生态环境学报 ›› 2022, Vol. 31 ›› Issue (4): 704-714.DOI: 10.16258/j.cnki.1674-5906.2022.04.008
刘志君1,2(), 崔丽娟1,2,*(
), 李伟1,2, 李晶1,2, 雷茵茹1,2, 朱怡诺1,2, 王汝苗1,2, 窦志国1,2
收稿日期:
2021-12-13
出版日期:
2022-04-18
发布日期:
2022-06-22
通讯作者:
*崔丽娟(1968年生),女,研究员,博士研究生导师,研究方向为湿地生态过程与机理、湿地保护与恢复技术、湿地生态系统服务评价与湿地管理政策等。E-mail: wetlands108@126.com; lkyclj@126.com作者简介:
刘志君(1996年生),男,硕士研究生,研究方向为滨海湿地生物地球化学循环。E-mail: lzhijun056@163.com
基金资助:
LIU Zhijun1,2(), CUI Lijuan1,2,*(
), LI Wei1,2, LI Jing1,2, LEI Yinru1,2, ZHU Yinuo1,2, WANG Rumiao1,2, DOU Zhiguo1,2
Received:
2021-12-13
Online:
2022-04-18
Published:
2022-06-22
摘要:
探明滨海湿地土壤反硝化细菌群落及多样性,对于理解滨海湿地氮素循环以及反硝化引起的N2O排放等具有重要意义。采用时空替代法,选择盐城滨海湿地入侵3年、17年、31年的互花米草(Spartina alterniflora)群落,并以本土植物芦苇(Phragmites australis)群落作为对照,通过高通量测序技术分析不同土壤深度nirS型反硝化细菌群落组成及多样性,探讨互花米草入侵过程中滨海湿地土壤理化性质变化对nirS型反硝化细菌群落组成的影响。结果表明,入侵种互花米草导致盐城滨海湿地土壤反硝化细菌多样性较本地物种芦苇降低,且在不同土壤深度中反硝化细菌多样性均表现为随着入侵年限的增加先降低后上升的趋势。互花米草以及芦苇群落在不同土壤深度均存在特有反硝化细菌,其中嗜氢菌属(Hydrogenophilus)、色盐杆菌属(Chromohalobacter)、慢生根瘤菌属(Bradyrhizobium)相对丰度在不同土壤深度中均表现为随着入侵时间增加而增加。盐城滨海湿地土壤反硝化细菌结构变化同时受到多种环境因子的影响,在0—20 cm土壤深度主控因子为盐度、pH和总有机碳;在20—40 cm土壤深度主控因子为盐度、含水率、总有机碳、总碳。该研究可为深化研究滨海湿地互花米草入侵对反硝化功能细菌多样性及群落结构的影响提供重要科学依据。
中图分类号:
刘志君, 崔丽娟, 李伟, 李晶, 雷茵茹, 朱怡诺, 王汝苗, 窦志国. 互花米草入侵对盐城滨海湿地nirS型反硝化细菌多样性及群落结构的影响[J]. 生态环境学报, 2022, 31(4): 704-714.
LIU Zhijun, CUI Lijuan, LI Wei, LI Jing, LEI Yinru, ZHU Yinuo, WANG Rumiao, DOU Zhiguo. Effects of Spartina alterniflora Invasion on the Diversity and Community Structure of nirS-type Denitrifying Bacteria in Yancheng Coastal Wetlands[J]. Ecology and Environment, 2022, 31(4): 704-714.
样地 Site | 0—20 cm 土壤深度 | 20—40 cm 土壤深度 | |||||||
---|---|---|---|---|---|---|---|---|---|
OTU数 OTU number | 香农-维纳指数 Shannon | 逆辛普森指数 Inverse Simpson | 覆盖度 Coverage/% | OTU数 OTU number | 香农-维纳指数 Shannon | 逆辛普森指数 Inverse Simpson | 覆盖度 Coverage/% | ||
PA | 1169±161a | 6.62±0.66a | 0.97±0.01a | 97.48±0.50 | 1167±303b | 6.48±0.67a | 0.96±0.02a | 97.46±0.78 | |
SA3 | 1229±160a | 6.27±0.87ab | 0.93±0.05a | 97.26±0.31 | 1152±208a | 6.23±0.70a | 0.94±0.03a | 97.53±0.41 | |
SA17 | 828±95b | 5.53±0.54b | 0.93±0.03a | 98.10±0.23 | 832±113b | 5.44±0.41b | 0.91±0.03b | 98.33±0.42 | |
SA31 | 928±199b | 5.91±0.50ab | 0.95±0.02a | 97.84±0.51 | 983±196b | 5.94±0.40b | 0.94±0.02a | 97.75±0.67 |
表1 各样点反硝化细菌丰度与alpha多样性
Table 1 The abundance and alpha diversity of denitrifying microorganisms at each sample point
样地 Site | 0—20 cm 土壤深度 | 20—40 cm 土壤深度 | |||||||
---|---|---|---|---|---|---|---|---|---|
OTU数 OTU number | 香农-维纳指数 Shannon | 逆辛普森指数 Inverse Simpson | 覆盖度 Coverage/% | OTU数 OTU number | 香农-维纳指数 Shannon | 逆辛普森指数 Inverse Simpson | 覆盖度 Coverage/% | ||
PA | 1169±161a | 6.62±0.66a | 0.97±0.01a | 97.48±0.50 | 1167±303b | 6.48±0.67a | 0.96±0.02a | 97.46±0.78 | |
SA3 | 1229±160a | 6.27±0.87ab | 0.93±0.05a | 97.26±0.31 | 1152±208a | 6.23±0.70a | 0.94±0.03a | 97.53±0.41 | |
SA17 | 828±95b | 5.53±0.54b | 0.93±0.03a | 98.10±0.23 | 832±113b | 5.44±0.41b | 0.91±0.03b | 98.33±0.42 | |
SA31 | 928±199b | 5.91±0.50ab | 0.95±0.02a | 97.84±0.51 | 983±196b | 5.94±0.40b | 0.94±0.02a | 97.75±0.67 |
图2 芦苇与互花米草不同入侵年限种群反硝化细菌多样性 (a)为0—20 cm土壤深度;(b)为20—40 cm土壤深度
Figure 2 Diversity of denitrifying microorganisms of Phragmites australis and Spartina alterniflora populations with different invasion years (a) is 0-20 cm soil depth; (b) is 20-40 cm soil depth
项目 Items | df | Mean Sq. | F | P |
---|---|---|---|---|
入侵年限 Years of invasion | 2 | 1.765 | 4.256 | 0.024 |
土壤深度 Soil depth | 1 | 0.000 | 0.001 | 0.975 |
入侵年限×土壤深度 Years of invasion×Soil depth | 2 | 0.030 | 0.072 | 0.931 |
表2 入侵时间和土层深度对滨海湿地土壤反硝化细菌Shannon指数影响的双因素方差分析
Table 2 Two-factor variance analysis of the impact of invasion time and soil depth on the Shannon index of soil denitrifying microorganisms in coastal wetlands
项目 Items | df | Mean Sq. | F | P |
---|---|---|---|---|
入侵年限 Years of invasion | 2 | 1.765 | 4.256 | 0.024 |
土壤深度 Soil depth | 1 | 0.000 | 0.001 | 0.975 |
入侵年限×土壤深度 Years of invasion×Soil depth | 2 | 0.030 | 0.072 | 0.931 |
图3 滨海湿地土壤nirS型反硝化细菌群落的NMDS分析 PA群落用实心圆表示,SA3群落用实心正方形表示,SA17群落用实心三角形表示,SA31用实心五角形表示;不同颜色的大小椭圆表示不同植物群落95%的置信区间;(a)为0—20 cm土层,(b)为20—40 cm土层
Figure 3 NMDS analysis of nirS-type denitrifying microbial community in coastal wetland soil The PA community is represented by a solid circle, the SA3 community is represented by a solid square, the SA17 community is represented by a solid triangle, and SA31 is represented by a solid pentagon; the size of the ellipse in different colors represents the 95% confidence interval of different plant communities; (a) is 0-20 cm Soil layer, (b) is 20-40 cm soil layer
土壤深度 Soil depth/cm | 样点 Site | 含水率 SWC/% | pH | 盐度 Salinity/(mS∙cm-1) | w(总碳TC)/ (g∙kg-1) | w(总氮TN)/ (g∙kg-1) | w(总有机碳TOC)/ (g∙kg-1) | w(铵态氮NH4+-N)/ (mg∙kg-1) | w(硝态氮NO3--N)/ (mg∙kg-1) | w(C)/ w(N) |
---|---|---|---|---|---|---|---|---|---|---|
0-20 | PA | 73.66±2.87a | 8.92±0.24a | 10.30±0.98c | 19.01±1.11b | 0.44±0.08b | 5.92±1.90b | 1.93±0.07a | 9.15±0.10b | 81.15±5.41a |
SA3 | 57.61±5.20c | 8.35±0.08b | 21.09±2.86a | 18.80±1.29b | 0.57±0.03b | 12.45±1.00a | 1.31±0.04ab | 12.28±1.76a | 51.46±9.93ab | |
SA17 | 66.67±2.47b | 8.44±0.12b | 15.02±3.28b | 21.46±3.32b | 0.58±0.04b | 10.24±2.81a | 1.03±0.12b | 11.70±2.65ab | 51.23±8.96ab | |
SA31 | 67.32±3.91b | 8.52±0.12b | 16.15±2.32b | 25.26±2.83a | 1.41±0.09a | 9.94±2.83a | 1.37±0.34ab | 10.09±1.55ab | 18.22±2.91b | |
20-40 | PA | 74.40±2.05a | 8.92±0.11a | 9.07±1.23c | 18.69±0.19c | 0.44±0.08b | 3.58±0.36b | 1.77±0.22a | 8.50±0.39c | 59.67±6.47a |
SA3 | 57.20±4.43d | 8.42±0.16b | 24.14±1.45a | 18.91±1.00c | 0.55±0.06b | 14.41±5.86a | 1.28±0.14a | 11.14±1.56a | 68.48±7.54a | |
SA17 | 66.31±1.70c | 8.42±0.10b | 15.30±2.45b | 22.46±2.30b | 0.68±0.09b | 7.82±3.09b | 0.99±0.03a | 9.95±0.38ab | 57.11±9.64a | |
SA31 | 69.90±1.38b | 8.49±0.10b | 17.10±5.02b | 24.97±1.35a | 1.33±0.17a | 5.27±0.61b | 2.01±0.85a | 9.26±0.80bc | 19.08±2.34b |
表3 不同采样点土壤理化性质特征
Table 3 Characteristics of soil physical and chemical properties at different sampling points
土壤深度 Soil depth/cm | 样点 Site | 含水率 SWC/% | pH | 盐度 Salinity/(mS∙cm-1) | w(总碳TC)/ (g∙kg-1) | w(总氮TN)/ (g∙kg-1) | w(总有机碳TOC)/ (g∙kg-1) | w(铵态氮NH4+-N)/ (mg∙kg-1) | w(硝态氮NO3--N)/ (mg∙kg-1) | w(C)/ w(N) |
---|---|---|---|---|---|---|---|---|---|---|
0-20 | PA | 73.66±2.87a | 8.92±0.24a | 10.30±0.98c | 19.01±1.11b | 0.44±0.08b | 5.92±1.90b | 1.93±0.07a | 9.15±0.10b | 81.15±5.41a |
SA3 | 57.61±5.20c | 8.35±0.08b | 21.09±2.86a | 18.80±1.29b | 0.57±0.03b | 12.45±1.00a | 1.31±0.04ab | 12.28±1.76a | 51.46±9.93ab | |
SA17 | 66.67±2.47b | 8.44±0.12b | 15.02±3.28b | 21.46±3.32b | 0.58±0.04b | 10.24±2.81a | 1.03±0.12b | 11.70±2.65ab | 51.23±8.96ab | |
SA31 | 67.32±3.91b | 8.52±0.12b | 16.15±2.32b | 25.26±2.83a | 1.41±0.09a | 9.94±2.83a | 1.37±0.34ab | 10.09±1.55ab | 18.22±2.91b | |
20-40 | PA | 74.40±2.05a | 8.92±0.11a | 9.07±1.23c | 18.69±0.19c | 0.44±0.08b | 3.58±0.36b | 1.77±0.22a | 8.50±0.39c | 59.67±6.47a |
SA3 | 57.20±4.43d | 8.42±0.16b | 24.14±1.45a | 18.91±1.00c | 0.55±0.06b | 14.41±5.86a | 1.28±0.14a | 11.14±1.56a | 68.48±7.54a | |
SA17 | 66.31±1.70c | 8.42±0.10b | 15.30±2.45b | 22.46±2.30b | 0.68±0.09b | 7.82±3.09b | 0.99±0.03a | 9.95±0.38ab | 57.11±9.64a | |
SA31 | 69.90±1.38b | 8.49±0.10b | 17.10±5.02b | 24.97±1.35a | 1.33±0.17a | 5.27±0.61b | 2.01±0.85a | 9.26±0.80bc | 19.08±2.34b |
图5 滨海湿地土壤反硝化细菌群落与环境因子的关系 (a)、(b)分别表示0—20 cm土壤和20—40 cm土壤;矩形的颜色表示负(蓝色)或正(红色)相关,颜色越深相关性越强;图右侧为相关系数标度;*表示P<0.05,**表示P<0.01。
Figure 5 Relationship between soil denitrifying microbial community and environmental factors in coastal wetlands (a) and (b) respectively represent 0-20 cm soil and 20-40 cm soil; the color of the rectangle indicates negative (blue) or positive (red) correlation, the darker the color, the stronger the correlation; the right side of the figure is Correlation coefficient scale; * means P<0.05, ** means P<0.01
图6 滨海湿地反硝化细菌群落与环境因子的RDA分析 (a)、(b)分别代表0—20 cm土层和20—40 cm土层;不同颜色的实心圆分别代表不同的采样点
Figure 6 RDA analysis of denitrifying microbial communities and environmental factors in coastal wetlands (a) and (b) represent 0-20 cm soil layer and 20-40 cm soil layer respectively; solid circles with different colors represent different sampling points
[1] |
ARTHUR M A, BRAY S R, KUCHLE C R, et al., 2012. The influence of the invasive shrub, Lonicera maackii, on leaf decomposition and microbial community dynamics[J]. Plant Ecology, 213: 1571-1582.
DOI URL |
[2] |
BELLER H R, CHAIN P S G, LERAIN T E, et al., 2006. The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrigicans[J]. Journal of Bacteriology, 188(4): 1473-1488.
DOI URL |
[3] |
BRAKER G, AYALA-DEL-RIO H L, DEVOL A H, et al., 2001. Community Structure of Denitrifiers, Bacteria, and Archaea along Redox Gradients in Pacific Northwest Marine Sediments by Terminal Restriction Fragment Length Polymorphism Analysis of Amplified Nitrite Reductase (nirS) and 16S rRNA Genes[J]. Applied and Environmental Microbiology, 67(4): 1893-1901.
DOI URL |
[4] |
CAMPBELL B J, KIRCHMAN D L, 2013. Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient[J]. Isme Journal, 7(1): 210.
DOI URL |
[5] |
CAREY C J, BEMAN J M, EVINER V T, et al., 2015. Soil microbial community structure is unaltered by plant invasion, vegetation clipping, and nitogen fertilization in experimental semi-arid grasslands[J]. Frontiers Micobiology, DOI: 10.3389/fmicb.2015.00466.
DOI |
[6] |
CUI L J, PAN X, LI W, et al., 2019. Phragmites australis meets Suaeda salsa on the “red beach”: Effects of an ecosystem engineer on salt-marsh litter decomposition[J]. The Science of the Total Environment, DOI: 10.1016/j.scitotenv.2019.07.283.
DOI |
[7] |
DAI Y J, LIN X L, LUO Y, et al., 2021. Molecular analysis of microbial nitrogen transformation and removal potential in mangrove wetlands under anthropogenic nitrogen input[J]. Science of the Total Environment, DOI: 10.1016/j.scitotenv.2021.145632.
DOI |
[8] |
DEEGAN L A, JOHNSON D S, WARREN R S, et al., 2012. Coastal eutrophication as a driver of salt marsh loss[J]. Nature, 490(7420): 388-295.
DOI URL |
[9] |
DOSTÁL P, MÜLLEROVÁ J, PYŠEK P, et al., 2013. The impact of an invasive plant changes over time[J]. Ecology Letters, 16(10): 1277-1284.
DOI URL |
[10] |
EDGAR R C, HAAS B J, CLEMENTE J C, et al., 2011. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 27: 2194-2200.
DOI URL |
[11] |
ELGERSMA K J, EHRENFELD J G, 2011. Linear and non-linear impacts of a non-native plant invasion on soil microbial community structure and function[J]. Biological Invasions, 13: 757-768.
DOI URL |
[12] | ERIKSSON P G, WEISNER S, 2015. Nitrogen Removal in a Wastewater Reservoir: The Importance of Denitrification by Epiphytic Biofilms on Submersed Vegetation[J]. Journal of Environmental Quality, 26(3): 905-910. |
[13] |
FREEDMAN Z, ZAK D R, 2015. Soil bacterial communities are shaped by temporal and environmental filtering: evidence from a long-term chronosequence[J]. Environmental Microbiology, 17: 3208-3218.
DOI URL |
[14] |
GAO D Z, LI X F, LIN X B, et al., 2017. Soil dissimilatory nitrate reduction processes in the Spartina alternitflora invasion chronosequences of a coastal wetland of southeastern China: dynamics and environmental implications[J]. Plant Soil, 421: 383-399.
DOI URL |
[15] |
GAO G F, LI P F, ZHONG J X, et al., 2019, Spartina alterniflora invasion alters soil bacterial communities and enhances soil N2O emissions by stimulating soil denitrification in mangrove wetland[J]. Science of the Total Environment, 653: 231-240
DOI URL |
[16] | GOH, C H, VALLEJOS D F V, NICOTRA A B, et al., 2013. The impact of beneficial plant-associated microbes on plant phenotypic plasticity[J]. Journal of Chemical Ecology, 39(7): 85-92. |
[17] |
HAWKES C V, WREN I F, HERMAN D J, et al., 2005. Plant invasion alters nitrogen cycling by modifying the soil nitrifying community[J]. Ecology Letters, 8(9): 976-985.
DOI URL |
[18] | HES E M A., NIU R, VAN DAM A A, 2014. A simulation model for nitrogen cycling in natural rooted papyrus wetlands in East Africa[J]. Wetlands Ecology & Management, 22(2): 157-176. |
[19] |
HONG Y W, LIAO D, HU A Y, et al., 2015. Diversity of endophytic and rhizoplane bacterial communities associated with exotic Spartina alterniflora and native mangrove using Illumina amplicon sequencing[J]. Canadian Journal Microbiology, 61(10):723-733.
DOI URL |
[20] |
JIA J, BAI J H, WANG W, et al., 2020. Salt stress alters the short-term responses of nitrous oxide emissions to the nitrogen addition in salt-affected coastal soils[J]. Science of the Total Environment, DOI: 10.1016/j.scitotenv.2020.140124.
DOI |
[21] |
JIANG X T, PENG X, DENG G H, et al., 2013. Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland[J]. Microbial ecology, 66(1): 96-104.
DOI URL |
[22] |
KUTRALAM-MUNIASAMY G, PEREZ-GUEVARA F, 2019. Comparative genome analysis of completely sequenced Cupriavidus genomes provides insights into the biosynthetic potential and versatile applications of Cupriavidus alkaliphilus ASC-732[J]. Canadian Journal of Microbiology, 65(8):575-595.
DOI URL |
[23] | LEDFORD T C, MORTAZAVI B, TATARIW C, et al., 2021, Ecosystem carbon exchange and nitrogen removal rates in two 33-year-old constructed salt marshes are similar to those in a nearby natural marsh[J]. Restoration Ecology, 29(7): 336-345 |
[24] | LI B, 2009. Spartina alterniflora invasions in the Yangtze River estuary, China: An overview of current status and ecosystem effects[J], Ecological Enginee, 35(4): 511-520. |
[25] |
LI N, LI B, NIE M, et al., 2020. Effects of exotic Spartina alterniflora on saltmarsh nitrogen removal in the Yangtze River Estuary, China[J]. Journal of Cleaner Production, DOI: 10.1016/j.jclepro.2020.122557
DOI |
[26] |
LIAO C, LUO Y, JIANG L, et al., 2007. Invasion of Spartina alterniflora Enhanced Ecosystem Carbon and Nitrogen Stocks in the Yangtze Estuary, China[J]. Ecosystems, 10(8): 1351-1361.
DOI URL |
[27] |
LIAO J D, BOUTTON T W, JASTROW J D, 2006. Storage and dynamics of carbon and nitrogen in soil physical fractions following woody plant invasion of grassland[J]. Soil Biology and Biochemistry, 38(11): 3184-3196.
DOI URL |
[28] |
MARSCHNER P, YANG C H, LIEBERERI R, et al., 2001. Soil and plant specific effects on bacterial community composition in the rhizosphere[J]. Soil Biology and Biochemistry, 33(11): 1437-1445.
DOI URL |
[29] |
MICHOTEY V, MÉJEAN V, BONIN P, 2000. Comparison of Methods for Quantification of Cytochrome cd1-Denitrifying Bacteria in Environmental Marine Samples[J]. Applied and Environmental Microbiology, 66(4): 1564-1571.
DOI URL |
[30] |
MOSIER A C, FRANCIS C A, 2010. Denitrifier abundance and activity across the San Francisco Bay estuary[J]. Environmental Microbiology Reports, 2(5): 667-676.
DOI URL |
[31] |
O’BRIEN S L, GIBBON S M, OWENS S M, et al., 2016. Spatial scale drives patterns in soil bacterial diversity[J]. Environmental Microbiology, 18(6): 2039-2051.
DOI URL |
[32] |
SOUZA-ALONSO P, GUISANDE-COLLAZO A, GONZALEZ L, 2015. Gradualism in Acacia dealbata Link invasion: impact on soil chemistry and microbial community over a chronological sequence[J]. Soil Biology Biochemistry, 80: 315-323.
DOI URL |
[33] |
SU J F, ZHANG H, XUE L, et al., 2020. Characterization of simultaneous aerobic denitrification and dephosphorization strain Cupriavidus sp. H29 and its application on cadmium-removing[J]. Geomicrobiology Journal, 37(5): 426-436.
DOI URL |
[34] | SUN H M, ZHAO G Y, FAN G H, et al., 2015. Influence of alkali-saline on soil microbial diversity in Songnen grassland[J]. Fresenius Environ, 24(6): 2113-2117. |
[35] |
WANG C H, LU M, YANG B, et al., 2010. Effects of environmental gradients in the performances of four dominant plants in a Chinese saltmarsh: Implications for plant zonation[J]. Ecological Research, 25: 347-358.
DOI URL |
[36] |
YANG W, AN S Q, ZHAO H, et al., 2016. Impacts of Spartina alterniflora invasion on soil organic carbon and nitrogen pools sizes, stability, and turnover in coastal salt marsh of eastern China[J]. Ecological Engineering, 86: 174-182.
DOI URL |
[37] |
YANG W, AN S Q, ZHAO H, et al., 2017. Soil organic carbon and nitrogen dynamics following Spartina alterniflora invasion in a coastal wetland of eastern China[J]. Catena, 156: 281-289.
DOI URL |
[38] | ZHANG G L, BAI J H, ZHAO Q Q, et al., 2020. Bacterial Succession in Salt Marsh Soils Along a Short-term Invasion Chronosequence of Spartina alterniflora in the Yellow River Esturary, China[J]. Soil Microbiology, 8: 24-32. |
[39] |
ZHANG Q F, PENG J J, CHEN Q, et al., 2013. Abundance and composition of denitrifiers in response to Spartina alterniflora invasion in estuarine sediment[J]. Canadian Journal of Microbiology, 59(12): 825-836.
DOI URL |
[40] |
ZHANG S, XIAO R L, LIU F, et al., 2016. Effect of vegetation on nitrogen removal and ammonia volatilization from wetland microcosms[J]. Ecological Engineering, 97: 363-369.
DOI URL |
[41] |
ZHAO S Y, ZHOU J M, YUAN D D, et al., 2020, NirS-type N2O -producers and nosZ Ⅱ-type N2O-reducers determine the N2O emission potential in farmland rhizosphere soils[J]. Journal of Soils and Sediments, 20(1): 461-471.
DOI URL |
[42] |
ZHENG J, LI J J, LAN Y Q, et al., 2018. Effects of Spartina alterniflora invasion on Kandelia candel rhizospheric bacterial community as determined by high-throughput sequencing analysis[J]. Journal of Soil and Sediments, DOI: 10.1007/s11368-018-2002-7.
DOI |
[43] | ZUMFT W G, 1997. Cell biology and molecular basis of denitrification[J]. Microbiology Molecular Biology Reviews, 61(4): 533-616. |
[44] | 蔡杨, 李伟, 左雪燕, 等, 2021. 盐城滨海湿地土壤多环芳烃分布特征及影响因素[J]. 生态环境学报, 30(6): 1249-1259. |
CAI Y, LI W, ZUO X Y, et al., 2021. Distibution Characteristics and influencing factors of PAHs in Yancheng costal wetland soil[J]. Ecology and Environmental Sciences, 30(6): 1249-1259. | |
[45] | 崔丽娟, 张曼胤, 王义飞. 2006. 湿地功能研究进展[J]. 世界林业研究, 19(3): 18-21. |
CUI L J, ZHANG M Y, WANG Y F, 2006. The Progress of Wetland Function Research[J]. World Forestry Research, 19(3): 18-21. | |
[46] | 霍玉珠, 王银华, 王春萍, 等, 2021. 互花米草入侵对天津滨海湿地土壤可培养细菌和真菌群落组成及多样性的影响[J]. 天津师范大学学报: 自然科学版, 41(1): 34-41. |
HUO Y Z, WANG Y H, WANG C P, et al., 2021. Effects of Spartina alterniflora invasion on the composition and diversity of culturable soil bacterial and fungal communities in Tianjin coastal wetland[J]. Journal of Tianjin Normal University (Natural Science Edition), 41(1): 34-41. | |
[47] | 李晶, 雷茵茹, 崔丽娟, 等, 2018. 我国滨海滩涂湿地现状及研究进展[J]. 林业资源管理 (2): 24-28, 137 |
LI J, LEI Y R, CUI L J, et al., 2018. Current Status and Research Progress of Coastal Tidal Flat Wetlands in China[J]. Forest Resources Management (2): 24-28, 137 | |
[48] | 廖丹, 黄华斌, 庄峙夏, 等, 2018. 互花米草入侵对红树林秋茄根际与根内细菌群落结构与多样性的影响[J]. 应用与环境生物学报, 24(2): 269-275. |
LIAO D, HUANG H B, ZHUANG Z X, et al., 2018. Effects of exotic Spartina alterniflora on rhizosphere and endophytic bacterial community structures and diversity in roots of native mangroves[J]. Chinese Journal Applied and Environmental Biology, 24(2): 269-275. | |
[49] | 刘春悦, 张树清, 江红星, 等, 2009. 江苏盐城滨海湿地外来种互花米草的时空动态及景观格局[J]. 应用生态学报, 20(4): 901-908. |
LIU C Y, ZHANG S Q, JIANG H X, et al., 2009. Spatiotemporal dynamics and landscape pattern of the alien species Spartina alterniflora in Yancheng coastal wetlands of Jiangsu Province, China[J]. Chinese Journal of Applied Ecology, 20(4): 901-908. | |
[50] | 王靖雯, 牛振国, 2017. 基于潮位校正的盐城滨海潮间带遥感监测及变化分析[J]. 海洋学报, 39(5): 149-160. |
WANG J W, NIU Z G, 2017. Remote-sensing analysis of Yancheng intertidal zones based on tidal correction[J]. Acta Oceanologica Sinica, 39(5): 146-160.
DOI URL |
|
[51] | 王卿, 安树青, 马志军, 等, 2006. 入侵植物互花米草-生物学、生态学及管理[J]. 植物分类学报, 44(5): 559-588. |
WANG Q, AN S Q, MA Z J, et al., 2006. Invasive Spartina alterniflora: biology, ecology and management[J]. Journal of Systematics and Evolution, 44(5): 559-588.
DOI |
|
[52] | 肖燕, 汤俊兵, 安树青, 2011. 芦苇、互花米草的生长和繁殖对盐分胁迫的响应[J]. 生态学杂志, 30(2): 267-272. |
XIAO Y, TANG J B, AN S Q, 2011. Responses of growth and sexual reproduction of Phragragmites australis and Spartina alterniflora to salinity stress[J]. Chinese Journal of Ecology, 30(2): 267-272. | |
[53] | 尹晓雷, 陈桂香, 王纯, 等, 2020. 互花米草入侵对河口湿地土壤真菌群落结构及多样性影响[J]. 环境科学学报, 40(6): 2186-2194. |
YIN X L, CHEN G X, WANG C, et al., 2020. Effects of Spartina alterniflora invasion on soil fungi community structure and diversity in estuarine wetland[J]. Acta Scientiae Circumstantiae, 40(6): 2186-2194. | |
[54] | 郑洁, 刘金福, 吴则焰, 等, 2017. 闽江河口红树林土壤微生物群落对互花米草入侵的响应[J]. 生态学报, 37(21): 7293-7303. |
ZHENG J, LIU J F, WU Z Y, et al., 2017. Soil microbial community of mangrove forests and its responses to the invasion of Spartina alterniflora in the Minjiang River Estuary[J]. Acta Ecological Sinica, 37(21): 7293-7303. | |
[55] | 左雪燕, 崔丽娟, 李伟, 等, 2021. 基于高光谱数据的互花米草叶片功能性状反演[J]. 生态学报, 41(15): 6159-6169. |
ZUO X Y, CUI L J, LI W, et al., 2021. Inversion of functional traits of Spartina alterniflora leaves based on hyperspectral data[J]. Acta Ecological Sinica, 41(15): 6159-6169. |
[1] | 李海鹏, 黄月华, 孙晓东, 曹启民, 符芳兴, 孙楚涵. 海南农田不同质地砖红壤及其细菌群落与番茄青枯病发生的关联分析[J]. 生态环境学报, 2023, 32(6): 1062-1069. |
[2] | 王钊, 张曼胤, 胡宇坤, 刘魏魏, 张苗苗. 盐度对典型滨海湿地沉积物汞甲基化的影响[J]. 生态环境学报, 2022, 31(9): 1876-1884. |
[3] | 刘展航, 张树岩, 侯玉平, 朱书玉, 王立冬, 施欣悦, 李培广, 韩广轩, 谢宝华. 互花米草入侵对黄河口湿地土壤碳氮磷及其生态化学计量特征的影响[J]. 生态环境学报, 2022, 31(7): 1360-1369. |
[4] | 柯丽娜, 徐佳慧, 王楠, 侯俊轩, 韩旭, 阴曙升. 基于遥感生态指数的滨海湿地生态质量变化评价——以辽东湾北部区为例[J]. 生态环境学报, 2022, 31(7): 1417-1424. |
[5] | 夏开, 邓鹏飞, 马锐豪, 王斐, 温正宇, 徐小牛. 马尾松次生林转换为湿地松和杉木林对土壤细菌群落结构和多样性的影响[J]. 生态环境学报, 2022, 31(3): 460-469. |
[6] | 闫振宁, 梅宝玲, 张桂萍, 韩广轩, 谢宝华, 张树岩, 周英锋, 刘展航. 高程对盐沼湿地互花米草生长与扩散的影响[J]. 生态环境学报, 2021, 30(6): 1183-1191. |
[7] | 蔡杨, 李伟, 左雪燕, 崔丽娟, 雷茵茹, 赵欣胜, 翟夏杰, 李晶, 潘旭. 盐城滨海湿地土壤多环芳烃分布特征及影响因素[J]. 生态环境学报, 2021, 30(6): 1249-1259. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||