生态环境学报 ›› 2026, Vol. 35 ›› Issue (1): 54-61.DOI: 10.16258/j.cnki.1674-5906.2026.01.005
唐中奥1(
), 淳祯杰1, 段兴武1,2, 张瑞环1, 荣丽1,2,*(
), 刘文旭1
收稿日期:2025-02-25
修回日期:2025-09-20
接受日期:2025-10-15
出版日期:2026-01-18
发布日期:2026-01-05
通讯作者:
* E-mail: 作者简介:唐中奥(2001年生),男,硕士研究生,研究方向为干热河谷生态修复。E-mail: tangzhongao@stu.ynu.edu.cn
基金资助:
TANG Zhongao1(
), CHUN Zhenjie1, DUAN Xingwu1,2, ZHANG Ruihuan1, RONG Li1,2,*(
), LIU Wenxu1
Received:2025-02-25
Revised:2025-09-20
Accepted:2025-10-15
Online:2026-01-18
Published:2026-01-05
摘要:
微生物是影响碳循环的关键驱动者,土壤侵蚀是造成碳损失的驱动力。研究土壤侵蚀对土壤微生物和土壤有机碳(SOC)的影响机制,对理解侵蚀-微生物-碳循环的耦合机制具有重要意义。于2012年开始,在元江流域典型黄红壤区,采用“削土-配土”法开展模拟侵蚀实验。实验采用完全随机设计,设置5个土壤侵蚀厚度处理(5、10、20、30和40 cm)和对照(0 cm),每个处理设3次重复。结合PLFA和结构方程模型(SEM)分析发现,1)SOC和溶解性有机碳(DOC)随侵蚀加剧呈二次函数下降,并而呈非线性关系。总PLFAs、真菌、细菌、G+、G−、放线菌和AMF含量随侵蚀增加显著降低(p<0.05),真菌/细菌与G+/G−比值显著上升(p<0.05)。2)多响应置换过程分析(MRPP)证实了不同侵蚀程度的土壤,其微生物群落差异显著(δ=0.189,p=0.001),表明侵蚀厚度直接调控微生物组成。3)SEM揭示侵蚀直接解释89.0%的SOC损失,而DOC下降由侵蚀直接作用(解释率69.1%)和微生物介导(解释率53.6%)共同驱动,其中细菌与G−减少是关键间接路径。这表明SOC损失主因是土壤侵蚀厚度改变引起的土壤质量损失,但DOC的损失主要是由于土壤侵蚀引发的微生物PLFAs含量降低介导的。该研究为西南地区水土流失治理和碳库管理提供了理论依据。
中图分类号:
唐中奥, 淳祯杰, 段兴武, 张瑞环, 荣丽, 刘文旭. 模拟侵蚀对元江流域黄红壤土壤微生物和土壤有机碳的影响[J]. 生态环境学报, 2026, 35(1): 54-61.
TANG Zhongao, CHUN Zhenjie, DUAN Xingwu, ZHANG Ruihuan, RONG Li, LIU Wenxu. Simulated Effects of Erosion on Soil Microorganisms and Soil Organic Carbon[J]. Ecology and Environmental Sciences, 2026, 35(1): 54-61.
| 级别 | 侵蚀厚度/cm |
|---|---|
| 无明显侵蚀 | 0 |
| 轻度侵蚀 | 5,10 |
| 中度侵蚀 | 20 |
| 强烈侵蚀 | 30 |
| 剧烈侵蚀 | 40 |
表1 土壤侵蚀程度分级
Table 1 Classification of soil erosion degree
| 级别 | 侵蚀厚度/cm |
|---|---|
| 无明显侵蚀 | 0 |
| 轻度侵蚀 | 5,10 |
| 中度侵蚀 | 20 |
| 强烈侵蚀 | 30 |
| 剧烈侵蚀 | 40 |
| 微生物类型 | 磷脂脂肪酸标记物 |
|---|---|
| 革兰氏阳性菌(G+) | i14:0,i15:0,a15:0,i16:0,i17:0,a17:0 |
| 革兰氏阴性菌(G−) | 16:1ω7c,18:1ω7c,cy17:0,cy19:0 |
| 放线菌 | 10Me16:0,10Me17:0,10Me18:0 |
| 真菌 | 18:2ω6c,18:1ω9c |
| 细菌 | i14:0,15:0,a15:0,i15:0,i16:0,16:1ω7c,a17:0,i17:0,17:0,cy17:0,18:1ω7c,cy19:0 |
| 丛枝菌根真菌(AMF) | 16:1ω5c |
表2 PLFAs生物标记物及其对应的微生物类型
Table 2 PLFAs biomarkers and their corresponding microbial types
| 微生物类型 | 磷脂脂肪酸标记物 |
|---|---|
| 革兰氏阳性菌(G+) | i14:0,i15:0,a15:0,i16:0,i17:0,a17:0 |
| 革兰氏阴性菌(G−) | 16:1ω7c,18:1ω7c,cy17:0,cy19:0 |
| 放线菌 | 10Me16:0,10Me17:0,10Me18:0 |
| 真菌 | 18:2ω6c,18:1ω9c |
| 细菌 | i14:0,15:0,a15:0,i15:0,i16:0,16:1ω7c,a17:0,i17:0,17:0,cy17:0,18:1ω7c,cy19:0 |
| 丛枝菌根真菌(AMF) | 16:1ω5c |
图1 不同侵蚀厚度与SOC和DOC质量分数的关系 a、b、c、d表示不同侵蚀程度在0.05水平上差异显著,SOC、DOC质量分数用(平均值±SE)表示
Figure 1 The relationship between different erosion depths and the mass fractions of SOC and DOC
图2 土壤侵蚀程度与土壤微生物群落PLFAs质量摩尔浓度的关系 A、B、C、D表示不同侵蚀程度在0.05水平上差异显著
Figure 2 Relationship between soil erosion intensity and the mass molar concentration of phospholipid fatty acids (PLFAs) in the soil microbial community
图4 土壤侵蚀、微生物对土壤有机碳直接和间接影响的结构方程分析 单向箭头表示因果关系的假设方向。黑色实心箭头表示正相关关系,黑色虚线箭头表示负相关关系。箭头的宽度与这个关系的强度成正比。图a中微生物特性包括,细菌和革兰氏阴性菌。显著性水平用* p<0.05、** p<0.01、*** p<0.001表示
Figure 4 Structural equation models analysis of direct and indirect effects of soil erosion and microorganisms on soil carbon
| [1] |
BERHE A A, BARNES T R, SIX J, et al., 2018. Role of Soil Erosion in Biogeochemical Cycling of Essential Elements: Carbon, Nitrogen, and Phosphorus[J]. Annual Review of Earth and Planetary Sciences, 46(1): 521-548.
DOI URL |
| [2] |
BERHE A A, HARTE J, HARDEN W J, et al., 2007. The Significance of the Erosion-induced Terrestrial Carbon Sink[J]. BioScience, 57(4): 337-346.
DOI URL |
| [3] |
CHEN H, LI D J, MAO Q G, et al., 2019. Resource limitation of soil microbes in karst ecosystems[J]. Science of the Total Environment, 650(Part 1): 241-248.
DOI URL |
| [4] |
CUI Y X, FANG L C, GUO X B, et al., 2018. Responses of soil microbial communities to nutrient limitation in the desert-grassland ecological transition zone[J]. Science of the Total Environment, 642: 45-55.
DOI URL |
| [5] |
DUAN X W, BAI Z W, RONG L, et al., 2020. Investigation method for regional soil erosion based on the Chinese Soil Loss Equation and high-resolution spatial data: Case study on the mountainous Yunnan Province, China[J]. Catena, 184: 104237.
DOI URL |
| [6] |
DUNGAIT J A, GHEE C, ROWAN J S, et al., 2013. Microbial responses to the erosional redistribution of soil organic carbon in arable fields[J]. Soil Biology and Biochemistry, 60: 195-201.
DOI URL |
| [7] | CHAPIN F S, MATSON P A, VITOUSEK P M, 2011. Principles of Terrestrial Ecosystem Ecology[M]. New York: Springer. |
| [8] |
FANIN N, KARDOL P, FARRELL M, et al., 2019. The ratio of Gram-positive to Gram-negative bacterial PLFA markers as an indicator of carbon availability in organic soils[J]. Soil Biology and Biochemistry, 128: 111-114.
DOI URL |
| [9] |
FONTAINE S, HENAULT C, AAMOR A, et al., 2010. Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect[J]. Soil Biology and Biochemistry, 43(1): 86-96.
DOI URL |
| [10] |
GIRMAY G, SINGH B, NYSSEN J, et al., 2009. Runoff and sediment-associated nutrient losses under different land uses in Tigray, Northern Ethiopia[J]. Journal of Hydrology, 376(1-2): 70-80.
DOI URL |
| [11] | HILTON R G, WEST A J, 2020. Mountains, erosion and the carbon cycle[J]. Nature Reviews Earth & Environment, 1(6): 284-299. |
| [12] |
HOU S, XIN M X, WANG L, et al., 2014. The effects of erosion on the microbial populations and enzyme activity in black soil of northeastern China[J]. Acta Ecologica Sinica, 34(6): 295-301.
DOI URL |
| [13] |
HU Y J, XIANG D, VERESOGLOU S D, et al., 2014. Soil organic carbon and soil structure are driving microbial abundance and community composition across the arid and semi-arid grasslands in northern China[J]. Soil Biology and Biochemistry, 77: 51-57.
DOI URL |
| [14] |
JONES D L, WILLETT V B, et al., 2006. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil[J]. Soil Biology and Biochemistry, 38(5): 991-999.
DOI URL |
| [15] |
LAL R, 2004. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 304(5677): 1623-1627.
DOI PMID |
| [16] | LAL R, 2019. Accelerated Soil erosion as a source of atmospheric CO2[J]. Soil & Tillage Research, 188: 35-40. |
| [17] |
LAL R, PIMENTEL D, 2008. Soil erosion: A carbon sink or source?[J]. Science, 319(5866): 1040-1042.
DOI PMID |
| [18] |
LI W, WANG J L, ZHANG X J, et al., 2018. Effect of degradation and rebuilding of artificial grasslands on soil respiration and carbon and nitrogen pools on an alpine meadow of the Qinghai-Tibetan Plateau[J]. Ecological Engineering, 111: 134-142.
DOI URL |
| [19] | LI Z W, LIU C, DONG Y T, et al., 2017. Response of soil organic carbon and nitrogen stocks to soil erosion and land use types in the Loess hilly-gully region of China[J]. Soil & Tillage Research, 166: 1-9. |
| [20] |
LI Z W, XIAO H B, TANG Z H, et al., 2015. Microbial responses to erosion-induced soil physico-chemical property changes in the hilly red soil region of southern China[J]. European Journal of Soil Biology, 71: 37-44.
DOI URL |
| [21] |
LIU C, LI Z W, DONG Y T, et al., 2017. Do land use change and check-dam construction affect a real estimate of soil carbon and nitrogen stocks on the Loess Plateau of China?[J]. Ecological Engineering, 101: 220-226.
DOI URL |
| [22] | MA W M, LI Z W, DING K Y, et al., 2016. Soil erosion, organic carbon and nitrogen dynamics in planted forests: A case study in a hilly catchment of Hunan Province, China[J]. Soil & Tillage Research, 155: 69-77. |
| [23] |
OUYANG S N, TIAN Y Q, LIU Q, 2016. Nitrogen competition between three dominant plant species and microbes in a temperate grassland[J]. Plant and Soil, 408(1-2): 121-132.
DOI URL |
| [24] |
RUIZ-COLMENERO M, BIENES R, ELDRIDGE D, et al., 2013. Vegetation cover reduces erosion and enhances soil organic carbon in a vineyard in the central Spain[J]. Catena, 104: 153-160.
DOI URL |
| [25] |
SCHIETTECATTE W, GABRIELS D, CORNELIS W M, et al., 2008. Enrichment of organic carbon in sediment transport by interrill and rill erosion processes[J]. Soil Science Society of America Journal, 72(1): 50-55.
DOI URL |
| [26] |
SCHLESINGER W H, ANDREWS J A, 2000. Soil respiration and the global carbon cycle[J]. Biogeochemistry, 48(1): 7-20.
DOI |
| [27] |
SMITH A P, MARÍN-SPIOTTA E, GRAAFF M A D, et al., 2014. Microbial community structure varies across soil organic matter aggregate pools during tropical land cover change[J]. Soil Biology and Biochemistry, 77: 292-303.
DOI URL |
| [28] |
STALLARD R F, 1998. Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial[J]. Global Biogeochemical Cycles, 12(2): 231-257.
DOI URL |
| [29] |
TAN Z L, LEUNG L R, LI H Y, et al., 2020. A substantial role of soil erosion in the land carbon sink and its future changes[J]. Global Change Biology, 26(4): 2642-2655.
DOI URL |
| [30] |
VAN OOST K, QUINE T A, GOVERS G, et al., 2007. The impact of agricultural soil erosion on the global carbon cycle[J]. Science, 318(5850): 626-629.
PMID |
| [31] |
WANG Z, VAN OOST K, LANG A, et al., 2014. The fate of buried organic carbon in colluvial soils: A long-term perspective[J]. Biogeosciences, 11(3): 873-883.
DOI URL |
| [32] |
WEI S C, ZHANG X P, MCLAUGHLIN N B, et al., 2016. Effect of breakdown and dispersion of soil aggregates by erosion on soil CO2 emission[J]. Geoderma, 264(Part A): 238-243.
DOI URL |
| [33] |
XIAO H B, LI Z W, CHANG X F, et al., 2017. Soil erosion-related dynamics of soil bacterial communities and microbial respiration[J]. Applied Soil Ecology, 119: 205-213.
DOI URL |
| [34] |
XIAO H B, LI Z W, CHANG X F, et al., 2018. Microbial CO2 assimilation is not limited by the decrease in autotrophic bacterial abundance and diversity in eroded watershed[J]. Biology and Fertility of Soils, 54(5): 595-605.
DOI |
| [35] |
XIAO H B, SHI Z H, CHEN J, et al., 2021. The regulatory effects of biotic and abiotic factors on soil respiration under different land-use types[J]. Ecological Indicators, 127: 107787.
DOI URL |
| [36] |
YAO X, YU K Y, WANG G Y, et al., 2019. Effects of soil erosion and reforestation on soil respiration, organic carbon and nitrogen stocks in an eroded area of Southern China[J]. Science of The Total Environment, 683: 98-108.
DOI URL |
| [37] |
ZABALOY M C, GARLAND J L, ALLEGRINI M, et al., 2016. Soil microbial community-level physiological profiling as related to carbon and nitrogen availability under different land uses[J]. Pedosphere, 26(2): 216-225.
DOI URL |
| [38] |
ZHANG J H, WANG Y, LI F C, 2015. Soil organic carbon and nitrogen losses due to soil erosion and cropping in a sloping terrace landscape[J]. Soil Research, 53(1): 87-96.
DOI URL |
| [39] |
ZHANG Y J, GUO S L, LIU Q F, et al., 2015. Responses of soil respiration to land use conversions in degraded ecosystem of the semi-arid Loess Plateau[J]. Ecological Engineering, 74: 196-205.
DOI URL |
| [40] | 崔利论, 袁文平, 张海成, 2016. 土壤侵蚀对陆地生态系统碳源汇的影响[J]. 北京师范大学学报(自然科学版), 52(6): 816-822. |
| CUI L L, YUAN W P, ZHANG H C, 2016. Soil erosion effect on terrestrial ecosystem carbon source and sink[J]. Journal of Beijing Normal University (Natural Science), 52(6): 816-822. | |
| [41] | 丁咸庆, 柏菁, 项文化, 等, 2020. 不同浸提剂处理森林土壤溶解性有机碳含量比较[J]. 土壤, 52(3): 518-524. |
| DING X Q, BAI J, XIANG W H, et al., 2020. Comparison of dissolved organic carbon contents in forest soils extracted by different agents[J]. Soil, 52(3): 518-524. | |
| [42] |
房蕊, 于镇华, 李彦生, 等, 2021. 大气CO2浓度和温度升高对农田土壤碳库及微生物群落结构的影响[J]. 中国农业科学, 54(17): 3666-3679.
DOI |
|
FANG R, YU Z H, LI Y S, et al., 2021. Effects of elevated CO2 concentration and warming on soil carbon pools and microbial community composition in farming soil[J]. Scientia Agricultura Sinica, 54(17): 3666-3679.
DOI |
|
| [43] | 冯棋, 汪亚峰, 杨磊, 等, 2018. 土壤侵蚀对陆地碳源汇的作用机制研究进展[J]. 土壤通报, 49(6): 1505-1512. |
| FENG Q, WANG Y F, YANG L, et al., 2018. Research progress on mechanisms of soil erosion on terrestrial carbon source and sink[J]. Chinese Journal of Soil Science, 49(6): 1505-1512. | |
| [44] | 李彬彬, 武兰芳, 2019. 秸秆还田条件下剖面土壤溶解性有机碳含量及其组分结构的变化[J]. 农业环境科学学报, 38(7): 1567-1577. |
| LI B B, WU L F, 2019. Concentration and components of dissolved organic carbon in soil profiles after crop residues were incorporated into the topsoil[J]. Journal of Agro-Environment Science, 38(7): 1564-1577. | |
| [45] | 李俊, 吴福忠, 杨万勤, 等, 2016. 高山草甸冬季凋落物分解过程中土壤动物对微生物群落结构的影响[J]. 应用与环境生物学报, 22(1): 27-34. |
|
LI J, WU F Z, YANG W Q, et al., 2016. Effects of soil fauna on microbial community structure in foliar litter during winter decomposition in an alpine meadow[J]. Chinese Journal of Applied and Environmental Biology, 22(1): 27-34.
DOI URL |
|
| [46] | 刘慧, 魏永霞, 2014. 黑土区土壤侵蚀厚度对土地生产力的影响及其评价[J]. 农业工程学报, 30(20): 288-296. |
| LIU H, WEI Y X, 2014. Influence of soil erosion thickness on soil productivity of black soil and its evaluation[J]. Transactions of the Chinese Society of Agricultural Engineering, 30(20): 288-296. | |
| [47] | 马文明, 李忠武, 丁克毅, 等, 2020. 水力侵蚀作用下土壤有机碳库稳定性机制研究进展[J]. 中国水土保持科学, 18(1): 125-130. |
| MA W M, LI Z W, DING K Y, et al., 2020. Advances in the study of the stability of soil organic carbon storage affected by water erosion[J]. Science of Soil and Water Conservation, 18(1): 125-130. | |
| [48] | 裴雪霞, 党建友, 张定一, 等, 2014. 不同耕作方式对石灰性褐土磷脂脂肪酸及酶活性的影响[J]. 应用生态学报, 25(8): 2275-2280. |
| PEI X X, DANG J Y, ZHANG D Y, et al., 2014. Effects of different tillage methods on phospholipid fatty acids and enzyme activities in calcareous cinnamon soil[J]. Chinese Journal of Applied Ecology, 25(8): 2275-2280. | |
| [49] | 丘清燕, 梁国华, 黄德卫, 等, 2013. 森林土壤可溶性有机碳研究进展[J]. 西南林业大学学报: 自然科学, 33(1): 86-96. |
| QIU Q Y, LIANG G H, HUANG D W, et al., 2013. Advances in studies on soluble organic carbon in forest soils[J]. Journal of Southwest Forestry University (Natural Sciences), 33(1): 86-96. | |
| [50] | 佟亚宁, 王彬, 王文刚, 等, 2024. 东北典型黑土区土壤侵蚀对有机碳时空变化特征的影响[J]. 水土保持学报, 38(5): 59-70. |
| DONG Y N, WANG B, WANG W G, et al., 2024. Impact of soil erosion on the temporal and spatial dynamics of organic carbon in the typical black soil region of northeast China[J]. Journal of Soil and Water Conservation, 38(5): 59-70. | |
| [51] | 王莹, 阮宏华, 黄亮亮, 等, 2010. 围湖造田不同土地利用方式土壤水溶性有机碳的变化[J]. 南京林业大学学报, 34(5): 109-114. |
| WANG Y, RUAN H H, HUANG L L, et al., 2010. Soil water soluble organic carbon in reclaimed land from lake under different land uses[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 34(5): 109-114. | |
| [52] | 王志强, 刘宝元, 王旭艳, 等, 2009. 东北黑土区土壤侵蚀对土地生产力影响试验研究[J]. 中国科学: 地球科学, 39(10): 1397-1412. |
| WANG Z Q, LIU B Y, WANG X Y, et al., 2009. Erosion effect on the productivity of black soil in northeast China[J]. Science China Ser D-Earth Sciences, 39(10): 1397-1412. | |
| [53] | 习盼, 董倩, 张亚楠, 等, 2020. 盐城滩涂湿地典型植物群落土壤活性有机碳组分分布特征[J]. 生态学杂志, 39(11): 3623-3632. |
|
XI P, DONG Q, ZHANG Y N, et al., 2020. Distribution characteristics of active components in soil organic carbon across typical plant communities in Yancheng coastal wetlands[J]. Chinese Journal of Ecology, 39(11): 3623-3632.
DOI |
|
| [54] | 颜慧, 钟文辉, 李忠佩, 等, 2008. 长期施肥对红壤水稻土磷脂脂肪酸特性和酶活性的影响[J]. 应用生态学报, 19(1): 71-75. |
| YANG H, ZHONG W H, LI P Z, et al., 2008. Effects of long-term fertilization on phospholipid fatty acids and enzyme activities in paddy red soil[J]. Chinese Journal of Applied Ecology, 19(1): 71-75. | |
| [55] | 张孝存, 郑粉莉, 安娟, 等, 2013. 典型黑土区坡耕地土壤侵蚀对土壤有机质和氮的影响[J]. 干旱地区农业研究, 31(4): 182-186. |
| ZHANG X C, ZHENG F L, AN J, et al., 2013. Effects of soil erosion on soil organic matter and nitrogen in sloping farm land in typical back soil region[J]. Agricultural Research in the Arid Areas, 31(4): 182-186. | |
| [56] | 中华人民共和国水利部, 2007. 土壤侵蚀分类分级标准: SL 190—2007 [S]. 修订版. 北京: 奔流电子音像出版(北京)有限公司: 10-11. |
| Ministry of Water Resources of the People’s Republic of China, 2007. Standards for classification and gradation of soil erosion[S]. Revised edition. Beijing: Benliu Electronic & Audiovisual Publishing (Beijing) Co., Ltd.: 10-11. | |
| [57] | 朱华, 谭运洪, 杨永平, 2024. 中国西南干热河谷萨王纳植被综述[J]. 植物科学学报, 42(5): 682-696. |
| ZHU H, TAN Y H, YANG Y P, et al., 2024. Review on savanna vegetation in the dry hot river valleys of southwestern China[J]. Plant Science Journal, 42(5): 682-696. | |
| [58] | 朱世硕, 夏彬, 郝旺林, 等, 2020. 黄土区侵蚀坡面土壤微生物群落功能多样性研究[J]. 中国环境科学, 40(9): 4099-4105. |
| ZHU S S, XIA B, HAO W L, et al., 2020. Functional diversity of soil microbial community on eroded slope in the Loess Plateau Region[J]. China Environment Science, 40(9): 4099-4105. |
| [1] | 刘卿, 龚雨顺, 王伟, 方贤滔, 吴金水, 沈健林. 湖南典型茶园土壤有机碳及其组分时空特征[J]. 生态环境学报, 2025, 34(9): 1386-1397. |
| [2] | 申佳龙, 吴栎宏, 李林霜, 周远芳, 杨孝民. 典型喀斯特山地小流域土地利用类型对土壤有机碳组分及其固碳效应的影响[J]. 生态环境学报, 2025, 34(3): 358-367. |
| [3] | 李建付, 黄志霖, 和成忠, 姜昕, 宋琳, 刘佳鑫, 陈利顶. 滇东喀斯特断陷盆地土壤有机碳空间分布特征及其关键影响因子[J]. 生态环境学报, 2024, 33(9): 1339-1352. |
| [4] | 石含之, 熊振乾, 曹怡然, 吴志超, 文典, 李富荣, 李冬琴, 王旭. 外源秸秆添加对红壤及黑土有机碳固定的影响[J]. 生态环境学报, 2024, 33(9): 1372-1383. |
| [5] | 罗庆, 何清, 吴慧秋, 寇力月, 方旭, 张鑫雨, 李缘, 柴育廷, 张瑞生, 代文举. 辽河口湿地土壤有机碳组分特征及其影响因素[J]. 生态环境学报, 2024, 33(3): 333-340. |
| [6] | 林丹丹, 毕华兴, 赵丹阳, 管凝, 韩金丹, 郭艳杰. 晋西黄土区不同密度刺槐林土壤有机碳组分及碳库特征[J]. 生态环境学报, 2024, 33(3): 379-388. |
| [7] | 常博然, 陈茹岚, 王彪, 蓝天, 邓琳, 薛会英. 藏东南折拉山不同林分类型土壤有机碳及其组分分布特征[J]. 生态环境学报, 2024, 33(10): 1495-1505. |
| [8] | 梁鑫, 韩亚峰, 郑柯, 王旭刚, 陈志怀, 杜鹃. 磁铁矿对稻田土壤碳矿化的影响[J]. 生态环境学报, 2023, 32(9): 1615-1622. |
| [9] | 倪广艳. 外来植物入侵对生态系统碳循环影响的研究概述[J]. 生态环境学报, 2023, 32(7): 1325-1332. |
| [10] | 张林, 齐实, 周飘, 伍冰晨, 张岱, 张岩. 北京山区针阔混交林地土壤有机碳含量的影响因素研究[J]. 生态环境学报, 2023, 32(3): 450-458. |
| [11] | 秦佳琪, 肖指柔, 明安刚, 朱豪, 滕金倩, 梁泽丽, 陶怡, 覃林. 针阔人工混交林及其纯林对土壤微生物碳循环功能基因丰度的影响[J]. 生态环境学报, 2023, 32(10): 1719-1731. |
| [12] | 李威闻, 黄金权, 齐瑜洁, 刘小岚, 刘纪根, 毛治超, 高绣纺. 土壤侵蚀条件下土壤微生物生物量碳含量变化及其影响因素的Meta分析[J]. 生态环境学报, 2023, 32(1): 47-55. |
| [13] | 肖国举, 李秀静, 郭占强, 胡延斌, 王静. 贺兰山东麓土壤有机碳对玉米生长发育及水分利用的影响[J]. 生态环境学报, 2022, 31(9): 1754-1764. |
| [14] | 马辉英, 李昕竹, 马鑫钰, 贡璐. 新疆天山北麓中段不同植被类型下土壤有机碳组分特征及其影响因素[J]. 生态环境学报, 2022, 31(6): 1124-1131. |
| [15] | 龚玲玄, 王丽丽, 赵建宁, 刘红梅, 杨殿林, 张贵龙. 不同覆盖作物模式对茶园土壤理化性质及有机碳矿化的影响[J]. 生态环境学报, 2022, 31(6): 1141-1150. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||