生态环境学报 ›› 2022, Vol. 31 ›› Issue (4): 695-703.DOI: 10.16258/j.cnki.1674-5906.2022.04.007
王英成1(), 姚世庭1, 金鑫1, 俞文政2, 芦光新1,*(
), 王军邦3,*(
)
收稿日期:
2021-11-04
出版日期:
2022-04-18
发布日期:
2022-06-22
通讯作者:
jbwang@igsnrr.ac.cn作者简介:
王英成(1995年生),女,博士研究生,研究方向高寒草地微生物多样性及功能利用。E-mail: 1343014868@qq.com
基金资助:
WANG Yingcheng1(), YAO Shiting1, JIN Xin1, YU Wenzhen2, LU Guangxin1,*(
), WANG Junbang3,*(
)
Received:
2021-11-04
Online:
2022-04-18
Published:
2022-06-22
摘要:
为探究三江源区未退化高寒草甸与退化高寒草甸土壤细菌群落结构及多样性,采用巢氏取样方法和高通量测序技术,系统地对土壤细菌群落多样性、群落组成和结构及其与环境因子间的关系进行研究分析。结果表明,草地退化对植被和土壤都产生影响,草地退化降低了植被盖度和丰富度,使得土壤pH值增加,土壤向碱性化过渡,而土壤全氮、有机质和电导率的含量显著降低(P<0.05)。高通量测序得到优质有效细菌序列2168457条和71798个OTUs。草地退化对土壤细菌群落α多样性和物种组成都有显著影响(P<0.05)。其中,草甸退化导致土壤细菌物种指数(Observed Richness)、多样性指数(Shannon Index)和chao 1指数上升;变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、酸杆菌门(Acidobacteria)、拟杆菌门(Bacteroidetes)、疣微菌门(Verrucomicrobia)、奇古菌门(Thaumarchaeota)为主要优势菌门;草甸退化提高了放线菌门(Actinobacteria)、拟杆菌门(Bacteroidetes)的相对丰度,但却降低了疣微菌门(Verrucomicrobia)的相对丰度。通过PCoA和Dissimilarity检验的方法表明草地退化显著改变了退化草地土壤细菌群落结构。土壤异质性对土壤细菌群落具有一定的影响,其中,驱动土壤细菌群落的主要环境因子是土壤pH、有机质含量和总氮含量。该研究分析了细菌群落多样性和组成结构,揭示了退化高寒草甸土壤细菌群落多样性变化规律,为土壤微生物对草地退化方面的研究提供了参考。
中图分类号:
王英成, 姚世庭, 金鑫, 俞文政, 芦光新, 王军邦. 三江源区高寒退化草甸土壤细菌多样性的对比研究[J]. 生态环境学报, 2022, 31(4): 695-703.
WANG Yingcheng, YAO Shiting, JIN Xin, YU Wenzhen, LU Guangxin, WANG Junbang. Comparative Study on Soil Bacterial Diversity of Degraded Alpine Meadow in the Sanjiangyuan Region[J]. Ecology and Environment, 2022, 31(4): 695-703.
植被名称 Vegetation | 未退化草地 Undegraded alpine meadow | 退化草地 Degraded alpine meadow |
---|---|---|
矮生忍冬 Lanicera minuta | 10.40±3.16 | 16.34±6.76 |
车前草 Plantago major | — | 5.59±0.00 |
臭蒿 Artemisia hedinii | — | 6.04±0.00 |
独活 Heracleum millefolium | — | 10.09±4.47 |
独一味 Lamiophlomis rotata | 8.26±2.46 | — |
多裂委陵菜 Potentilla multifida | 4.91±3.08 | 7.77±2.18 |
甘青大戟 Euphorbia micractina | 4.48±0.91 | 9.08±3.06 |
高山嵩草 Kobresia pygmaea | 47.58±10.16 | 41.97±17.73 |
高山唐松草 Thalictrum alpinum | — | 12.16±11.25 |
海乳草 Glaux maritima | — | 5.54±0.00 |
黄芪 Astragalus tanguticus | 7.28±0.00 | 11.23±3.80 |
火绒草 Leontopodium leontopodioides | 6.43±2.95 | 7.65±4.86 |
黄花棘豆 Oxytropis ochrocephala | 8.52±4.65 | 9.05±5.17 |
赖草 Leymus secalinus | 8.82±0.00 | 7.67±0.39 |
兰石草 Lancea tibetica | — | 9.45±5.38 |
麻花艽 Gentiana straminea | 6.87±1.60 | 10.23±3.07 |
美丽风毛菊 Saussurea superba | 8.88±6.37 | 7.51±0.00 |
蒲公英 Taraxacum mongolicum | 4.30±1.48 | 3.18±0.96 |
青藏龙胆 Gentiana futtereri | 6.74±2.49 | 8.79±2.11 |
狮牙风毛菊 Saussurea leontodontoides | 7.33±0.00 | — |
苔草 Carex spp. | — | 11.35±0.00 |
兔耳草 Lagotis brevituba | 7.13±5.32 | 7.76±0.58 |
细叶亚菊 Ajania tenuifolia | 9.22±2.62 | 16.69±6.71 |
星状风毛菊 Saussurea stella | 8.16±2.07 | — |
雪灵芝 Arenaria kansuensis Maxim. | 4.26±1.86 | 11.72±8.91 |
重冠紫菀 Aster diplostephioides | 14.17±7.38 | 16.19±12.82 |
紫花针茅 Stipa purpurea | 21.35±4.83 | 19.47±4.39 |
植被盖度 Vegetation cover/% | 87 | 72 |
物种数 Species | 7.26±1.24a | 6.18±1.24b |
地上生物量 Aboveground biomass/(g∙m-2) | 69.01±25.75a | 59.86±26.52b |
表1 高寒退化草甸植被群落组成(重要值)及其植被特征比较分析
Table 1 Comparative analysis of vegetation community composition (significance value) and vegetation characteristics in alpine degraded meadow
植被名称 Vegetation | 未退化草地 Undegraded alpine meadow | 退化草地 Degraded alpine meadow |
---|---|---|
矮生忍冬 Lanicera minuta | 10.40±3.16 | 16.34±6.76 |
车前草 Plantago major | — | 5.59±0.00 |
臭蒿 Artemisia hedinii | — | 6.04±0.00 |
独活 Heracleum millefolium | — | 10.09±4.47 |
独一味 Lamiophlomis rotata | 8.26±2.46 | — |
多裂委陵菜 Potentilla multifida | 4.91±3.08 | 7.77±2.18 |
甘青大戟 Euphorbia micractina | 4.48±0.91 | 9.08±3.06 |
高山嵩草 Kobresia pygmaea | 47.58±10.16 | 41.97±17.73 |
高山唐松草 Thalictrum alpinum | — | 12.16±11.25 |
海乳草 Glaux maritima | — | 5.54±0.00 |
黄芪 Astragalus tanguticus | 7.28±0.00 | 11.23±3.80 |
火绒草 Leontopodium leontopodioides | 6.43±2.95 | 7.65±4.86 |
黄花棘豆 Oxytropis ochrocephala | 8.52±4.65 | 9.05±5.17 |
赖草 Leymus secalinus | 8.82±0.00 | 7.67±0.39 |
兰石草 Lancea tibetica | — | 9.45±5.38 |
麻花艽 Gentiana straminea | 6.87±1.60 | 10.23±3.07 |
美丽风毛菊 Saussurea superba | 8.88±6.37 | 7.51±0.00 |
蒲公英 Taraxacum mongolicum | 4.30±1.48 | 3.18±0.96 |
青藏龙胆 Gentiana futtereri | 6.74±2.49 | 8.79±2.11 |
狮牙风毛菊 Saussurea leontodontoides | 7.33±0.00 | — |
苔草 Carex spp. | — | 11.35±0.00 |
兔耳草 Lagotis brevituba | 7.13±5.32 | 7.76±0.58 |
细叶亚菊 Ajania tenuifolia | 9.22±2.62 | 16.69±6.71 |
星状风毛菊 Saussurea stella | 8.16±2.07 | — |
雪灵芝 Arenaria kansuensis Maxim. | 4.26±1.86 | 11.72±8.91 |
重冠紫菀 Aster diplostephioides | 14.17±7.38 | 16.19±12.82 |
紫花针茅 Stipa purpurea | 21.35±4.83 | 19.47±4.39 |
植被盖度 Vegetation cover/% | 87 | 72 |
物种数 Species | 7.26±1.24a | 6.18±1.24b |
地上生物量 Aboveground biomass/(g∙m-2) | 69.01±25.75a | 59.86±26.52b |
环境因子 Environmental Factors | 变量 Variables | 未退化草甸 Undegraded | 退化草甸 Degraded |
---|---|---|---|
土壤参数 Edaphic parameters | w(TN)/% | 69.06±8.99a | 58.01±11.91b |
w(NH4+-N)/(mg∙kg-1) | 45.02±13.77a | 45.94±7.19a | |
w(NO3--N)/(mg∙kg -1) | 136.21±27.95a | 132.91±38.50a | |
w(OM)/% | 10.60±2.39a | 6.85±2.02b | |
土壤含水量 w(SM)/% | 26.43±7.42a | 24.79±4.73a | |
土壤电导率 EC/(μS∙cm-1) | 0.23±0.19a | 0.13±0.11b | |
pH | 6.33±0.13b | 7.44±0.28a |
表2 高寒退化草甸土壤理化差异比较
Table 2 The measured vegetation factors and edaphic parameters of undegraded and degraded alpine meadow
环境因子 Environmental Factors | 变量 Variables | 未退化草甸 Undegraded | 退化草甸 Degraded |
---|---|---|---|
土壤参数 Edaphic parameters | w(TN)/% | 69.06±8.99a | 58.01±11.91b |
w(NH4+-N)/(mg∙kg-1) | 45.02±13.77a | 45.94±7.19a | |
w(NO3--N)/(mg∙kg -1) | 136.21±27.95a | 132.91±38.50a | |
w(OM)/% | 10.60±2.39a | 6.85±2.02b | |
土壤含水量 w(SM)/% | 26.43±7.42a | 24.79±4.73a | |
土壤电导率 EC/(μS∙cm-1) | 0.23±0.19a | 0.13±0.11b | |
pH | 6.33±0.13b | 7.44±0.28a |
图2 高寒退化草甸土壤样品微生物OTU稀释性曲线和韦恩图 不同颜色代表不同的样品。(a)稀释性曲线,(b)韦恩图
Figure 2 Soil samples OTU dilution curve and Venn of alpine meadow degraded Different colors represent different. (a) dilution curve; (b) Venn
皮尔森相关性 Pearson | 未退化草甸 Undegraded alpine meadow | 退化草甸 Degraded alpine meadow | |||||
---|---|---|---|---|---|---|---|
香农指数 Shannon Index | 辛普森指数 Simpson Index | 丰富度指数 Observed Richness | 香农指数 Shannon Index | 辛普森指数 Simpson Index | 丰富度指数 Observed Richness | ||
总氮含量 TN | 0.018 | 0.159 | -0.097 | -0.120 | -0.095 | -0.196 | |
铵态氮含量 NH4+-N | -0.113 | -0.247* | -0.066 | 0.056 | 0.096 | 0.055 | |
硝态氮含量 NO3--N | 0.060 | -0.007 | 0.059 | -0.003 | 0.056 | 0.021 | |
有机质含量 OM | -0.137 | -0.037 | -0.141 | 0.091 | -0.065 | 0.086 | |
土壤含水量 SM | 0.030 | -0.130 | 0.082 | 0.145 | 0.048 | 0.203 | |
土壤电导率 EC | 0.219 | 0.174 | 0.195 | -0.197 | -0.071 | -0.243* | |
pH | -0.197 | -0.202 | -0.137 | 0.085 | 0.035 | 0.148 |
表3 高寒退化草甸土壤细菌α多样性与土壤理化相关性分析
Table 3 The α-diversity of bacterial community correction with soil chemical in degradation meadow
皮尔森相关性 Pearson | 未退化草甸 Undegraded alpine meadow | 退化草甸 Degraded alpine meadow | |||||
---|---|---|---|---|---|---|---|
香农指数 Shannon Index | 辛普森指数 Simpson Index | 丰富度指数 Observed Richness | 香农指数 Shannon Index | 辛普森指数 Simpson Index | 丰富度指数 Observed Richness | ||
总氮含量 TN | 0.018 | 0.159 | -0.097 | -0.120 | -0.095 | -0.196 | |
铵态氮含量 NH4+-N | -0.113 | -0.247* | -0.066 | 0.056 | 0.096 | 0.055 | |
硝态氮含量 NO3--N | 0.060 | -0.007 | 0.059 | -0.003 | 0.056 | 0.021 | |
有机质含量 OM | -0.137 | -0.037 | -0.141 | 0.091 | -0.065 | 0.086 | |
土壤含水量 SM | 0.030 | -0.130 | 0.082 | 0.145 | 0.048 | 0.203 | |
土壤电导率 EC | 0.219 | 0.174 | 0.195 | -0.197 | -0.071 | -0.243* | |
pH | -0.197 | -0.202 | -0.137 | 0.085 | 0.035 | 0.148 |
不相似性检验 Dissimilarity test | 细菌群落 Bacterial community | ||
---|---|---|---|
Bray Curtis | Jaccard | ||
未退化草甸vs退化草甸 Undegraded vs Degraded | MRPP | 0.460*** | 0.653*** |
ANOSIM | 0.365*** | 0.426*** | |
PERMANOVA | 19.684*** | 7.466*** |
表4 高寒退化草甸土壤细菌群落的不相似性检验
Table 4 Dissimilarity test of soil bacterial community in alpine meadow degraded
不相似性检验 Dissimilarity test | 细菌群落 Bacterial community | ||
---|---|---|---|
Bray Curtis | Jaccard | ||
未退化草甸vs退化草甸 Undegraded vs Degraded | MRPP | 0.460*** | 0.653*** |
ANOSIM | 0.365*** | 0.426*** | |
PERMANOVA | 19.684*** | 7.466*** |
图5 高寒退化草甸土壤细菌群落结构和环境因子相关性 (a)主坐标分析PCoA;(b)非度量多维尺度分析NMDS;(c)典范对应分析CCA
Figure 5 Correlation between soil bacterial community structure and environmental factors in alpine degraded meadow
环境因子 Environmental factors | BC | JC | |||
---|---|---|---|---|---|
r | P | r | P | ||
总氮含量 TN | 0.112** | 0.006 | 0.114** | 0.002 | |
铵态氮含量 NH4+-N | -0.068 | 0.951 | -0.057 | 0.943 | |
硝态氮含量 NO3--N | 0.120** | 0.010 | 0.075* | 0.021 | |
有机质含量 OM | 0.137** | 0.005 | 0.131*** | 0.001 | |
pH | 0.319*** | 0.001 | 0.362*** | 0.001 | |
土壤含水量 SM | -0.073 | 0.988 | -0.068 | 0.988 | |
土壤电导率 EC | -0.028 | 0.699 | -0.012 | 0.604 |
表5 土壤细菌群落差异与土壤理化的Partial Mantel检验
Table 5 The correlation between the dissimilarity of soil bacterial communities and soil chemical using Partial Mantel test
环境因子 Environmental factors | BC | JC | |||
---|---|---|---|---|---|
r | P | r | P | ||
总氮含量 TN | 0.112** | 0.006 | 0.114** | 0.002 | |
铵态氮含量 NH4+-N | -0.068 | 0.951 | -0.057 | 0.943 | |
硝态氮含量 NO3--N | 0.120** | 0.010 | 0.075* | 0.021 | |
有机质含量 OM | 0.137** | 0.005 | 0.131*** | 0.001 | |
pH | 0.319*** | 0.001 | 0.362*** | 0.001 | |
土壤含水量 SM | -0.073 | 0.988 | -0.068 | 0.988 | |
土壤电导率 EC | -0.028 | 0.699 | -0.012 | 0.604 |
[1] | ALLISON S D, LU Y, WEIHE C, GOULDEN M L, et al., 2013. Microbial abundance and composition influence litter decomposition response to environmental change[J]. Ecology: A Publication of the Ecological Society of America, 94(3): 714-725. |
[2] |
BARDGETT R D, LEEMANS D K, COOK R, et al., 1997. Seasonality of soil biota of the grazed and ungrazed hill grasslands[J]. Soil Biology and Biochemistry, 29(8): 1285-1294.
DOI URL |
[3] | BIER R L, BERNHARDT E S, BOOT C M, et al., 2015. Linking microbial community structure and microbial processes: An empirical and conceptual overview[J]. Fems Microbiology Ecology, 91(10): 1-11. |
[4] |
CHE R X, DENG Y C, WANG F, et al., 2015. 16S rRNA-based bacterial community structure is a sensitive indicator of soil respiration activity[J]. Journal of Soils and Sediments, 15(9): 1987-1990.
DOI URL |
[5] |
CHE R X, WANG Y F, LI K X, et al., 2019. Degraded patch formation significantly changed microbial community composition in alpine meadow soils[J]. Soil and Tillage Research, 195: 104426.
DOI URL |
[6] |
EDGAR R C, 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 10(10): 996-998.
DOI URL |
[7] |
FAN D D, KONG W D, WANG F, et al., 2020. Fencing decreases microbial diversity but increases abundance in grassland soils on the Tibetan Plateau[J]. Land Degradation and Development, 31(17): 2577-2590.
DOI URL |
[8] |
FENG K, ZHANG Z J, CAI W W, et al., 2017. Biodiversity and species competition regulate the resilience of microbial biofilm community[J]. Molecular Ecology, 26(21): 6170-6182.
DOI URL |
[9] |
GU S S, HU Q L, CHENG Y Q, et al., 2019. Application of organic fertilizer improves microbial community diversity and alters microbial network structure in tea (Camellia sinensis) plantation soils[J]. Soil and Tillage Research, 195: 104356.
DOI URL |
[10] |
GUO G X, KONG W D, LIU J B, et al., 2015. Diversity and distribution of autotrophic microbial community along environmental gradients in grassland soils on the Tibetan Plateau[J]. Applied Microbiology and Biotechnology, 99: 8765-8776.
DOI URL |
[11] |
GUO J X, LI J S, LIU K S, et al., 2018. Analysis of soil microbial dynamics at a cropland-grassland interface in an agro-pastoral zone in a temperate steppe in northern China[J]. Catena, 170: 257-265.
DOI URL |
[12] |
HAN D X, WANG N, SUN X, et al., 2018. Biogeographical distribution of bacterial communities in Changbai Mountain, Northeast China[J]. Microbiology Open, 7: e00529.
DOI URL |
[13] |
HANEY C H, SAMUEL B S, BUSH J, et al., 2015. Associations with rhizosphere bacteria can confer an adaptive advantage to plants[J]. Nature Plants, 1(6): 15051.
DOI URL |
[14] | HOU X L, HAN H, TIGABU M, et al., 2019. Changes in soil physico-chemical properties following vegetation restoration ediate bacterial community composition and diversity in Changting, China[J]. Ecology Engineering, 138: 171-179. |
[15] |
KONG Y, 2011. Btrim: A fast, lightweight adapter and quality trimming program for next-generation sequencing technologies[J]. Genomics, 98(2): 152-153.
DOI URL |
[16] |
LI Y M, WANG S P, JIANG L L, et al., 2016. Changes of soil microbial community under different degraded gradients of alpine meadow[J]. Agriculture Ecosystems Environment, 222: 213-222.
DOI URL |
[17] |
LI Y, LI J J, ARE K S, et al., 2019. Livestock grazing significantly accelerates soil erosion more than climate change in Qinghai-Tibet Plateau: evidenced from 137Cs and 210Pbex measurements[J]. Agriculture, Ecosystems and Environment, 285: 106643.
DOI URL |
[18] |
MAGOC T, SALZBERG S L, 2011. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 27(21): 2957-2963.
DOI URL |
[19] | MARTINY J B H, EISEN J A, PENN K, et al., 2011. Drivers of bacterial β-diversity depend on spatial scale[J]. Proceedings of the National Academy of Sciences of the United States of America, 108(19): 7850-7854. |
[20] |
Olff H, HOORENS B, GOEDE R G M D, et al., 2000. Small-scale shifting mosaics of two dominant grassland species: the possible role of soil-borne pathogens[J]. Oecologia, 125(1): 45-54.
DOI PMID |
[21] |
TORSVIK V, ØVREÅS L, THINGSTAD T F, 2001. Prokaryotic diversity: Magnitude, dynamics, and controlling factors[J]. Science, 296(5570): 1064-1066.
DOI URL |
[22] | WANG C T, WANG G X, WANG Y, et al., 2016. Fire alters vegetation and soil microbial community in alpine meadow[J]. Land Degraded and Development, 27(5): 1379-1390. |
[23] |
WANG X J, ZHANG Z C, YU Z Q, et al., 2020. Composition and diversity of soil microbial communities in the alpine wetland and alpine forest ecosystems on the Tibetan Plateau[J]. Science of the Total Environment, 747: 141358.
DOI URL |
[24] |
WANG Y S, LI C N, KOU Y P, et al., 2017. Soil pH is a major driver of soil diazotrophic community assembly in Qinghai-Tibet alpine meadows[J]. Soil Biology and Biochemistry, 115: 547-555.
DOI URL |
[25] |
WU G L, REN G H, DONG Q M, et al., 2014. Above- and belowground response along degradation gradient in an Alpine Grassland of the Qinghai-Tibetan Plateau[J]. Clean Soil Air Water, 42(3): 319-323.
DOI URL |
[26] |
ZHANG X, ZHANG R, GAO J, et al., 2017. Thirty-one years of rice-rice-green manure rotations shape the rhizosphere microbial community and enrich beneficial bacteria[J]. Soil Biology and Biochemistry, 104: 208-217.
DOI URL |
[27] |
ZHOU H, ZHANG D, JIANG Z, et al., 2019. Changes in the soil microbial communities of alpine steppe at Qinghai-Tibetan Plateau under different degradation levels[J]. Science of The Total Environment, 651(Part 2): 2281-2291.
DOI URL |
[28] | 陈乐乐, 施建军, 王彦龙, 等, 2016. 高寒地区不同退化程度草地群落结构特征研究[J]. 草地学报, 24(1): 210-213. |
CHEN L L, SHI J J, WANG Y L, et al., 2016. Study on different degraded degrees grassland community structure characteristics of the Alpine area[J]. Acta Agrestia Sinica, 24(1): 210-213. | |
[29] | 党宁, 2020. 三江源区高寒草地土壤微生物群落多样性与环境因子关系的研究[D]. 西宁: 青海大学. |
DANG N, 2020. Study on the Relationship between Soil Microbial Community Diversity and Environmental Factors in Alpine Grassland in the Three-Rivers Headwaters Region[D]. Xining: Qinghai University. | |
[30] |
贺纪正, 李晶, 郑袁明, 2013. 土壤生态系统微生物多样性—稳定性关系的思考[J]. 生物多样性, 21(4): 411-420.
DOI |
HE J Z, LI J, ZHENG Y M, 2013. Thoughs on the microbial diversity-stability relationship in soil ecosystems[J]. Biodiversity Science, 21(4): 411-420.
DOI URL |
|
[31] | 李海云, 姚拓, 马亚春, 等, 2019. 祁连山中段退化高寒草地土壤细菌群落分布特征[J]. 草业学报, 28(8): 170-179. |
LI H Y, YAO T, MA Y C, et al., 2019. Soil bacterial community changes across a degradation gradient in alpine meadow grasslands in the central Qilian Mountains[J]. Acta Prataculturae Sinica, 28(8): 170-179. | |
[32] | 李雪萍, 李建宏, 刘永刚, 等, 2020. 甘南草原不同退化草地植被和土壤微生物特性[J]. 草地学报, 28(5): 1252-1259. |
LI X P, LI J H, LIU Y G, et al., 2020. The vegetation and soil microorganism characteristics of different degraded grassland in gannan steppe[J]. Acta Agrestia Sinica, 28(5): 1252-1259. | |
[33] | 刘洋荧, 王尚, 厉舒祯, 等, 2017. 基于功能基因的微生物碳循环分子生态学研究进展[J]. 微生物学通报, 44(7): 1676-1689. |
LIU Y Y, WANG S, LI S Z, et al., 2017. Advances in molecular ecology on microbial functional genes of carbon cycle[J]. Microbiology China, 44(7): 1676-1689. | |
[34] | 刘玉, 马玉寿, 施建军, 等, 2013. 大通河上游高寒草甸植物群落的退化特征[J]. 草业科学, 30(7): 1082-1088. |
LIU Y, MA Y S, SHI J J, et al., 2013. Community characteristics of alpine meadow under different degree of degradation in the upper area of Daitong River[J]. Pratacultural Science, 30(7): 1082-1088. | |
[35] | 王启兰, 曹广民, 王长庭, 2007. 高寒草甸不同植被土壤微生物数量及微生物生物量的特征[J]. 生态学杂志, 26(7): 1002-1008. |
WANG Q L, CAO G M, WANG C T, 2007. Quantitative characters of soil microbes and microbial biomass under different vegetations in alpine meadow[J]. Chinese Journal of Ecology, 26(7): 1002-1008. | |
[36] | 王英成, 芦光新, 赵丽蓉, 等, 2021. 高寒草甸退化对土壤电导率变化影响的研究[J]. 干旱区研究, 38(1): 104-113. |
WANG Y C, LU G X, ZHAO L R, et al., 2021. The influence of alpine meadow degradation on soil conductivity change[J]. Arid Zone Research, 38(1): 104-113. | |
[37] |
王朱珺, 王尚, 刘洋荧, 等, 2018. 宏基因组技术在氮循环功能微生物分子检测研究中的应用[J]. 生物技术通报, 34(1): 1-6.
DOI |
WANG Z J, WANG S, LIU Y Y, et al., 2018. The Applications of Metagenomics in the Detection of Environmental Microbes Involving in Nitrogen Cycle[J]. Biotechnology Bulletin, 34(1): 1-6. | |
[38] | 薛凯, 张彪, 周姝彤, 等, 2019. 青藏高原高寒草地土壤微生物群落及影响因子[J]. 种学通报, 64(27): 2915-2927. |
XUE K, ZHANG B, ZHOU S T, et al., 2019. Soil microbial communities in alpine grasslands on the Tibetan Plateau and their influencing factors[J]. Chinese Science Bulletin, 64(27): 2915-2927. | |
[39] | 杨建平, 丁永建, 沈永平, 等, 2004. 近40年来江河源区生态环境变化的气候特征分析[J]. 冰川冻土, 26(1): 7-16. |
YANG J P, DING Y J, SHEN Y P, et al., 2004. Climatic features of eco-environment change in the source regions of the Yangtze and Yellow Rivers in recent 40 years[J]. Journal of Glaciology and Geocryology, 26(1): 7-16. | |
[40] | 杨希智, 王长庭, 字洪标, 等, 2015. 三江源区不同建植年限人工草地土壤微生物群落结构特征[J]. 应用与环境生物学报, 21(2): 341-349. |
YANG X Z, WANG C T, ZI H B, et al., 2015. Soil microbial community structure characteristics in arti oil microbial community structure characteristics in artificial grassland with cial grassland with different cultivation years in the headwater region of Three Rivers, China[J]. Chinese Journal of Applied and Environmental Biology, 21(2): 341-349. | |
[41] | 姚拓, 龙瑞军, 2006. 天祝高寒草地不同扰动生境土壤三大类微生物数量动态研究[J]. 草业学报, 15(2): 93-99. |
YAO T, LONG R J, 2006. Dynamics of soil microbial population under disturbance in Tianzhu Alpine grassland[J]. Acta Prataculturae Sinica, 15(2): 93-99. | |
[42] | 姚世庭, 芦光新, 邓晔, 等, 2021. 模拟增温对土壤真菌群落组成及多样性的影响[J]. 生态环境学报, 30(7): 1404-1411. |
YAO S T, LU G X, DENG Y, et al., 2021. Effects of simulated warming on soil fungal community composition and diversity[J]. Ecology and Environmental Sciences, 30(7): 1404-1411 | |
[43] | 张卫信, 申智峰, 邵元虎, 等, 2020. 土壤生物与可持续农业研究进展[J]. 生态学报, 40(10): 3183-3206. |
ZHANG W X, SHEN Z F, SHAO Y H, et al., 2020. Soil biota and sustainable agriculture: A review[J]. Acta Ecologica Sinica, 40(10): 3183-3206. | |
[44] | 赵轻舟, 王艳芬, 崔骁勇, 等, 2018. 草地土壤微生物多样性影响因素研究进展[J]. 生态科学, 37(3): 204-212. |
ZHAO Q Z, WANG Y F, CUI X Y, et al., 2018. Research progress of the influence factors of soil microbial diversity in grassland[J]. Ecological Science, 37(3): 204-212. |
[1] | 侯晖, 颜培轩, 谢沁宓, 赵宏亮, 庞丹波, 陈林, 李学斌, 胡杨, 梁咏亮, 倪细炉. 贺兰山蒙古扁桃灌丛根际土壤AM真菌群落多样性特征研究[J]. 生态环境学报, 2023, 32(5): 857-865. |
[2] | 陈俊芳, 吴宪, 刘啸林, 刘娟, 杨佳绒, 刘宇. 不同土壤水分下元素化学计量对微生物多样性的塑造特征[J]. 生态环境学报, 2023, 32(5): 898-909. |
[3] | 姜永伟, 丁振军, 袁俊斌, 张峥, 李杨, 问青春, 王业耀, 金小伟. 辽宁省主要河流底栖动物群落结构及水质评价研究[J]. 生态环境学报, 2023, 32(5): 969-979. |
[4] | 王云, 郑西来, 曹敏, 李磊, 宋晓冉, 林晓宇, 郭凯. 滨海含水层咸-淡水过渡带反硝化性能与控制因素研究[J]. 生态环境学报, 2023, 32(5): 980-988. |
[5] | 寇祝, 卿纯, 袁昌果, 李平. 西藏东北部热泉水中硫氧化菌的多样性及分布特征[J]. 生态环境学报, 2023, 32(5): 989-1000. |
[6] | 杨春亮, 刘旻霞, 王千月, 苗乐乐, 肖音迪, 王敏. 单户与联户放牧经营下草玉梅与嵩草种群空间格局及其关联性[J]. 生态环境学报, 2023, 32(4): 651-659. |
[7] | 胡芳, 刘聚涛, 温春云, 韩柳, 文慧. 抚河流域浮游植物群落结构特征及其水生态状况评价[J]. 生态环境学报, 2023, 32(4): 744-755. |
[8] | 于菲, 曾海龙, 房怀阳, 付玲芳, 林澍, 董家豪. 典型感潮河网浮游藻类功能群时空变化特征及水质评价[J]. 生态环境学报, 2023, 32(4): 756-765. |
[9] | 秦浩, 李蒙爱, 高劲, 陈凯龙, 张殷波, 张峰. 芦芽山不同海拔灌丛土壤细菌群落组成和多样性研究[J]. 生态环境学报, 2023, 32(3): 459-468. |
[10] | 王洁, 单燕, 马兰, 宋延静, 王向誉. 秸秆/生物质炭协同还田措施对黄河三角洲盐碱土壤的改良效果研究[J]. 生态环境学报, 2023, 32(1): 90-98. |
[11] | 王礼霄, 刘晋仙, 柴宝峰. 华北亚高山土壤细菌群落及氮循环对退耕还草的响应[J]. 生态环境学报, 2022, 31(8): 1537-1546. |
[12] | 周选博, 王晓丽, 马玉寿, 王彦龙, 罗少辉, 谢乐乐. 返青期休牧措施下高寒草甸主要植物种群的生态位变化特征[J]. 生态环境学报, 2022, 31(8): 1547-1555. |
[13] | 花莉, 成涛之, 梁智勇. 固定化混合菌对陕北黄土地区石油污染土壤的修复效果[J]. 生态环境学报, 2022, 31(8): 1610-1615. |
[14] | 朱锦福, 黄瑞灵, 董志强, 毛晓宁, 周华坤. 青海湖高寒湿地土壤细菌群落对氮添加的响应[J]. 生态环境学报, 2022, 31(6): 1101-1109. |
[15] | 朱奕豪, 李青梅, 刘晓丽, 李娜, 宋凤玲, 陈为峰. 不同土地整治类型新增耕地土壤微生物群落特征研究[J]. 生态环境学报, 2022, 31(5): 909-917. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||