生态环境学报 ›› 2025, Vol. 34 ›› Issue (11): 1760-1769.DOI: 10.16258/j.cnki.1674-5906.2025.11.009
陈林1,2,3(
), 马建军4, 李虹4, 陈轲林1,2,3, 王金保4, 王君梅4, 马俊花4, 岳翔4, 梁翔宇4, 马成4, 杨玲1,2,3, 马琨1,2,3,*(
)
收稿日期:2025-04-09
出版日期:2025-11-18
发布日期:2025-11-05
通讯作者:
E-mail: 作者简介:陈林(1983年生),男,副研究员,博士,博士研究生导师,主要研究方向为土壤生态系统监测与评价。E-mail: chenlin198388@163.com
基金资助:
CHEN Lin1,2,3(
), MA Jianjun4, LI Hong4, CHEN Kelin1,2,3, WANG Jinbao4, WANG Junmei4, MA Junhua4, YUE Xiang4, LIANG Xiangyu4, MA Cheng4, YANG Ling1,2,3, MA Kun1,2,3,*(
)
Received:2025-04-09
Online:2025-11-18
Published:2025-11-05
摘要:
探究农田土壤-农产品Hg含量特征及其健康风险,制定更符合实际的土壤环境基准,可为区域农田保护及污染防治提供科学依据。通过协同采集859对土壤-农产品样品,测定宁夏农田Hg含量,评价其对人体健康的潜在风险,并推导土壤环境基准值。 结果表明,宁夏农田土壤Hg含量分布在2.00×10−3-4.01×10−1 mg·kg−1,平均值为3.40×10−2 mg·kg−1,玉米、小麦、水稻、马铃薯、水果、蔬菜和其他谷物地最大含量均有超过宁夏土壤背景值的点位,说明部分样点土壤Hg具有累积性。所有农产品类型土壤中Hg均有不同程度的污染,但对儿童和成人均无非致癌风险。农产品中Hg平均含量3.37×10−3 mg·kg−1,处于中等及以上变异程度,低于国家限量值。从摄入农产品途径来看,Hg含量对人体的健康风险指数较低,无食源性危害风险。推导出玉米、小麦、马铃薯、水果、蔬菜和其他谷物地土壤Hg的HC5值分别为6.73×10−1、1.82、5.10×10−1、1.16、1.25、1.22 mg·kg−1,均小于国家标准(GB 15618—2018)中的风险筛选值(3.40 mg·kg−1),说明标准对以上农产品类型土壤Hg的阈值要求宽松;而水稻地土壤临界值为1.35 mg·kg−1,相比标准的风险筛选值(1.00 mg·kg−1)大,说明国家标准较为严格。今后应加强研究区Hg含量的监测,并根据不同农产品对土壤Hg环境基准值进行修订。
中图分类号:
陈林, 马建军, 李虹, 陈轲林, 王金保, 王君梅, 马俊花, 岳翔, 梁翔宇, 马成, 杨玲, 马琨. 宁夏农田汞健康风险评价及其土壤环境基准[J]. 生态环境学报, 2025, 34(11): 1760-1769.
CHEN Lin, MA Jianjun, LI Hong, CHEN Kelin, WANG Jinbao, WANG Junmei, MA Junhua, YUE Xiang, LIANG Xiangyu, MA Cheng, YANG Ling, MA Kun. Health Risk Assessment of Mercury in Farmland in Ningxia and Its Soil Environmental Benchmarks[J]. Ecology and Environmental Sciences, 2025, 34(11): 1760-1769.
| 参数 | 含义 | 单位 | 取值(成人) | 取值(儿童) | 来源 |
|---|---|---|---|---|---|
| I1 | 每日摄入速率 | mg·d−1 | 100 | 200 | 龙新宪等, |
| I2 | 土壤吸入速率 | mg·d−1 | 20.0 | 7.65 | 刘娟等, |
| EF | 土壤暴露频率 | d·a−1 | 350 | 350 | 刘靖宇等, |
| ED | 土壤暴露持续时间 | a | 25.0 | 6.00 | 刘靖宇等, |
| BW | 居民平均体质量 | kg | 56.8 | 15.9 | 龙新宪等, |
| CF | 单位转化因子 | mg·kg−1 | 10−6 | 10−6 | |
| SA | 皮肤暴露面积 | cm2 | 5.70×103 | 2.80×103 | 刘靖宇等, |
| AF | 皮肤黏附系数 | mg·cm−1·d−1 | 7.00×10−2 | 0.20 | 刘靖宇等, |
| ABS | 皮肤吸收因子 | 量纲为1 | 3.00×10−3 | 1.00×10−3 | 刘娟等, |
| PEF | 颗粒物释放因子 | mg3·kg−1 | 1.36×109 | 1.36×109 | 刘靖宇等, |
表1 土壤重金属健康风险评价暴露参数
Table 1 Exposure factors of health risk assessment for heavy metals in soil samples
| 参数 | 含义 | 单位 | 取值(成人) | 取值(儿童) | 来源 |
|---|---|---|---|---|---|
| I1 | 每日摄入速率 | mg·d−1 | 100 | 200 | 龙新宪等, |
| I2 | 土壤吸入速率 | mg·d−1 | 20.0 | 7.65 | 刘娟等, |
| EF | 土壤暴露频率 | d·a−1 | 350 | 350 | 刘靖宇等, |
| ED | 土壤暴露持续时间 | a | 25.0 | 6.00 | 刘靖宇等, |
| BW | 居民平均体质量 | kg | 56.8 | 15.9 | 龙新宪等, |
| CF | 单位转化因子 | mg·kg−1 | 10−6 | 10−6 | |
| SA | 皮肤暴露面积 | cm2 | 5.70×103 | 2.80×103 | 刘靖宇等, |
| AF | 皮肤黏附系数 | mg·cm−1·d−1 | 7.00×10−2 | 0.20 | 刘靖宇等, |
| ABS | 皮肤吸收因子 | 量纲为1 | 3.00×10−3 | 1.00×10−3 | 刘娟等, |
| PEF | 颗粒物释放因子 | mg3·kg−1 | 1.36×109 | 1.36×109 | 刘靖宇等, |
| 农产品 名称 | 样品数 | 最小值 | 最大值 | 平均值 | 标准差 | 变异 系数 | 宁夏土壤背景值(中国环境监测总站, | 中国表层土壤背景值(迟清华等, | 农用地土壤污染风险筛选值(中华人民共和国生态环境部等, | 农用地土壤污染风险管制值(中华人民共和国生态环境部等, |
|---|---|---|---|---|---|---|---|---|---|---|
| 玉米 | 505 | 2.00×10−3 | 4.01×10−1 | 3.37×10−2 | 2.79×10−2 | 82.8 | 2.10×10−2 | 6.50×10−2 | 3.40 | 6.00 |
| 小麦 | 78.0 | 3.00×10−3 | 1.30×10−1 | 4.09×10−2 | 2.51×10−2 | 61.4 | 2.10×10−2 | 6.50×10−2 | 3.40 | 6.00 |
| 水稻 | 52.0 | 2.00×10−3 | 3.49×10−1 | 4.11×10−2 | 4.71×10−2 | 114 | 2.10×10−2 | 6.50×10−2 | 1.00 | 6.00 |
| 马铃薯 | 20.0 | 2.00×10−3 | 1.30×10−1 | 2.82×10−2 | 2.99×10−2 | 106 | 2.10×10−2 | 6.50×10−2 | 3.40 | 6.00 |
| 水果 | 28.0 | 7.00×10−3 | 1.60×10−1 | 4.01×10−2 | 3.17×10−2 | 78.8 | 2.10×10−2 | 6.50×10−2 | 3.40 | 6.00 |
| 蔬菜 | 156 | 2.00×10−3 | 1.50×10−1 | 4.14×10−2 | 2.91×10−2 | 70.4 | 2.10×10−2 | 6.50×10−2 | 3.40 | 6.00 |
| 其他谷物 | 20.0 | 3.00×10−3 | 4.89×10−2 | 2.39×10−2 | 1.25×10−2 | 52.4 | 2.10×10−2 | 6.50×10−2 | 3.40 | 6.00 |
表2 研究区农田土壤含量统计
Table 2 Statistics of Hg content in farmland soil in study area
| 农产品 名称 | 样品数 | 最小值 | 最大值 | 平均值 | 标准差 | 变异 系数 | 宁夏土壤背景值(中国环境监测总站, | 中国表层土壤背景值(迟清华等, | 农用地土壤污染风险筛选值(中华人民共和国生态环境部等, | 农用地土壤污染风险管制值(中华人民共和国生态环境部等, |
|---|---|---|---|---|---|---|---|---|---|---|
| 玉米 | 505 | 2.00×10−3 | 4.01×10−1 | 3.37×10−2 | 2.79×10−2 | 82.8 | 2.10×10−2 | 6.50×10−2 | 3.40 | 6.00 |
| 小麦 | 78.0 | 3.00×10−3 | 1.30×10−1 | 4.09×10−2 | 2.51×10−2 | 61.4 | 2.10×10−2 | 6.50×10−2 | 3.40 | 6.00 |
| 水稻 | 52.0 | 2.00×10−3 | 3.49×10−1 | 4.11×10−2 | 4.71×10−2 | 114 | 2.10×10−2 | 6.50×10−2 | 1.00 | 6.00 |
| 马铃薯 | 20.0 | 2.00×10−3 | 1.30×10−1 | 2.82×10−2 | 2.99×10−2 | 106 | 2.10×10−2 | 6.50×10−2 | 3.40 | 6.00 |
| 水果 | 28.0 | 7.00×10−3 | 1.60×10−1 | 4.01×10−2 | 3.17×10−2 | 78.8 | 2.10×10−2 | 6.50×10−2 | 3.40 | 6.00 |
| 蔬菜 | 156 | 2.00×10−3 | 1.50×10−1 | 4.14×10−2 | 2.91×10−2 | 70.4 | 2.10×10−2 | 6.50×10−2 | 3.40 | 6.00 |
| 其他谷物 | 20.0 | 3.00×10−3 | 4.89×10−2 | 2.39×10−2 | 1.25×10−2 | 52.4 | 2.10×10−2 | 6.50×10−2 | 3.40 | 6.00 |
图1 研究区不同农产品产地土壤Hg地积累指数 蓝色虚线为无污染和轻度污染分界线;黑色虚线为轻度污染和中度污染分界线;黄色虚线为中度污染和重度污染分界线;红色虚线为重度污染和严重污染分界线
Figure 1 Igeo of soil Hg in different agricultural product producing areas of study area
| 农产品 名称 | 样品数 | 最小值 | 最大值 | 平均值 | 标准差 | 变异系数 | 污染物限量(中华人民共和国国家卫生健康委员会, |
|---|---|---|---|---|---|---|---|
| 玉米 | 505 | 1.00×10−3 | 4.60×10−2 | 3.56×10−3 | 4.24×10−3 | 119 | 2.00×10−2 |
| 小麦 | 78.0 | 1.00×10−3 | 1.10×10−2 | 2.56×10−3 | 2.37×10−3 | 92.4 | 2.00×10−2 |
| 水稻 | 52.0 | 1.00×10−3 | 6.89×10−3 | 3.24×10−3 | 1.27×10−3 | 39.1 | 2.00×10−2 |
| 马铃薯 | 20.0 | 1.00×10−3 | 1.00×10−2 | 3.28×10−3 | 3.15×10−3 | 96.0 | 1.00×10−2 |
| 水果 | 28.0 | 1.00×10−3 | 1.10×10−2 | 3.68×10−3 | 3.55×10−3 | 96.7 | 1.00×10−2 |
| 蔬菜 | 156 | 1.00×10−3 | 2.10×10−2 | 3.34×10−3 | 3.38×10−3 | 101 | 1.00×10−2 |
| 其他谷物 | 20.0 | 1.00×10−3 | 4.12×10−3 | 2.01×10−3 | 1.08×10−3 | 53.9 | 2.00×10−2 |
表3 研究区不同农产品Hg含量统计
Table 3 Statistics of Hg content in different agricultural products in study area
| 农产品 名称 | 样品数 | 最小值 | 最大值 | 平均值 | 标准差 | 变异系数 | 污染物限量(中华人民共和国国家卫生健康委员会, |
|---|---|---|---|---|---|---|---|
| 玉米 | 505 | 1.00×10−3 | 4.60×10−2 | 3.56×10−3 | 4.24×10−3 | 119 | 2.00×10−2 |
| 小麦 | 78.0 | 1.00×10−3 | 1.10×10−2 | 2.56×10−3 | 2.37×10−3 | 92.4 | 2.00×10−2 |
| 水稻 | 52.0 | 1.00×10−3 | 6.89×10−3 | 3.24×10−3 | 1.27×10−3 | 39.1 | 2.00×10−2 |
| 马铃薯 | 20.0 | 1.00×10−3 | 1.00×10−2 | 3.28×10−3 | 3.15×10−3 | 96.0 | 1.00×10−2 |
| 水果 | 28.0 | 1.00×10−3 | 1.10×10−2 | 3.68×10−3 | 3.55×10−3 | 96.7 | 1.00×10−2 |
| 蔬菜 | 156 | 1.00×10−3 | 2.10×10−2 | 3.34×10−3 | 3.38×10−3 | 101 | 1.00×10−2 |
| 其他谷物 | 20.0 | 1.00×10−3 | 4.12×10−3 | 2.01×10−3 | 1.08×10−3 | 53.9 | 2.00×10−2 |
| 农产品 名称 | 拟合公式 | 临界值(HC5)/(mg·kg−1) | 警戒值(HC95)/ (mg·kg−1) | GB 15618—2018 风险筛选值(中华人民共和国生态环境部, | GB 15618—2018 风险管制值(中华人民共和国生态环境部, |
|---|---|---|---|---|---|
| 玉米 | y=1.15−1.20/[1+(x/14.2)1.00] | 6.73×10−1 | 41.9 | 3.40 | 6.00 |
| 小麦 | y=1.08−1.06/[1+(x/23.5)1.61] | 1.82 | 48.9 | 3.40 | 6.00 |
| 水稻 | y=1.00−1.00/[1+(x/10.4)2.33] | 1.35 | 20.6 | 1.00 | 6.00 |
| 马铃薯 | y=1.18−1.17/[1+(x/13.2)1.02] | 5.10×10−1 | 38.8 | 3.40 | 6.00 |
| 水果 | y=1.18−1.09/[1+(x/23.7)1.56] | 1.16 | 41.0 | 3.40 | 6.00 |
| 蔬菜 | y=1.01−0.98/[1+(x/16.7)1.96] | 1.25 | 43.6 | 3.40 | 6.00 |
| 其他谷物 | y=1.17−1.09/[1+(x/17.2)1.78] | 1.22 | 28.5 | 3.40 | 6.00 |
表4 基于log-logistic模型的拟合公式及土壤环境基准
Table 4 Fitting formula based on log-logistic model and soil environmental benchmark
| 农产品 名称 | 拟合公式 | 临界值(HC5)/(mg·kg−1) | 警戒值(HC95)/ (mg·kg−1) | GB 15618—2018 风险筛选值(中华人民共和国生态环境部, | GB 15618—2018 风险管制值(中华人民共和国生态环境部, |
|---|---|---|---|---|---|
| 玉米 | y=1.15−1.20/[1+(x/14.2)1.00] | 6.73×10−1 | 41.9 | 3.40 | 6.00 |
| 小麦 | y=1.08−1.06/[1+(x/23.5)1.61] | 1.82 | 48.9 | 3.40 | 6.00 |
| 水稻 | y=1.00−1.00/[1+(x/10.4)2.33] | 1.35 | 20.6 | 1.00 | 6.00 |
| 马铃薯 | y=1.18−1.17/[1+(x/13.2)1.02] | 5.10×10−1 | 38.8 | 3.40 | 6.00 |
| 水果 | y=1.18−1.09/[1+(x/23.7)1.56] | 1.16 | 41.0 | 3.40 | 6.00 |
| 蔬菜 | y=1.01−0.98/[1+(x/16.7)1.96] | 1.25 | 43.6 | 3.40 | 6.00 |
| 其他谷物 | y=1.17−1.09/[1+(x/17.2)1.78] | 1.22 | 28.5 | 3.40 | 6.00 |
| [1] |
HAKANSON L, 1980. An ecological risk index for aquatic pollution control.a sedimentological approach[J]. Water Research, 14(8): 975-1001.
DOI URL |
| [2] |
MAO C P, SONG Y X, CHEN L X, et al., 2019. Human health risks of heavy metals in paddy rice based on transfer characteristics of heavy metals from soil to rice[J]. Catena, 175: 339-348.
DOI URL |
| [3] |
SELIN N E, 2009. Global biogeochemical cycling of mercury: A review[J]. Annual Review of Environment and Resources, 34: 43-63.
DOI URL |
| [4] |
TONG S M, YANG L S, GONG H Q, et al., 2022. Bioaccumulation characteristics, transfer model of heavy metals in soil-crop system and health assessment in plateau region, China[J]. Ecotoxicology and Environmental Safety, 241: 113733.
DOI URL |
| [5] |
UBONYAEM T, BUREEKUL S, CHAROENPONG C, et al., 2023. Preindustrial levels and temporal enrichment trends of mercury in sediment cores from the Gulf of Thailand[J]. Environmental Geochemistry and Health, 45(7): 4243-4256.
DOI |
| [6] |
XIANG M T, LI Y, YANG J Y, et al., 2021. Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops[J]. Environmental Pollution, 278: 116911.
DOI URL |
| [7] |
ZHU Y C, WANG L J, ZHAO X Y, et al., 2020. Accumulation and potential sources of heavy metals in soils of the Hetao area, Inner Mongolia, China[J]. Pedosphere, 30(2): 244-252.
DOI URL |
| [8] | 车新颖, 刘明, 王飞宇, 等, 2025. 黄河水下三角洲表层沉积物汞(Hg)分布特征及其影响因素[J]. 中国环境科学, 45(5): 2806-2815. |
| CHE X Y, LIU M, WANG F Y, et al., 2025. Distribution Characteristics and influencing factors of mercury (Hg) in the surface sediment of Yellow River subaqueous delta[J]. China Environmental Science, 45(5): 2806-2815. | |
| [9] | 陈林, 李虹, 马建军, 等, 2024. 宁夏不同生态区土壤-作物系统重金属风险评估[J]. 环境科学, 45(12): 7209-7217. |
|
CHEN L, LI H, MA J J, et al., 2024. Health risk assessment of heavy metals in soil-crop system in different ecological regions of Ningxia[J]. Environmental Science, 45(12): 7209-7217.
DOI URL |
|
| [10] | 陈林, 马琨, 马建军, 等, 2023. 宁夏引黄灌区农田土壤重金属生态风险评价及来源解析[J]. 环境科学, 44(1): 356-366. |
|
CHEN L, MA K, MA J J, et al., 2023. Risk assessment and sources of heavy metals in farmland soils of Yellow River irrigation on area of Ningxia[J]. Environmental Science, 44(1): 356-366.
DOI URL |
|
| [11] | 陈林, 杨玲, 李虹, 等, 2025. 宁夏农田土壤和农产品镉含量特征、健康风险评价及其环境基准[J]. 环境科学, 46(4): 646-655. |
| CHEN L, YANG L, LI H, et al., 2025. Cadmium content characteristics, health risk assessment and soil environmental benchmarks in farmland soil and agricultural products in Ningxia[J]. Environmental Science, 46(4): 646-655. | |
| [12] | 迟清华, 鄢明才, 2007. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社. |
| CHI Q H, YAN M C, 2007. Applied geochemical element abundance data manual[M]. Beijing: Geology Press. | |
| [13] | 戴彬, 吕建树, 战金成, 等, 2015. 山东省典型工业城市土壤重金属来源、空间分布及潜在生态风险评价[J]. 环境科学, 36(2): 507-515. |
| DAI B, LÜ J S, ZHAN J C, et al., 2015. Assessment of sources, spatial distribution and ecological risk of heavy metals in soils in a typical industry-based city of Shandong Province, Eastern China[J]. Environmental Science, 36(2): 507-515. | |
| [14] |
丁昌峰, 周志高, 王玉荣, 等, 2024. 基于生态安全的我国土壤镉环境基准研究[J]. 地学前缘, 31(2): 130-136.
DOI |
|
DING C F, ZHOU Z G, WANG Y R, et al., 2024. Environmental criteria for cadmium in soils based on ecological safety considerations in China[J]. Earth Science Frontiers, 31(2): 130-136.
DOI |
|
| [15] | 葛峰, 徐坷坷, 刘爱萍, 等, 2021. 国外土壤环境基准研究进展及对中国的启示[J]. 土壤学报, 58(2): 331-343. |
| GE F, XU K K, LIU A P, et al., 2021. Progress of the research on soil environmental criteria in other countries and its enlightenment to China[J]. Acta Pedologica Sinica, 58(2): 331-343. | |
| [16] | 中华人民共和国国家卫生健康委员会, 国家市场监督管理总局, 2022. 食品安全国家标准食品中污染物限量: GB 2762—2022[S]. 北京: 中国标准出版社: 1-18. |
| The National Health Commission, State Administration for Market Regulation of the People’s Republic of China, 2022. National food safety standard Limits of contaminants in foods: GB 2762—2022[S]. Beijing: Standards Press of China: 1-18 | |
| [17] | 李谦, 王泽岚, 孙少忆, 等, 2025. 宁夏引黄灌区水稻种植区土壤重金属污染特征及风险评价[J]. 化学试剂, 47(3): 1-10. |
| LI Q, WANG Z L, SUN S Y, et al., 2025. Characteristics and risk assessment of heavy metal pollution in paddy soil in Ningxia Yellow River irrigation area[J]. Chemical Reagents, 47(3): 1-10. | |
| [18] | 刘海, 魏伟, 宋阳, 等, 2023. 皖江经济带耕地重金属健康风险评价及环境基准[J]. 环境科学, 44(6): 3531-3543. |
| LIU H, WEI W, SONG Y, et al., 2023. Health risk assessment and environmental benchmark of heavy metals in cultivated land in wanjiang economic zone[J]. Environmental Science, 44(6): 3531-3543. | |
| [19] | 刘靖宇, 李若怡, 梁永春, 等, 2024. 基于特征优选和机器学习的塔里木盆地东缘绿洲土壤镉元素含量预测及健康风险评价[J]. 环境科学, 45(8): 4802-4811. |
|
LIU J Y, LI R Y, LIANG Y C, et al., 2024. Soil cadmium prediction and health risk assessment of an oasis on the eastern edge of the tarim basin based on feature optimization and machine learning[J]. Environmental Science, 45(8): 4802-4811.
DOI URL |
|
| [20] | 刘娟, 李洋, 张敏, 等, 2021. 滇东农田土壤铅污染健康风险评价及基准研究[J]. 农业工程学报, 37(1): 241-250. |
| LIU J, LI Y, ZHANG M, et al., 2021. Health risk assessment and benchmark of lead pollution in agricultural soils in East Yunnan, China[J]. Transactions of the Chinese Society of Agricultural Engineering, 37(1): 241-250. | |
| [21] | 龙新宪, 刘文晶, 仇荣亮, 2024. 中国农田土壤重金属污染的人体健康风险评估: 研究进展与展望[J]. 土壤学报, 61(5): 1188-1200. |
| LONG X X, LIU W J, QIU R L, 2024. Research progress and prospects of human health risk assessment of heavy metal pollution in farmland soils of China[J]. Acta Pedologica Sinica, 61(5): 1188-1200. | |
| [22] | 吕少银, 曾从江, 2024. 汞污染土壤植物修复技术研究进展[J]. 广东化工, 51(8): 58-60. |
| LÜ S Y, ZENG C J, 2024. Research progress on phytoremediation technology of mercury contaminated soil[J]. Guangdong Chemical Industry, 51(8): 58-60. | |
| [23] | 马国庆, 赵金梅, 冯丽媛, 2021. 宁夏开发区土地集约利用空间相关性及障碍度分析研究[J]. 宁夏大学学报(自然科学版), 42(1): 103-108. |
| MA G Q, ZHAO J M, FENG L Y, 2021. Analysis on spatial correlation and obstacle of land intensive usein Ningxia development zone[J]. Journal of Ningxia University (Natural Science Edition), 42(1): 103-108. | |
| [24] | 马杰, 佘泽蕾, 王胜蓝, 等, 2023. 重庆市煤矸山周边农产品镉健康风险评价及土壤环境基准值推导[J]. 环境科学, 44(9): 5264-5274. |
| MA J, SHE Z L, WANG S L, et al., 2023. Heath risk assessment and environmental benchcmark of cadmium in farmland solis around the gangue heap of coal mine, Chong Qing[J]. Environmental Science, 44(9): 5264-5274. | |
| [25] | 穆德苗, 孙约兵, 2022. 西南地质高背景区蔬菜Pb的安全生产阈值与土地质量类别划分[J]. 环境科学, 43(2): 965-974. |
| MU D M, SUN Y B, 2022. Safety production threshold and land quality classification of vegetable Pb in high geological background area of Southwest China[J]. Environmental Science, 43(2): 965-974. | |
| [26] |
王萌, 俞磊, 秦璐瑶, 等, 2024. 土壤环境基准的科学问题与研究方法: 以Cd为例[J]. 地学前缘, 31(2): 147-156.
DOI |
| WANG M, YU L, QIN L Y, et al., 2024. Scientific issues and research methods of soil environmental standards: A case study on cadmium[J]. Earth ScienceFrontiers, 31(2): 147-156. | |
| [27] |
徐笠, 陆安祥, 田晓琴, 等, 2017. 典型设施蔬菜基地重金属的累积特征及风险评估[J]. 中国农业科学, 50(21): 4149-4158.
DOI |
|
XU L, LU A X, TIAN X Q, et al., 2017. Accumulation characteristics and risk assessment of heavy metals in typical greenhouse vegetable bases[J]. Scientia Agricultura Sinica, 50(21): 4149-4158.
DOI |
|
| [28] | 徐梦琪, 杨文弢, 杨利玉, 等, 2022. 黔西北山区耕地重金属健康风险评价及环境基准[J]. 环境科学, 43(7): 3799-3810. |
| XU M Q, YANG W T, YANG L Y, et al., 2022. Health risk assessment and environmental benchmark of heavy metals in cultivated land in mountainous area of northwest Guizhou Province[J]. Environmental Science, 43(7): 3799-3810. | |
| [29] | 薛中伟, 秦会艳, 2025. 黄河流域农田生态系统碳足迹时空演化、区域差异及收敛性研究[J]. 生态学报, 45(8): 3645-3658. |
| XUE Z W, QIN H Y, 2025. Spatio-temoral evolution, regional differences and covergence of carbon footprints of farmland ecosystems in the Yellow River Basin[J]. Acta Ecologica Sinica, 45(8): 3645-3658. | |
| [30] | 尹芳, 封凯, 尹翠景, 等, 2021. 青海典型工业区耕地土壤重金属评价及源解析[J]. 中国环境科学, 41(11): 5217-5226. |
| YIN F, FENG K, YIN C J, et al., 2021. Evaluation and source analysis of heavy metal in cultivated soil around typical industrial district of Qinghai province[J]. China Environmental Science, 41(11): 5217-5226. | |
| [31] | 余高, 陈芬, 张晓东, 等, 2023. 锰矿区周边农田土壤重金属污染特征、来源解析及风险评价[J]. 环境科学, 44(8): 4416-4428. |
|
YU G, CHEN F, ZHANG X D, et al., 2023. Pollution characteristics, source analysis, and risk assessment of heavy metals in the surrounding farmlands of manganese mining area[J]. Environmental Science, 44(8): 4416-4428.
DOI URL |
|
| [32] | 张瑞才, 2023. 重金属在不同土壤-作物系统中的迁移与积累[D]. 昆明: 昆明理工大学. |
| ZHANG R C, 2023. Migration and accumulation of heavy metals in different soil-crop systems[D]. Kunming: Kunming University of Science and Technology. | |
| [33] | 中国环境监测总站, 1990. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社. |
| China Environmental Monitoring Station, 1990. Background value of soil elements in China[M]. Beijing: China Environmental Science Press. | |
| [34] | 中国营养学会, 2022. 中国居民膳食指南[M]. 北京: 人民卫生出版社. |
| Chinese Nutrition Society, 2022. Dietary guidelines for Chinese residents[M]. Beijing: People’s Health Publishing House. | |
| [35] | 中华人民共和国生态环境部, 国家市场监督管理总局, 2018. 土壤环境质量农用地土壤污染风险管控标准(试行): GB 15618—2018[S]. 北京: 中国标准出版社. |
| Ministry of Environmental Protection of the People’s Republic of China, State Administration for Market Regulation, 2018. Soil environment quality risk control standard for soilcontamination of agriculture land: GB 15618—2018[S]. Beijing: China Environmental Science Press. |
| [1] | 刘卿, 龚雨顺, 王伟, 方贤滔, 吴金水, 沈健林. 湖南典型茶园土壤有机碳及其组分时空特征[J]. 生态环境学报, 2025, 34(9): 1386-1397. |
| [2] | 李冬林, 张姣佼, 杨磊, 王鹏, 何冬梅. 水系连通与碱蓬复播对滨海退化湿地植被恢复及土壤理化性质的影响[J]. 生态环境学报, 2025, 34(9): 1421-1431. |
| [3] | 彭浩, 孙宏图, 滕柯延, 张爱玲, 吴迪, 朱培. 关于在核设施退役中加强土壤污染监管与防治工作的思考[J]. 生态环境学报, 2025, 34(8): 1203-1211. |
| [4] | 吴桂玲, 吴晓晖, 欧为友, 周华坤, 马文文, 吉孝菲. 青海湖流域盐沼湿地典型植被群落土壤盐分离子分布研究[J]. 生态环境学报, 2025, 34(8): 1228-1239. |
| [5] | 林嘉茵, 侯玉婷, 曾海岑, 李伟志, 李冬琴, 叶挺进, 陈火君. 硅钙基材料的制备及其对镉污染土壤钝化效果研究[J]. 生态环境学报, 2025, 34(8): 1282-1292. |
| [6] | 李少婷, 张乐, 卢奕夫, 肖李翔, 郭灿, 张兆威. 湖北省部分地区土壤中放射性核素分布规律及健康风险分析[J]. 生态环境学报, 2025, 34(8): 1172-1181. |
| [7] | 郭家文, 刘凯, 刘高源, 高欣欣, 杨昆, 潘波. 外源不同形式蔗叶添加物对云南红壤及甘蔗生长的影响[J]. 生态环境学报, 2025, 34(7): 1100-1110. |
| [8] | 丁馨, 刘健, 魏俐宏, 解德威, 郑昭佩. 基于GSMSR模型的山东省植被NEP时空格局及影响因素[J]. 生态环境学报, 2025, 34(7): 1079-1089. |
| [9] | 欧阳群文, 郭小平, 郝嘉航, 郭宇. 基于种子库视角的北京市高速路边坡喷播植被演替特征研究[J]. 生态环境学报, 2025, 34(6): 941-949. |
| [10] | 孟畅, 红梅, 李斐. 高光谱敏感波段筛选与机器学习协同提升土壤重金属预测精度[J]. 生态环境学报, 2025, 34(6): 950-960. |
| [11] | 林泳怡, 周燕飞, 邓金环, 田纪辉, 蔡昆争. 生物炭与磷添加促进赤红壤的硅形态转化和大豆植株硅吸收转运[J]. 生态环境学报, 2025, 34(5): 710-719. |
| [12] | 刘鸿林, 赵方凯, 杨磊, 沈琳钧, 杨恺丰, 李敏, 陈利顶. 城市公园土壤重金属污染及影响因素研究——以宁波市为例[J]. 生态环境学报, 2025, 34(5): 773-783. |
| [13] | 崔雪丹, 段桂兰, 王向琴, 李志丰, 窦飞, 杜衍红, 袁雨珍, 刘传平, 李芳柏. 基于两地长期定位试验的铁改性木本泥炭修复中轻度镉砷污染稻田效果与土壤健康效应评价[J]. 生态环境学报, 2025, 34(4): 608-620. |
| [14] | 陈岩, 石成龙, 李璞君, 肖江, 陈光才. 含重金属林木生物质与骨粉共水热液相产物:解析及应用潜力初步评价[J]. 生态环境学报, 2025, 34(4): 642-652. |
| [15] | 杜明慧, 李伯欣, 余英德, 陶琳, 范世献, 余敏男, 于晓雯, 邹淑君, 黄德银. 保护性耕作对南方双季稻田土壤性质及产量的影响[J]. 生态环境学报, 2025, 34(4): 521-533. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||