (4): 39-42. | |
[29] | 徐立清, 崔东海, 王庆成, 等, 2020. 张广才岭西坡次生林不同生境胡桃楸幼树根系构型及细根特征[J]. 应用生态学报, 31(2): 373-380. |
XU L Q, CUI D H, WANG Q C, et al., 2020. Root architecture and fine root characteristics of Juglans mandshurica saplings in different habitats in the secondary forest on the west slope of Zhangguangcailing[J]. Chinese Journal of Applied Ecology, 31(2): 373-380. | |
[30] | 杨春娇, 陈玳汝, 张大才, 2020. 藏东南高寒草甸不同生境植物根系形态及分布特征[J]. 中国草地学报, 42(4): 79-84. |
YANG C J, CHEN D R, ZHANG D C, 2020. Root morphology and distribution characteristics of plants in different habitats of alpine meadow in southeast Tibet[J]. Chinese Journal of Grassland, 42(4): 79-84. | |
[31] | 杨凯, 郝锋珍, 续海红, 等, 2015. 果树根系分布研究进展[J]. 中国农学通报, 31(22): 130-135. |
YANG K, HAO F Z, XU H H, et al., 2015. Research progress of the root distribution[J]. Chinese Agricultural Science Bulletin, 31(22): 130-135. | |
[32] | 杨瑞, 喻理飞, 安明态, 2008. 喀斯特区小生境特征现状分析: 以茂兰自然保护区为例[J]. 贵州农业科学, 36(6): 168-169. |
YANG R, YU L F, AN M T, 2008. Niche characteristics of Karst area: Take the Maolan nature reserve for example[J]. Guizhou Agricultural Sciences, 36(6): 168-169. | |
[33] |
杨小林, 张希明, 李义玲, 等, 2008. 塔克拉玛干沙漠腹地3种植物根系构型及其生境适应策略[J]. 植物生态学报, 32(6): 1268-1276.
DOI |
YANG X L, ZHANG X M, LI Y L, et al., 2008. Analysis of root architecture and root adaptive strategy in the Taklimakan desert area of China[J]. Journal of Plant Ecology (Chinese Version), 32(6): 1268-1276. | |
[34] | 张吉军, 2000. 模糊层次分析法 (FAHP)[J]. 模糊系统与数学, 14(2): 80-88. |
ZHANG J J, 2000. Fuzzy analytical hierarchy process[J]. Fuzzy Systems and Mathematics, 14(2): 80-88. | |
[35] | 张信宝, 王世杰, 曹建华, 等, 2010. 西南喀斯特山地水土流失特点及有关石漠化的几个科学问题[J]. 中国岩溶, 29(3): 274-279. |
ZHANG X B, WANG S J, CAO J H, et al., 2010. Several scientific issues about the soil erosion characteristics and the stone desertification in Southwest Karst mountain[J]. Chinese Karst, 29(3): 274-279. | |
[36] | 张信宝, 王世杰, 贺秀斌, 2007. 碳酸盐岩风化壳中的土壤蠕滑与岩溶坡地的土壤地下漏失[J]. 地球与环境, 35(3): 202-206. |
ZHANG X B, WANG S J, HE X B, et al., 2007. Soil creeping in Karst slope with underground leakage of soil of weathering crust of carbonate[J]. Earth and Environment, 35(3): 202-206. | |
[37] | 张志才, 陈喜, 石朋, 等, 2008. 岩石对喀斯特峰丛山体土壤水分分布特征的影响[J]. 水土保持通报, 28(6): 41-44. |
ZHANG Z C, CHEN X, SHI P, et al., 2008. Effect of the rock on the soil water distribution characteristics in Karst peak-cluster mountain[J]. Bulletin of Soil and Water Conservation, 28(6): 41-44. | |
[38] | 朱美秋, 马长明, 翟明普, 等, 2009. 河北石质山区花椒细根分布特征[J]. 林业科学, 45(2): 131-135. |
ZHU M Q, MA C M, ZHAI M P, et al., 2009. Fine roots distribution characteristics of Zanthoxylum bungeanum in the rocky mountainous area of Hebei[J]. Scientia Silvae Sinicae, 45(2): 131-135. | |
[39] | 朱守谦, 1993. 喀斯特森林生态研究 (I)[M]. 贵阳: 贵州科技出版社: 11-20. |
ZHU S Q, 1993. Research on Karst forest ecology (I)[M]. Guiyang: Guizhou Science and Technology Press: 11-20. | |
[40] | 朱守谦, 1997. 喀斯特森林生态研究 (II)[M]. 贵阳: 贵州科技出版社: 31-38. |
ZHU S Q, 1997. Research on Karst forest ecology (II)[M]. Guiyang: Guizhou Science and Technology Press: 31-38. | |
[41] | 朱守谦, 祝小科, 喻理飞, 2000. 贵州喀斯特区植被恢复的理论和实践[J]. 贵州环保科技, 6(1): 31-41. |
ZHU S Q, ZHU X K, YU L F, 2000. Theory and practice of vegetation restoration in Karst area of Guizhou province[J]. Guizhou Environmental Protection Science and Technology, 6(1): 31-41. |
[1] | 刘秉儒. 土壤微生物呼吸热适应性与微生物群落及多样性对全球气候变化响应研究[J]. 生态环境学报, 2022, 31(1): 181-186. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||