生态环境学报 ›› 2022, Vol. 31 ›› Issue (5): 949-960.DOI: 10.16258/j.cnki.1674-5906.2022.05.010
陈丽娟1,5(), 周文君1,2,5,*(
), 易艳芸1,5, 宋清海1,2, 张一平1,2, 梁乃申4, 鲁志云1,3, 温韩东1,3, MOHD Zeeshan1, 沙丽清1,2,5,6,*(
)
收稿日期:
2022-01-26
出版日期:
2022-05-18
发布日期:
2022-07-12
通讯作者:
周文君(1977年生),女,副研究员,博士,研究方向为全球变化生态学。E-mail: zhouwj@xtbg.ac.cn作者简介:
陈丽娟(1996年生),女,硕士研究生,研究方向为全球变化生态学。E-mail: chenlijuan@xtbg.ac.cn
基金资助:
CHEN Lijuan1,5(), ZHOU Wenjun1,2,5,*(
), YI Yanyun1,5, SONG Qinghai1,2, ZHANG Yiping1,2, LIANG Naishen4, LU Zhiyun1,3, WEN Handong1,3, MOHD Zeeshan1, SHA Liqing1,2,5,6,*(
)
Received:
2022-01-26
Online:
2022-05-18
Published:
2022-07-12
摘要:
甲烷(CH4)是仅次于二氧化碳(CO2)的重要温室气体,对全球气候变化有重要的反馈作用。亚热带森林土壤是全球陆地生态系统重要的CH4汇,但因在亚热带的观测较少,致使模型估算得出的结果具有不确定性,因此需对土壤CH4通量进行现场观测和实验,以便准确估计亚热带森林土壤CH4通量及其对该生态系统碳汇能力的贡献。采用大型多点自动开闭箱式自动连续测定法在哀牢山亚热带常绿阔叶林开展土壤CH4通量、气温(ta)、地表温度(t0)、土壤5 cm温度(t5)、降雨量(P)和土壤含水量(Csw)进行连续1年定位观测。结果表明,(1)云南哀牢山亚热带常绿阔叶林土壤为CH4的汇,年通量为 (-11.79±0.001) kg∙hm-2∙a-1,年均速率为 (-0.13±0.05) mg∙m-2∙h-1,呈现出显著的季节动态,表现为干季土壤CH4的吸收通量[(-0.17±0.06) mg∙m-2∙h-1]显著高于雨季[(-0.10±0.03) mg∙m-2∙h-1](P<0.05)。(2)土壤CH4通量与地表温度(r2=0.2125,P<0.001)、土壤5 cm温度(r2=0.1948,P<0.001)和气温(r2=0.0983,P<0.001)呈显著相关关系,但土壤CH4通量与土壤5 cm温度的相关关系在12.35 ℃由正相关转为负相关。(3)土壤CH4通量对土壤含水量的变化响应较温度敏感,土壤含水量可解释其90.36%的相关性(P<0.001),单因素和双因子关系模型进一步证明土壤含水量是调节哀牢山亚热带常绿阔叶林土壤CH4通量的主导因子。(4)在20年和100年时间尺度上,CH4通量的全球增温潜势(global warming potential,GWP)分别可以抵消土壤CO2排放产生增温潜势的2.2%和0.7%,可以增加该生态系统碳汇的10.6%和3.5%。为此,在未来降水格局变化的情景下,土壤含水量可用于预测哀牢山亚热带常绿阔叶林土壤CH4通量的变化和生态系统CH4汇的强度,进而反映其对该森林生态系统碳汇能力的贡献。
中图分类号:
陈丽娟, 周文君, 易艳芸, 宋清海, 张一平, 梁乃申, 鲁志云, 温韩东, MOHD Zeeshan, 沙丽清. 云南哀牢山亚热带常绿阔叶林土壤CH4通量特征[J]. 生态环境学报, 2022, 31(5): 949-960.
CHEN Lijuan, ZHOU Wenjun, YI Yanyun, SONG Qinghai, ZHANG Yiping, LIANG Naishen, LU Zhiyun, WEN Handong, MOHD Zeeshan, SHA Liqing. Characteristics of Soil CH4 Flux in the Subtropical Evergreen Broad-leaved Forest in Ailao Mountain, Yunnan, Southwest China[J]. Ecology and Environment, 2022, 31(5): 949-960.
项目 Item | 雨季 Rainy season | 干季 Dry season | 年 Annual |
---|---|---|---|
气温 Air temperature/℃ | 15.12±1.98** | 8.24±2.74** | 11.71±4.19 |
地表温度 Surface temperature/℃ | 14.18±1.28** | 8.90±1.79** | 11.81±3.28 |
土壤5 cm温度 Soil temperature at 5 cm/℃ | 15.12±1.48** | 8.66±2.02** | 11.91±3.69 |
土壤含水量 Soil water content/% | 37.66±2.28** | 28.42±5.18** | 33.04±6.20 |
降雨量 Precipitation/mm | 14.81±11.82** | 7.78±6.72** | 11.33±10.24 |
CH4通量 CH4 flux/(mg∙m-2∙h-1) | -0.10±0.03** | -0.17±0.06** | -0.13±0.05 |
CH4年通量 Annual flux/(kg∙hm-2) | -4.49±0.001 | -7.30±0.001 | -11.79±0.001 |
表1 不同季节土壤温度、土壤含水量与CH4通量
Table 1 Soil temperature, soil water content and CH4 flux in different seasons
项目 Item | 雨季 Rainy season | 干季 Dry season | 年 Annual |
---|---|---|---|
气温 Air temperature/℃ | 15.12±1.98** | 8.24±2.74** | 11.71±4.19 |
地表温度 Surface temperature/℃ | 14.18±1.28** | 8.90±1.79** | 11.81±3.28 |
土壤5 cm温度 Soil temperature at 5 cm/℃ | 15.12±1.48** | 8.66±2.02** | 11.91±3.69 |
土壤含水量 Soil water content/% | 37.66±2.28** | 28.42±5.18** | 33.04±6.20 |
降雨量 Precipitation/mm | 14.81±11.82** | 7.78±6.72** | 11.33±10.24 |
CH4通量 CH4 flux/(mg∙m-2∙h-1) | -0.10±0.03** | -0.17±0.06** | -0.13±0.05 |
CH4年通量 Annual flux/(kg∙hm-2) | -4.49±0.001 | -7.30±0.001 | -11.79±0.001 |
图2 土壤CH4日动态(a)和月累积通量(b) CH4月累积量为平均值±标准差(mean±sd)
Figure 2 Diurnal dynamics (a) and monthly cumulative fluxes (b) of soil CH4 The cumulative amount of CH4 is mean±sd
图3 温度、土壤含水量与土壤CH4通量的指数回归及其双因子交互作用关系 由于本研究的土壤CH4通量为负值,文中图表采用CH4的绝对值进行绘制,下图同
Figure 3 Exponential regression of temperature, soil water content with soil CH4 flux and their two factors interaction The soil CH4 flux in this study is negative, the chart in this paper is drawn with the absolute value of CH4, the figure 4 below is the same
图4 位于阈值上下的土壤5 cm温度、土壤含水量与CH4的回归关系 图(a)、(b)、(c)表示低于阈值的土壤5 cm温度、土壤含水量与CH4的回归关系及其双因子关系模型;图(d)、(e)、(f)表示高于阈值的土壤5 cm温度、土壤含水量与CH4的回归关系及其双因子关系模型
Figure 4 Regression relationship between soil temperature at 5 cm, soil water content and CH4 above and below the threshold (a), (b) and (c) show the regression relationship between soil temperature at 5 cm, soil water content and methane below the threshold and its two factors relationship model, respectively; figures (d), (e) and (f) show the regression relationship between soil temperature, soil water content and CH4 above the threshold and its two factors relationship model, respectively
季节 Season | 变量 Variable | 回归方程 Regression equation | r2 | P值 P value | Q10 |
---|---|---|---|---|---|
干季 Dry season | 气温/℃ | y=0.106e0.0454ta | 0.1291 | 0.000 | 1.57 |
地表温度/℃ | y=0.1311e0.0182t0 | 0.0098 | 0.177 | 1.20 | |
土壤5 cm温度/℃ | y=0.1265e0.0229t5 | 0.0179 | 0.068 | 1.26 | |
土壤含水量/% | y=0.8322e-0.058Csw | 0.8611 | 0.000 | ||
降雨量/mm | y=0.1563e-0.011P | 0.0844 | 0.113 | ||
雨季 Rainy season | 气温/℃ | y=0.1142e-0.007ta | 0.0019 | 0.562 | 0.93 |
地表温度/℃ | y = 0.5386e-0.112t0 | 0.2506 | 0.000 | 0.33 | |
土壤5 cm温度/℃ | y=0.2701e-0.063t5 | 0.0837 | 0.000 | 0.53 | |
土壤含水量/% | y=0.5454e-0.045Csw | 0.5719 | 0.000 | ||
降雨量/mm | y=0.1093e-0.009P | 0.2588 | 0.000 |
表2 环境因子与CH?通量的回归方程
Table 2 Regression equation between environmental factors and CH4 flux
季节 Season | 变量 Variable | 回归方程 Regression equation | r2 | P值 P value | Q10 |
---|---|---|---|---|---|
干季 Dry season | 气温/℃ | y=0.106e0.0454ta | 0.1291 | 0.000 | 1.57 |
地表温度/℃ | y=0.1311e0.0182t0 | 0.0098 | 0.177 | 1.20 | |
土壤5 cm温度/℃ | y=0.1265e0.0229t5 | 0.0179 | 0.068 | 1.26 | |
土壤含水量/% | y=0.8322e-0.058Csw | 0.8611 | 0.000 | ||
降雨量/mm | y=0.1563e-0.011P | 0.0844 | 0.113 | ||
雨季 Rainy season | 气温/℃ | y=0.1142e-0.007ta | 0.0019 | 0.562 | 0.93 |
地表温度/℃ | y = 0.5386e-0.112t0 | 0.2506 | 0.000 | 0.33 | |
土壤5 cm温度/℃ | y=0.2701e-0.063t5 | 0.0837 | 0.000 | 0.53 | |
土壤含水量/% | y=0.5454e-0.045Csw | 0.5719 | 0.000 | ||
降雨量/mm | y=0.1093e-0.009P | 0.2588 | 0.000 |
项目 Item | 20年 20-year | 100年 100-year |
---|---|---|
CH4全球增温潜势 GWP of Soil CH4/(kg∙hm-2∙a-1) | 990.15 | 330.05 |
土壤CH4的GWP/土壤呼吸GWP Soil CH4 GWP/soil CO2 CWP | 2.2% | 0.7% |
土壤CH4的GWP/NEE Soil CH4 GWP/NEE | 10.6% | 3.5% |
土壤CH4的GWP/GPP Soil CH4 GWP/GPP | 0.04% |
表3 哀牢山亚热带常绿阔叶林土壤CH4全球增温潜势估算
Table 3 GWP of soil CH4 in subtropical evergreen broad-leaved forest of Ailao Mountain
项目 Item | 20年 20-year | 100年 100-year |
---|---|---|
CH4全球增温潜势 GWP of Soil CH4/(kg∙hm-2∙a-1) | 990.15 | 330.05 |
土壤CH4的GWP/土壤呼吸GWP Soil CH4 GWP/soil CO2 CWP | 2.2% | 0.7% |
土壤CH4的GWP/NEE Soil CH4 GWP/NEE | 10.6% | 3.5% |
土壤CH4的GWP/GPP Soil CH4 GWP/GPP | 0.04% |
气候带 Climate zone | 地点 Place | 植被类型 Vegetation type | 经纬度 Coordinate | 海拔 Altitude/m | 平均 温度 MAT/℃ | 降雨量 Precipitation/mm | 甲烷通量 CH4 flux/ (μg∙m-2∙h-1) | 温度 Temperature/℃ | 土壤含 水量 Csw/% | 土壤 有机质 SOM/ (g∙kg-1) | 文献 Reference |
---|---|---|---|---|---|---|---|---|---|---|---|
亚热带 Subtropical | 湖南省 长沙县 | 青冈石栎常 绿阔叶林 | 28°23′N, 113°19′E | 55-350 | 17.1 | 1413-1559 | -4.14 | 土壤温度 | — | 土壤 有机质 | 张宇鸿, |
湖北省 神农架 | 常绿落叶阔叶 混交林 | 31°18′N, 110°28′E | 1670 | 10.6 | 1306-1722 | -36.79± 13.99 | 土壤温度 | — | — | 菊花等, | |
贵州省 开阳县 | 喀斯特灌丛林 | 27°00′N, 107°02′E | 1130 | 10.6- 15.3 | 926-1419 | -59.85- -206.14 | 土壤温度 | Csw | — | 房彬等, | |
广东省 鼎湖山 | 针阔叶混交林 | 23°09′-23°11′N, 112°30′-112°33′E | 1000.3 | 20.9 | 1956 | -44.60±5.79 | 土壤温度 | — | — | 周存宇等, | |
云南省 哀牢山 | 常绿阔叶林 | 24°32′N, 101°01′E | 2400- 2600 | 11.3 | 1817 | -134.56± 0.95 | Csw | — | 本研究 | ||
热带 Tropical | 云南省 西双版纳 | 橡胶林 | 21°55′N, 101°15′E | 580 | 21.7 | 1557 | -20±0.087 | — | Csw | — | Zhou et al., |
热带雨林 | 21°56′N, 101°16′E | 720 | -110±0.18 | 土壤温度 | Csw | 分解的 细根 | |||||
海南省 尖峰岭 | 热带山地雨林 原始林 | 18°23′-18°52′N, 108°36′-109°05′E | — | 19.8 | 1990 | -26.39± 0.1968 | — | — | — | 白贞智等, | |
热带山地雨林 次生林 | -21.08± 0.2026 | — | Csw | — | |||||||
热带山地雨林 鸡毛松林 | -26.07± 0.1613 | — | Csw | — | |||||||
温带Temperate | 黑龙江 帽儿山 | 红松人工林 | 45°24′N, 127°40′E | 400 | 2.8 | 770 | -17.2±4.6 | 土壤温度 | 刘实等, | ||
蒙古栎林 | 400 | 2.8 | 770 | -31.5±4.5 | 土壤温度 | ||||||
北京市 东灵山 | 阔叶混交林 | 40°00′-40°02′N | 600 | -66 | 杜睿等, | ||||||
辽东栎林 | 115°26′-115°30′E | — | — | 600 | -67 | — | — | — | |||
油松林 | 600 | -79 | — | — | — |
表4 中国不同气候带森林土壤CH4通量比较
Table 4 Comparison of CH4 flux in forest soil in different climate zone in China
气候带 Climate zone | 地点 Place | 植被类型 Vegetation type | 经纬度 Coordinate | 海拔 Altitude/m | 平均 温度 MAT/℃ | 降雨量 Precipitation/mm | 甲烷通量 CH4 flux/ (μg∙m-2∙h-1) | 温度 Temperature/℃ | 土壤含 水量 Csw/% | 土壤 有机质 SOM/ (g∙kg-1) | 文献 Reference |
---|---|---|---|---|---|---|---|---|---|---|---|
亚热带 Subtropical | 湖南省 长沙县 | 青冈石栎常 绿阔叶林 | 28°23′N, 113°19′E | 55-350 | 17.1 | 1413-1559 | -4.14 | 土壤温度 | — | 土壤 有机质 | 张宇鸿, |
湖北省 神农架 | 常绿落叶阔叶 混交林 | 31°18′N, 110°28′E | 1670 | 10.6 | 1306-1722 | -36.79± 13.99 | 土壤温度 | — | — | 菊花等, | |
贵州省 开阳县 | 喀斯特灌丛林 | 27°00′N, 107°02′E | 1130 | 10.6- 15.3 | 926-1419 | -59.85- -206.14 | 土壤温度 | Csw | — | 房彬等, | |
广东省 鼎湖山 | 针阔叶混交林 | 23°09′-23°11′N, 112°30′-112°33′E | 1000.3 | 20.9 | 1956 | -44.60±5.79 | 土壤温度 | — | — | 周存宇等, | |
云南省 哀牢山 | 常绿阔叶林 | 24°32′N, 101°01′E | 2400- 2600 | 11.3 | 1817 | -134.56± 0.95 | Csw | — | 本研究 | ||
热带 Tropical | 云南省 西双版纳 | 橡胶林 | 21°55′N, 101°15′E | 580 | 21.7 | 1557 | -20±0.087 | — | Csw | — | Zhou et al., |
热带雨林 | 21°56′N, 101°16′E | 720 | -110±0.18 | 土壤温度 | Csw | 分解的 细根 | |||||
海南省 尖峰岭 | 热带山地雨林 原始林 | 18°23′-18°52′N, 108°36′-109°05′E | — | 19.8 | 1990 | -26.39± 0.1968 | — | — | — | 白贞智等, | |
热带山地雨林 次生林 | -21.08± 0.2026 | — | Csw | — | |||||||
热带山地雨林 鸡毛松林 | -26.07± 0.1613 | — | Csw | — | |||||||
温带Temperate | 黑龙江 帽儿山 | 红松人工林 | 45°24′N, 127°40′E | 400 | 2.8 | 770 | -17.2±4.6 | 土壤温度 | 刘实等, | ||
蒙古栎林 | 400 | 2.8 | 770 | -31.5±4.5 | 土壤温度 | ||||||
北京市 东灵山 | 阔叶混交林 | 40°00′-40°02′N | 600 | -66 | 杜睿等, | ||||||
辽东栎林 | 115°26′-115°30′E | — | — | 600 | -67 | — | — | — | |||
油松林 | 600 | -79 | — | — | — |
[1] |
BENDER M, CONRAD R, 1995. Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation activity[J]. Soil Biology and Biochemistry, 27(12):1517-1527.
DOI URL |
[2] |
BORKEN W, DAVIDSON E A, SAVAGE K, et al., 2006. Effect of summer through fall exclusion, summer drought and winter snow cover on methane fluxes in a temperate forest soil[J]. Soil Biology and Biochemistry, 38(6): 1388-1395.
DOI URL |
[3] |
CASTRO M S, STEUDLER P A, MELILLO J M, et al., 1995. Factors controlling atmospheric methane consumption by temperate forest soils[J]. Global Biogeochemical Cycles, 9(1): 1-10.
DOI URL |
[4] |
CASTRO M S, MELILLO J M, STEUDLER P A, et al., 1994. Soil moisture as a predictor of methane uptake by temperate forest soils[J]. Canadian Journal of Forest Research, 24(9): 1805-1810.
DOI URL |
[5] | CURRY C L, 2007. Modeling the soil consumption of atmospheric methane at the global scale[J]. Global Biogeochemical Cycles, 21(4): B4012-1-B4012-15. |
[6] |
FANG H, YU G R, CHENG S L, et al., 2010. Effects of multiple environmental factors on CO2 emission and CH4 uptake from old-growth forest soils[J]. Biogeosciences, 7(1): 395-407.
DOI URL |
[7] | FEI X H, SONG Q H, ZHANG Y P, et al., 2018. Carbon exchanges and their responses to temperature and precipitation in forest ecosystems in Yunnan, Southwest China[J]. Science of the Total Environment, 616: 824-840. |
[8] |
FENG H L, GUO J H, HAN M H, et al., 2020. A review of the mechanisms and controlling factors of methane dynamics in forest ecosystems[J]. Forest Ecology and Management, DOI: 10.1016/j.foreco.2019.117702.
DOI |
[9] |
GRACE J, 2004. Understanding and managing the global carbon cycle[J]. Journal of Ecology, 92(2): 189-202.
DOI URL |
[10] | HUSSAIN K N, WOO P J, 2019. Precipitation decreases methane uptake in a temperate deciduous forest[J]. Journal of Soil and Groundwater Environment, 24(1): 24-34. |
[11] | IPCC, 2021. Climate Change 2021: The Physical Science Basis[R]. |
[12] | IPCC, 2013. (Intergovernmental Panel on Climate Change). Climate Change 2013: The Scientific Basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge UK: Cambridge University Press. |
[13] |
KIRSCHKE S, BOUSQUET P, CIAIS P, et al., 2013. Three decades of global methane sources and sinks[J]. Nature Geoscience, 6: 813-823.
DOI URL |
[14] |
LANG R, GOLDBERG S, BLAGODATSKY S, et al., 2019. Converting forests into rubber plantations weakened the soil CH4 sink in tropical uplands[J]. Land Degradation & Development, 30(18): 2311-2322.
DOI URL |
[15] |
LIANG N S, HIRANO T, ZHENG Z M, et al., 2010. Soil CO2 efflux of a larch forest in northern Japan[J]. Biogeosciences, 7(11): 3447-3457.
DOI URL |
[16] |
LIANG N S, INOUE G, FUJINUMA Y, 2003. A multichannel automated chamber system for continuous measurement of forest soil CO2 efflux[J]. Tree Physiology, 23(12): 825-832.
DOI URL |
[17] |
MER J L, ROGER P, 2001. Production, oxidation, emission and consumption of methane by soils: A review[J]. European Journal of Soil Biology, 37(1): 25-50.
DOI URL |
[18] |
MOHD Z, ZHOU W J, WU C S, et al., 2021. Soil heterotrophic respiration in response to rising temperature and moisture along an altitudinal gradient in a subtropical forest ecosystem, Southwest China[J]. Science of the Total Environment, DOI: 10.1016/j.scitotenv.2021.151643.
DOI |
[19] | NI X Y, GROFFMAN P M, 2018. Declines in methane uptake in forest soils[J]. Proceedings of the National Academy of Sciences of the United States of America, 115(34): 8587-8590. |
[20] |
SAUNOIS M, BOUSQUET P, POULTER B, et al., 2020. The global methane budget 2000-2017[J]. Earth System Science Data, 12(3): 1561-1623.
DOI URL |
[21] |
STEINKAMP R, BUTTERBACH-BAHL K, PAPEN H, 2001. Methane oxidation by soils of an N limited and N fertilized spruce forest in the Black Forest, Germany[J], Soil Biology and Biochemistry, 33(2): 145-153.
DOI URL |
[22] |
SUBKE J A, CATHERINE S, MOODY T C, et al., 2018. The rhizosphere activity and atmospheric methane concentrations drive variations of methane fluxes in a temperate forest soil[J]. Soil Biology and Biochemistry, 116: 323-332.
DOI URL |
[23] |
TAN Z H, ZHANG Y P, LIANG N S, et al., 2012. An observational study of the carbon-sink strength of East Asian subtropical evergreen forests[J]. Environmental Research Letters, DOI: 10.1088/1748-9326/7/4/044017.
DOI |
[24] |
TAN Z H, ZHANG Y P, LIANG N S, et al., 2013. Soil respiration in an old-growth subtropical forest: patterns, components, and controls[J]. Journal of Geophysical Research: Atmospheres, 118(7): 2981-2990.
DOI URL |
[25] |
TAN Z H, ZHANG Y P, SCHAEFER D, et al., 2011. An old-growth subtropical Asian evergreen forest as a large carbon sink[J]. Atmospheric Environment, 45(8): 1548-1554.
DOI URL |
[26] |
TIAN H Q, LU C Q, CIAIS P, et al., 2016. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere[J]. Nature, 531(7593): 225-228.
DOI URL |
[27] |
WHALEN S C, REEBURGH W S, SANDBECK K A, 1990. Rapid methane oxidation in a landfill cover soil[J]. Applied and Environmental Microbiology, 56(11): 3405-3411.
DOI URL |
[28] |
WANG J S, QUAN Q, CHEN W N, et al., 2021. Increased CO2 emissions surpass reductions of non-CO2 emissions more under higher experimental warming in an alpine meadow[J]. Science of the Total Environment, DOI: 10.1016/j.scitotenv.2020.144559.
DOI |
[29] |
WU C S, LIANG N S, SHA L Q, et al., 2016. Heterotrophic respiration does not acclimate to continuous warming in a subtropical forest[J]. Scientific Reports, DOI: 10.1038/srep21561.
DOI |
[30] |
WU C S, ZHANG Y P, XU X L, et al., 2014. Influence of interactions between litter decomposition and rhizosphere activity on soil respiration and on the temperature sensitivity in a subtropical montane forest in SW China[J]. Plant and Soil, 381(1-2): 215-224.
DOI URL |
[31] |
YAN Y P, SHA L Q, CAO M, et al., 2008. Fluxes of CH4 and N2O from soil under a tropical seasonal rain forest in Xishuangbanna, Southwest China[J]. Journal of Environmental Sciences, 20(2): 207-215.
DOI URL |
[32] |
YU L F, ZHU J, JI H L, et al., 2021. Topography-related controls on N2O emission and CH4 uptake in a tropical rainforest[J]. Science of the Total Environment, DOI: 10.1016/j.scitotenv.2021.145616.
DOI |
[33] |
ZHAO J F, PENG S S, CHEN M P, et al., 2019. Tropical forest soils serve as substantial and persistent methane sinks[J]. Scientific Reports, 9(2): 697-751.
DOI URL |
[34] |
ZHOU X X, ZUO H L, SMAILL S J, 2021b. Incorporation of NPP into forest CH4 efflux models[J]. Trends in plant science, 26(12): 1210-1212.
DOI URL |
[35] |
ZHOU W J, ZHU J, JI H L, et al., 2021a. Drivers of difference in CO2 and CH4 emissions between rubber plantation and tropical rainforest soils[J]. Agricultural and Forest Meteorology, DOI: 10.1016/j.agrformet.2021.108391.
DOI |
[36] |
ZSCHORNACK T, ROSA C M D, PEDROSO G M, et al., 2016. Mitigation of yield-scaled greenhouse gas emissions in subtropical paddy rice under alternative irrigation systems[J]. Nutrient Cycling in Agroecosystems, 105(1): 61-73.
DOI URL |
[37] | 白贞智, 付青霞, 2017. 海南山地雨林土壤CH4通量与环境因子的关系研究[J]. 陕西林业科技 (3): 1-3. |
BAI Z Z, FU Q X, 2017. Relationship between greenhouse gas CH4from soil and environmental factors in tropical montane rainforest[J]. Shaanxi Forest Science and Technology (3): 1-3. | |
[38] | 丁维新, 蔡祖聪, 2003. 温度对土壤氧化大气CH4的影响[J]. 生态学杂志, 22(3): 54-58. |
DING W X, CAI Z C, 2003. Effect of temperature on atmospheric CH4 oxidation in soils[J]. Chinese Journal of Ecology, 22(3): 54-58. | |
[39] | 邓湘雯, 杨晶晶, 陈槐, 等, 2012. 森林土壤氧化 (吸收) 甲烷研究进展[J]. 生态环境学报, 21(3): 577-583. |
DENG X W, YANG J J, CHEN H, et al., 2012. Advances in the research of methane oxidation in forest soils[J]. Ecology and Environmental Sciences, 21(3): 577-583. | |
[40] | 杜睿, 黄建辉, 万小伟, 等, 2004. 北京地区暖温带森林土壤温室气体排放规律[J]. 环境科学, 25(2): 12-16. |
DU R, HUANG J H, WAN X W, et al., 2004. The research on the law of greenhouse gases emission from warm temperate forest soils in Beijing region[J]. Environmental Science, 25(2): 12-16. | |
[41] | 房彬, 李心清, 张立科, 等, 2013. 西南喀斯特地区灌丛林土壤CO2、CH4通量研究[J]. 地球化学, 42(3): 221-228. |
FANG B, LI X Q, ZHANG L K, et al., 2013. CO2 and CH4 fluxes from soil of scrub forest in the karst area of southwest China[J]. Geochimica, 42(3): 221-228.
DOI URL |
|
[42] | 高明磊, 满秀玲, 段北星, 2021. 林下植被和凋落物对寒温带森林生长季土壤CH4通量的影响[J]. 生态学报, 41(24): 9886-9897. |
GAO M L, MANG X L, DUAN B X, 2021. Effects of understory vegetation and litter on soil CH4 flux during growing season in cold temperate forest in China[J]. Acta Ecologica Sinica, 41(24): 9886-9897. | |
[43] | 耿世聪, 陈志杰, 张军辉, 等, 2013. 长白山三种主要林地土壤甲烷通量[J]. 生态学杂志, 32(5): 1091-1096. |
GENG S C, CHEN Z J, ZHANG J H, et al., 2013. Soil methane fluxes of three forest types in Changbai Mountain of Northeast China[J]. Chinese Journal of Ecology, 32(5): 1091-1096. | |
[44] | 何姗, 刘娟, 姜培坤, 等, 2019. 全球变化对森林土壤甲烷吸收的影响及其机制研究进展[J]. 应用生态学报, 30(2): 677-684. |
HE S, LIU J, JIANG P K, et al., 2019. Effects of global change on methane uptake in forest soils and its mechanisms: A review[J]. Chinese Journal of Applied Ecology, 30(2): 677-684. | |
[45] | 黄志宏, 张宇鸿, 沈燕, 等, 2016. 中亚热带森林地表CH4和N2O通量影响因素分析[J]. 中南林业科技大学学报, 36(4): 56-63. |
HUANG Z H, ZHANG Y H, SHEN Y, et al., 2016. Effects of environmental factors on soil CH4 and N2O fluxes in three forest types in central subtropical China[J]. Journal of Central South University of Forestry & Technology, 36(4): 56-63. | |
[46] | 菊花, 申国珍, 马明哲, 等, 2016a. 北亚热带地带性森林土壤温室气体通量对土地利用方式改变和降水减少的响应[J]. 植物生态学报, 40(10): 1049-1063. |
JU H, SHENG G Z, MA M Z, et al., 2016a. Greenhouse gas fluxes of typical northern subtropical forest soils: Impacts of land use change and reduced precipitation[J]. Chinese Journal of Plant Ecology, 40(10): 1049-1063.
DOI URL |
|
[47] | 菊花, 申国珍, 徐文婷, 等, 2016b. 神农架主要森林土壤CH4、CO2和N2O排放对降水减少的响应[J]. 生态学报, 36(20): 6397-6408. |
JU H, SHENG G Z, XU W T, et al., 2016b. The emission of CH4、CO2 and N2O in the typical forest soils of Shennongjia under the precipitation reduction[J]. Acta Ecologica Sinica, 36(20): 6397-6408. | |
[48] | 梁艳, 干珠扎布, 张伟娜, 等, 2015. 灌溉对藏北高寒草甸生物量和温室气体排放的影响[J]. 农业环境科学学报, 34(4): 801-808. |
LIANG Y, GANJURJAV H B, ZHANG W N, et al., 2015. Effects of Irrigation on Biomass and Greenhouse Gas Emissions of Alpine Meadow in Northern Tibet[J]. Journal of Agro-Environment Science, 34(4): 801-808. | |
[49] |
李君怡, 席毅, 赵俊福, 2022. 土壤湿度控制了中国南部热带森林土壤甲烷的吸收[J]. 生态学报, DOI: 10.5846/stxb202106281706.
DOI |
LI J Y, XI Y, ZHAO J F, 2022. Soil moisture controls methane uptake in a tropical forest of southern China[J]. Acta Ecologica Sinica, DOI: 10.5846/stxb202106281706.
DOI |
|
[50] | 刘惠, 赵平, 林永标, 等, 2008. 华南丘陵区2种土地利用方式下地表CH4和N2O通量研究[J]. 热带亚热带植物学报, 16(4): 304-314. |
LIU H, ZHAO P, LIN Y B, et al., 2008. CH4 and N2O fluxes from soil surface of 2 land use in a hilly area of south China[J]. Journal of Tropical and Subtropical Botany, 16(4): 304-314. | |
[51] |
刘玲玲, 刘允芬, 温学发, 等, 2008. 千烟洲红壤丘陵区人工针叶林土壤CH4排放通量[J]. 植物生态学报, 32(2): 431-439.
DOI |
LIU L L, LIU Y F, WEN X F, et al., 2008. CH4 emission flux from soil of pine plantations in the Qianyanzhou red earth hill region of China[J]. Chinese Journal of Plant Ecology, 32(2): 431-439. | |
[52] | 刘实, 王传宽, 许飞, 2010. 4种温带森林非生长季土壤二氧化碳、甲烷和氧化亚氮通量[J]. 生态学报, 30(15): 4075-4084. |
LIU S, WANG C K, XU F, 2010. Soil effluxes of carbon dioxide, methane and nitrous oxide during non-growing season for four temperate forests in northeastern China[J]. Acta Ecologica Sinica, 30(15): 4075-4084. | |
[53] | 刘岳坤, 庞军柱, 扆凡, 等, 2019. 秦岭火地塘林区不同海拔不同林型土壤CO2、CH4、N2O通量研究[J]. 西北林学院学报, 34(1): 1-10. |
LIU Y K, PANG J Z, YI F, et al., 2016. Soil-atmosphere exchange of nitrous oxide, methane and carbon dioxide of different forest types at different elevations in Huoditang forest region of Qinling mountains[J]. Journal of Northwest Forestry University, 34(1): 1-10. | |
[54] | 鲁志云, 2016. 增温和切根处理对哀牢山常绿阔叶林土壤氮矿化的影响[D]. 北京: 中国科学院研究生院. |
LU Z Y, 2016. Effects of increasing temperature and root cutting on soil Nitrogen mineralization in Evergreen broad-leaved forest of Ailao Mountain[D]. Beijing: Graduate School of Chinese Academy of Sciences. | |
[55] | 鲁志云, 宋亮, 王训, 等, 2017. 哀牢山森林凋落物与腐殖质及土壤的生态化学计量特征[J]. 山地学报, 35(3): 274-282. |
LU Z Y, SONG L, WANG X, et al., 2017. Ecological stoichiometry characteristics of the litterfall-humus-soil continuum systems under different successional stages of the subtropical forest in SW China[J]. Mountain Research, 35(3): 274-282. | |
[56] | 莫江明, 方运霆, 李德军, 等, 2006. 鼎湖山主要森林土壤CO2排放和CH4吸收特征[J]. 广西植物, 26(2): 142-147, 124. |
MO J M, FANG Y T, LI D J, et al., 2006. Soil CO2 emission and CH4 uptake in the main forests of Dinghushan in subtropical China[J]. Guihaia, 26(2): 142-147, 124. | |
[57] | 邱学忠, 1998. 哀牢山森林生态系统研究[M]. 昆明: 云南科技出版社. |
QIU X Z, 1998. Study on forest ecosystem of Ailao Mountain[M]. Kunming: Yunnan Science and Technology Press. | |
[58] | 田亚男, 聂文婷, 张水清, 等, 2015. 北亚热带红壤丘陵区3种土地利用方式下CH4通量及其影响因素[J]. 生态环境学报, 24(9): 1434-1440. |
TIAN Y N, NIE W T, ZHANG S Q, et al., 2015. CH4 fluxes and its influence factors under three land use type in the hilly red soil region of northern subtropical, China[J]. Ecology and Environmental Sciences, 24(9): 1434-1440. | |
[59] | 王全成, 陈匆琼, 杨智杰, 等, 2019. 模拟降水减少对中亚热带杉木人工林土壤甲烷吸收的影响[J]. 生态学报, 39(10): 3517-3525. |
WANG Q C, CHEN C Q, YANG Z J, et al., 2019. Effects of precipitation exclusion on soil methane uptake under Cunninghamia lanceolate plantation in mid-subtropical China[J]. Acta Ecologica Sinica, 39(10): 3517-3525. | |
[60] | 王瑶, 沈燕, 张强, 等, 2017. 南岭三种主要森林类型土壤甲烷通量研究[J]. 湖南林业科技, 44(2): 8-14. |
WANG Y, SHEN Y, ZHANG Q, et al., 2017. Study on soil methane fluxes of three forest types in Nanling mountains[J]. Central South University of forestry science and technology, 44(2): 8-14 | |
[61] | 魏达, 旭日, 王迎红, 等, 2011. 青藏高原纳木错高寒草原温室气体通量及与环境因子关系研究[J]. 草地学报, 19(3): 412-419. |
WEI D, XU R, WANG Y H, et al., 2011. CH4, N2O and CO2 fluxes and correlation with environmental factors of alpine steppe grassland in Nam Co region of Tibetan plateau[J]. Acta Agrestia Sinica, 19(3): 412-419. | |
[62] | 武传胜, 沙丽清, 高建梅, 等, 2012. 哀牢山中山湿性常绿阔叶林与人工茶园土壤呼吸的季节变化[J]. 南京林业大学学报: 自然科学版, 36(3): 64-68. |
WU C S, SHA L Q, GAO J M, et al., 2012. Analysis of soil respiration in a montane evergreen broad-leaved forest and an artificial tea garden in Ailao Mountains, Yunnan province[J]. Journal of Nanjing Forestry University (Natural Science Edition), 36(3): 64-68. | |
[63] | 吴征镒, 曲仲湘, 姜汉桥, 1983. 云南哀牢山森林生态系统研究[M]. 昆明: 云南科技. |
WU Z Y, QU Z X, JIANG H Q, 1983. Study on forest ecosystem of Ailao Mountain in Yunnan Province[M]. Kunming: Yunnan Science and Technology. | |
[64] | 徐颖怡, 2017. 气候变化对若尔盖高原高寒草甸温室气体排放的影响[D]. 杨凌: 西北农林科技大学. |
XU Y Y, 2017. The effect of climate change on greenhouse gas emissions in an alpine meadow on the Zoige plateau[D]. Northwest A & F University. | |
[65] | 闫新利, 2018. 紫金山2种不同森林类型土壤甲烷通量研究[D]. 南京: 南京林业大学:5. |
YAN X L, 2018. Methane fluxes in soils of two forest types in Zijin Mountain, Nanjing[D]. Nanjing: Forestry University:5. | |
[66] | 严玉平, 2006. 西双版纳热带季节雨林、橡胶林土壤CH4、N2O通量及树干呼吸研究[D]. 西双版纳: 中国科学院研究生院, 西双版纳热带植物园. |
YAN Y P, 2006. Fluxes of CH4 and N2O from soil under tropical seasonal rain forest and rubber plantation, and their stem respiration in Xishuangbanna, SW China[D]. Xishuangbanna: Graduate School of Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden. | |
[67] | 余雷, 张一平, 沙丽清, 等, 2013. 哀牢山亚热带常绿阔叶林土壤含水量变化规律及其影响因子[J]. 生态学杂志, 32(2): 332-336. |
YU L, ZHANG Y P, SHA L Q, et al., 2013. Temporal variation pattern and its affecting factors of soil water content in a subtropical evergreen broadleaved forest in Ailao Mountains[J]. Southwest China Chinese Journal of Ecology, 32(2): 332-336. | |
[68] | 张一平, 武传胜, 梁乃申, 等, 2015. 哀牢山亚热带常绿阔叶林森林土壤温湿特征及其对温度升高的响应[J]. 生态学报, 35(22): 7418-7425. |
ZHANG Y P, WU C S, LIANG N S, et al., 2015. Responses of soil temperature, moisture and respiration to experimental warming in a subtropical evergreen broad-leaved forest in Ailao Mountains, Yunnan[J]. Acta Ecologica Sinica, 35(22): 7418-7425. | |
[69] | 张宇鸿, 沈燕, 黄志宏, 等, 2016. 亚热带三种林型甲烷通量及其影响因子[J]. 湖南林业科技, 43(1): 26-32. |
ZHANG Y H, SHENG Y, HUANG Z H, et al., 2016. Factors affecting methane fluxes of three forests in subtropics[J]. Hunan Forestry Science & Technology, 43(1): 26-32. | |
[70] | 周存宇, 周国逸, 王迎红, 等, 2005. 鼎湖山针阔叶混交林地表CH4通量[J]. 生态环境, 14(3): 333-335. |
ZHOU C Y, ZHOU G Y, WANG Y H, et al., 2005. CH4 fluxes from soil of coniferous broad-leaved mixed forest in Dinghu Mountain[J]. Ecology and Environment, 14(3): 333-335. | |
[71] | 张强, 2017. 南岭地区4种森林类型CH4通量影响因素分析[D]. 长沙: 中南林业科技大学. |
ZHANG Q, 2017. CH4fluxes and its effect factors for four forests in Nanling area[D]. Changsha: Central South University of Forestry & Technology. | |
[72] | 朱华, 2022. 云南植被多样性研究[J]. 西南林业大学学报 (自然科学), 42(1): 1-12. |
ZHU H, 2022. Vegetation of diversity of Yunnan[J]. Journal of Southwest Forestry University (Natural Science), 42(1): 1-12. |
[1] | 张恒宇, 孙树臣, 吴元芝, 安娟, 宋红丽. 黄土高原不同植被密度条件下土壤水、碳、氮分布特征[J]. 生态环境学报, 2022, 31(5): 875-884. |
[2] | 李成伟, 刘章勇, 龚松玲, 杨伟, 李绍秋, 朱波. 稻作模式改变对稻田CH4和N2O排放的影响[J]. 生态环境学报, 2022, 31(5): 961-968. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||