生态环境学报 ›› 2025, Vol. 34 ›› Issue (8): 1172-1181.DOI: 10.16258/j.cnki.1674-5906.2025.08.002
李少婷1(), 张乐2, 卢奕夫1, 肖李翔1, 郭灿3, 张兆威3,4,*(
)
收稿日期:
2025-02-06
出版日期:
2025-08-18
发布日期:
2025-08-01
通讯作者:
*E-mail: 作者简介:
李少婷(1980年生),女,正高级工程师,硕士,研究方向为辐射环境监测。E-mail: 86750641@qq.com
基金资助:
LI Shaoting1(), ZHANG Le2, LU Yifu1, XIAO Lixiang1, GUO Can3, ZHANG Zhaowei3,4,*(
)
Received:
2025-02-06
Online:
2025-08-18
Published:
2025-08-01
摘要:
土壤是放射性核素向环境转移的主要辐射源之一。用GC6020高纯锗γ能谱仪对2017-2022年湖北省14个地区土壤中的γ放射性核素进行了调查,选取土壤中的5种核素(137Cs、238U、232Th、226Ra和40K)作为研究对象,分析核素的质量活度和分布规律,估算等效镭比活度、外照射指数、γ辐射剂量当量率、年有效剂量当量率和终生癌症风险。84份样品中40K、137Cs、226Ra、232Th和238U的质量活度平均值分别为567、1.04、30.3、47.1和39.6 Bq∙kg−1(以干物计)。对土壤中137Cs和40K质量活度的相关性进行了详细分析。经计算,等效镭比活度平均值为141 Bq∙kg−1,外照射指数平均值为0.38,γ辐射剂量当量率平均值为65.9 nGy∙h−1,年有效剂量当量率平均值为80.9 μSv∙a−1,终生癌症风险平均值为0.32×10−3。将土壤中放射性核素质量活度计算得出的γ辐射剂量当量率与2022年湖北省大气辐射自动监测站测量的数据进行比较,验证了研究土壤中放射性核素测量的可靠性。
中图分类号:
李少婷, 张乐, 卢奕夫, 肖李翔, 郭灿, 张兆威. 湖北省部分地区土壤中放射性核素分布规律及健康风险分析[J]. 生态环境学报, 2025, 34(8): 1172-1181.
LI Shaoting, ZHANG Le, LU Yifu, XIAO Lixiang, GUO Can, ZHANG Zhaowei. Distribution and Health Risk Analysis of Radioactive Nuclides in Soil in Some Areas of Hubei Province[J]. Ecology and Environmental Sciences, 2025, 34(8): 1172-1181.
核素 | 半衰期/ d | 质量活度/ (Bq∙g−1) | 核素 | 半衰期/ d | 质量活度/ (Bq∙g−1) |
---|---|---|---|---|---|
241Am | 1.580×105 | 1.084×101 | 85Sr | 6.485×10 | 1.095×101 |
109Cd | 4.614×102 | 1.509×102 | 137Cs | 1.099×104 | 4.054×100 |
57Co | 2.717×102 | 2.959×100 | 54Mn | 3.121×102 | 7.024×100 |
109Ce | 1.376×102 | 3.979 ×100 | 88Y | 1.066×102 | 1.190×101 |
51Cr | 2.770×10 | 1.396×102 | 65Zn | 2.439×102 | 1.313×101 |
113Sn | 1.151×102 | 7.119×100 | 60Co | 1.925×103 | 7.018×100 |
表1 效率刻度标准源参数
Table 1 The parameter of efficiency calibration standard source
核素 | 半衰期/ d | 质量活度/ (Bq∙g−1) | 核素 | 半衰期/ d | 质量活度/ (Bq∙g−1) |
---|---|---|---|---|---|
241Am | 1.580×105 | 1.084×101 | 85Sr | 6.485×10 | 1.095×101 |
109Cd | 4.614×102 | 1.509×102 | 137Cs | 1.099×104 | 4.054×100 |
57Co | 2.717×102 | 2.959×100 | 54Mn | 3.121×102 | 7.024×100 |
109Ce | 1.376×102 | 3.979 ×100 | 88Y | 1.066×102 | 1.190×101 |
51Cr | 2.770×10 | 1.396×102 | 65Zn | 2.439×102 | 1.313×101 |
113Sn | 1.151×102 | 7.119×100 | 60Co | 1.925×103 | 7.018×100 |
统计函数 | 40K | 137Cs | 226Ra | 232Th | 238U |
---|---|---|---|---|---|
平均数/(Bq∙kg−1) | 567 | 1.04 | 30.3 | 47.1 | 39.6 |
中位数/(Bq∙kg−1) | 584.50 | 0.63 | 29.00 | 47.00 | 39.50 |
标准偏差/(Bq∙kg−1) | 151.87 | 1.12 | 8.18 | 10.48 | 11.54 |
偏态系数 | −0.65 | 2.37 | 0.90 | −0.18 | 0.52 |
峰度 | 0.16 | 5.06 | 1.57 | 0.09 | 0.73 |
表2 放射性核素质量活度数据统计
Table 2 Descriptive statistics of data corresponding to the activity of radionuclides
统计函数 | 40K | 137Cs | 226Ra | 232Th | 238U |
---|---|---|---|---|---|
平均数/(Bq∙kg−1) | 567 | 1.04 | 30.3 | 47.1 | 39.6 |
中位数/(Bq∙kg−1) | 584.50 | 0.63 | 29.00 | 47.00 | 39.50 |
标准偏差/(Bq∙kg−1) | 151.87 | 1.12 | 8.18 | 10.48 | 11.54 |
偏态系数 | −0.65 | 2.37 | 0.90 | −0.18 | 0.52 |
峰度 | 0.16 | 5.06 | 1.57 | 0.09 | 0.73 |
地点 | 质量活度/(Bq∙kg−1) | 参考文献 | ||||
---|---|---|---|---|---|---|
238U | 232Th | 226Ra | 40K | 137Cs | ||
Quebec,加拿大 | 0.2-212(38) | Blagoeva et al., | ||||
Aog,保加利亚 | 85.7-2543 | Zhiyanski et al., | ||||
Punjab,巴基斯坦 | 42-53(47) | 34-43(39) | 532-621(569) | Faheem et al., | ||
Kelantan,马来西亚 | 49-251(145) | 491-2496(908) | Hamzah et al., | |||
Azad Kashmir,巴基斯坦 | 28-73(44) | 13-60(31) | 250-896(575) | 2-69(15) | Rafique et al., | |
Isparta,土耳其 | 3-66(15) | 4-69(16) | 44-452(211) | 0.3-19(3) | Kürkçüoğlu et al., | |
Kano,尼日利亚 | 50-122(72) | 41-102(65) | 253-1227(681) | Muhammad et al., | ||
West Bengal,印度 | 7-22(17) | 24-34(29) | 461-610(518) | Sharma et al., | ||
也门 | 33-211 | 28-81 | ND-1235 | Maglas et al., | ||
Phosphate area,突尼斯 | <0.1-43.5(13) | 5-56(27) | 103-529(264) | Machraoui et al., | ||
Rajasthan,印度 | 40-71(55) | 13-36(24) | 294-781(549) | Rani et al., | ||
土耳其 | 2-220(29) | 1-159(33) | 26-1603(449) | 1-357(13) | Turhan et al., | |
全球中位数 | 16-110(35) | 11-64(30) | 17-60(35) | 140-850(400) | UNSCEAR, | |
人口加权平均数 | 33 | 45 | 32 | 420 | UNSCEAR, | |
广东珠江流域 | 14-180(73) | 31-306(103) | 20-215(69) | 92-1910(535) | <0.4-5.6(0.7) | 马婷婷等, |
成都 | 21-31(29) | 49-56(52) | 34-39(36) | 521-594 | 刘合凡等, | |
内蒙古 | 14-43(26) | 16-58(36) | 13-38(25) | 485-929(692) | 王玮等, | |
湖北 | 11-71(39.6) | 15-67(47.1) | 13-55(30.3) | 202-876(567) | 0.3-6(1.04) |
表3 湖北与其他地区土壤中放射性核素质量活度
Table 3 Activity concentration of radionuclides in soil of Hubei, China and other areas
地点 | 质量活度/(Bq∙kg−1) | 参考文献 | ||||
---|---|---|---|---|---|---|
238U | 232Th | 226Ra | 40K | 137Cs | ||
Quebec,加拿大 | 0.2-212(38) | Blagoeva et al., | ||||
Aog,保加利亚 | 85.7-2543 | Zhiyanski et al., | ||||
Punjab,巴基斯坦 | 42-53(47) | 34-43(39) | 532-621(569) | Faheem et al., | ||
Kelantan,马来西亚 | 49-251(145) | 491-2496(908) | Hamzah et al., | |||
Azad Kashmir,巴基斯坦 | 28-73(44) | 13-60(31) | 250-896(575) | 2-69(15) | Rafique et al., | |
Isparta,土耳其 | 3-66(15) | 4-69(16) | 44-452(211) | 0.3-19(3) | Kürkçüoğlu et al., | |
Kano,尼日利亚 | 50-122(72) | 41-102(65) | 253-1227(681) | Muhammad et al., | ||
West Bengal,印度 | 7-22(17) | 24-34(29) | 461-610(518) | Sharma et al., | ||
也门 | 33-211 | 28-81 | ND-1235 | Maglas et al., | ||
Phosphate area,突尼斯 | <0.1-43.5(13) | 5-56(27) | 103-529(264) | Machraoui et al., | ||
Rajasthan,印度 | 40-71(55) | 13-36(24) | 294-781(549) | Rani et al., | ||
土耳其 | 2-220(29) | 1-159(33) | 26-1603(449) | 1-357(13) | Turhan et al., | |
全球中位数 | 16-110(35) | 11-64(30) | 17-60(35) | 140-850(400) | UNSCEAR, | |
人口加权平均数 | 33 | 45 | 32 | 420 | UNSCEAR, | |
广东珠江流域 | 14-180(73) | 31-306(103) | 20-215(69) | 92-1910(535) | <0.4-5.6(0.7) | 马婷婷等, |
成都 | 21-31(29) | 49-56(52) | 34-39(36) | 521-594 | 刘合凡等, | |
内蒙古 | 14-43(26) | 16-58(36) | 13-38(25) | 485-929(692) | 王玮等, | |
湖北 | 11-71(39.6) | 15-67(47.1) | 13-55(30.3) | 202-876(567) | 0.3-6(1.04) |
参数 | 40K | 137Cs | 226Ra | 232Th | 238U |
---|---|---|---|---|---|
40K | 1.000 | ||||
137Cs | −0.456 | 1.000 | |||
226Ra | 0.042 | 0.001 | 1.000 | ||
232Th | 0.023 | 0.025 | 0.490 | 1.000 | |
238U | 0.006 | 0.018 | 0.441 | 0.538 | 1.000 |
表4 土壤中放射性核素的相关性
Table 4 The correlation matrix among the variables
参数 | 40K | 137Cs | 226Ra | 232Th | 238U |
---|---|---|---|---|---|
40K | 1.000 | ||||
137Cs | −0.456 | 1.000 | |||
226Ra | 0.042 | 0.001 | 1.000 | ||
232Th | 0.023 | 0.025 | 0.490 | 1.000 | |
238U | 0.006 | 0.018 | 0.441 | 0.538 | 1.000 |
区域 | 剂量当量率/ (nGy∙h−1) | 年有效剂量当量率/ (μSv∙a−1) | 终生癌症风险/ 10−3 | 外照射 指数 |
---|---|---|---|---|
武汉 | 51.41 | 63.05 | 0.25 | 0.31 |
黄石 | 61.65 | 75.61 | 0.30 | 0.36 |
十堰 | 66.99 | 82.16 | 0.32 | 0.38 |
宜昌 | 58.76 | 72.06 | 0.28 | 0.34 |
襄阳 | 80.40 | 98.60 | 0.39 | 0.46 |
鄂州 | 72.36 | 88.74 | 0.35 | 0.42 |
荆门 | 71.71 | 87.95 | 0.34 | 0.42 |
孝感 | 67.65 | 82.97 | 0.32 | 0.39 |
荆州 | 63.74 | 78.17 | 0.30 | 0.36 |
黄冈 | 68.34 | 83.82 | 0.33 | 0.39 |
咸宁 | 69.26 | 84.93 | 0.33 | 0.41 |
随州 | 64.36 | 78.93 | 0.31 | 0.37 |
恩施 | 54.11 | 66.37 | 0.26 | 0.31 |
神农架 | 74.65 | 91.55 | 0.36 | 0.43 |
平均值 | 65.9 | 80.9 | 0.32 | 0.38 |
表5 湖北各地区剂量当量率、年有效剂量当量率、终生癌症风险和外照射指数平均值
Table 5 The mean values of the districts for absorbed dose rate, AEDE, LCR and Hex
区域 | 剂量当量率/ (nGy∙h−1) | 年有效剂量当量率/ (μSv∙a−1) | 终生癌症风险/ 10−3 | 外照射 指数 |
---|---|---|---|---|
武汉 | 51.41 | 63.05 | 0.25 | 0.31 |
黄石 | 61.65 | 75.61 | 0.30 | 0.36 |
十堰 | 66.99 | 82.16 | 0.32 | 0.38 |
宜昌 | 58.76 | 72.06 | 0.28 | 0.34 |
襄阳 | 80.40 | 98.60 | 0.39 | 0.46 |
鄂州 | 72.36 | 88.74 | 0.35 | 0.42 |
荆门 | 71.71 | 87.95 | 0.34 | 0.42 |
孝感 | 67.65 | 82.97 | 0.32 | 0.39 |
荆州 | 63.74 | 78.17 | 0.30 | 0.36 |
黄冈 | 68.34 | 83.82 | 0.33 | 0.39 |
咸宁 | 69.26 | 84.93 | 0.33 | 0.41 |
随州 | 64.36 | 78.93 | 0.31 | 0.37 |
恩施 | 54.11 | 66.37 | 0.26 | 0.31 |
神农架 | 74.65 | 91.55 | 0.36 | 0.43 |
平均值 | 65.9 | 80.9 | 0.32 | 0.38 |
图6 土壤样品计算的γ辐射剂量当量率与自动站测得的剂量当量率对比图
Figure 6 The comparison between the calculated gamma radiation dose rate of soil samples and the dose rate measured by the automatic station
[1] | ABDUL R N S, UM W, IBRAHIM I, et al., 2023. Acute oral toxicity and bioavailability of uranium and thorium in contaminated soil[J]. Nuclear Engineering and Technology, 55(4): 1460-1467. |
[2] | AHMAD A Y, AIGHOUTI M A, AISADIG I, et al., 2019. Vertical distribution and radiological risk assessment of 137Cs and natural radionuclides in soil samples[J]. Scientific Reports, 9: 12196. |
[3] | AHMAD F, MORRIS K, LAW G T W, et al., 2021. Fate of radium on the discharge of oil and gas produced water to the marine environment[J]. Chemosphere, 273: 129550. |
[4] | AHMAD N, JAAFAR M S, BAKHASH M, et al., 2015. An overview on measurements of natural radioactivity in Malaysia[J]. Journal of Radiation Research and Applied Science, 8(1): 136-141. |
[5] |
BERETKA J, MATTHEW P J, 1985. Natural radioactivity of Australian building materials, industrial wastes and by-products[J]. Health Physics, 48(1): 87-95.
PMID |
[6] | BLAGOEVA R, ZIKOVSKY L, 1995. Geographic and Vertical Distribution of Cs-137 in Soils in Canada[J]. Journal of Environmental Radioactivity, 27(3): 269-274. |
[7] | CORNELL R M, 1993. Adsorption of cesium on minerals: A review[J]. Journal of Radioanalytical and Nuclear Chemistry, 171: 483-500. |
[8] | FAHEEM M, MUJAHID S A, MATIULLAH, 2008. Assessment of radiological hazards due to the natural radioactivity in soil and building material samples collected from six districts of the Punjab province-Pakistan[J]. Radiation Measurements, 43(8): 1443-1447. |
[9] | GULAN L, STAJIC J M, MILENKOVIC B, et al., 2021. Plant uptake and soil retention of radionuclides and metals in vineyard environments[J]. Environmental Science and Pollution Research, 28(36): 49651-49662. |
[10] | HAMZAH Z, ABDUL R S A, SAAT A, et al., 2012. Evaluation of natural radioactivity in soil on district of Kuala Krai, Kelantan[J]. The Malaysian Journal of Analytical Sciences, 16(3): 335-345. |
[11] | IBIKUNLE S B, 2022. Assessment of natural radioactivity in mango, the influence of soil radioactivity, its radiation hazard indices and the overall excess lifetime cancer risk[J]. International Journal of Radiation Research, 20(2): 483-489. |
[12] | ICRP, 1991. Recommendations of the international commission radiological protection[R]. ICRP Publication 60. Oxford:Pergamon Press. |
[13] |
INOUE K, FUKUSHI M, VAN L T, et al., 2020. Distribution of gamma radiation dose rate related with natural radionuclides in all of Vietnam and radiological risk assessment of the built-up environment[J]. Scientific Reports, 10(1): 12428.
DOI PMID |
[14] | KRIEGER R, 1981. Radioactivity of construction materials[J]. Betonwerk Fertigteil Technology, 47: 468-473. |
[15] | KÜRKÇÜOĞLU M E, KAHRAMAN F Ç, DIZMAN S, et al., 2024. Evaluation of radioactivity and radiological parameters in soil samples in Isparta, Türkiye[J]. Nuclear Engineering and Technology, 56(10): 4007-4017. |
[16] |
KURNAZ A, KÜÇÜKÖMEROĞLU B, KESER R, et al., 2007. Determination of radioactivity levels and hazards of soil and sediment samples in Firtina Valley (Rize, Turkey)[J]. Applied Radiation and Isotopes, 65(11): 1281-1289.
PMID |
[17] | LINHOFF B S, CHARETTE M A, WADHAM J, 2020. Rapid mineral surface weathering beneath the Greenland Ice Sheet shown by radium and uranium isotopes[J]. Chemical Geology, 547: 119663. |
[18] | LI P R, GONG Y T, LU W Y, et al., 2022. Radiocesium distribution caused by tillage inversion affects the soil-to-crop transfer factor and translocation in agroecosystems[J]. Science of The Total Environment, 831: 154897. |
[19] |
MACHRAOUI S, LABIDI S, PURUSHOTHAM M M, 2024. Assessment of gamma absorbed doses and radiological risk indexes from soil radioactivity around the phosphate area in south Tunisia[J]. Radiation Protection Dosimetry, 200(4): 387-395.
DOI PMID |
[20] | MAGLAS N N M, QIANG Z, ALI M M, et al., 2024. Natural radioactivity level in Yemen: A systematic review of radiological studies[J]. Applied Radiation and Isotopes, 210: 111343. |
[21] | MATSUOKA K, MORITSUKA N, NUKADA M, et al., 2020. Continuous nitrogen fertilization retards the vertical migration of Fukushima nuclear accident-derived cesium-137 in apple orchard soil[J]. The Science of the Total Environment, 731: 138903. |
[22] | MEHRA R, KAUR S, CHAND S, et al., 2021. Dosimetric assessment of primordial radionuclides in soil and groundwater of Sikar district, Rajasthan[J]. Journal of Radioanalytical and Nuclear Chemistry, 330(3): 1605-1620. |
[23] | MUHAMMAD A N, ISMAIL A F, GARBA N N, 2024. Natural radioactivity in food crops and soil and estimation of the concomitant dose from tin mining areas in Nigeria[J]. Journal of Taibah University for Science, 18(1): 2366507. |
[24] |
MUROTA K, SAITO T, TANAKA S, 2016. Desorption kinetics of cesium from Fukushima soils[J]. Journal of Environmental Radioactivity, 153: 134-140.
DOI PMID |
[25] | PARK S M, ALESSI D S, BAEK K, 2019. Selective adsorption and irreversible fixation behavior of cesium onto 2꞉1 layered clay mineral: A mini review[J]. Journal of Hazardous Materials, 369: 569-576. |
[26] | QIAN J, ZHOU L, YANG X F, et al., 2020. Prussian blue analogue functionalized magnetic microgels with ionized chitosan for the cleaning of cesium-contaminated clay[J]. Journal of Hazardous Materials, 386: 121965. |
[27] | RAFIQUE M, JABBAR A, KHAN A R, et al., 2013. Radiometric analysis of rock and soil samples of Leepa Valley; Azad Kashmir, Pakistan[J]. Journal of Radioanalytical and Nuclear Chemistry, 298(3): 2049-2056. |
[28] |
RANI A, MITTAL S, MEHRA R, et al., 2015. Assessment of natural radionuclides in the soil samples from Marwar region of Rajasthan, India[J]. Applied Radiation and Isotopes, 101: 122-126.
DOI PMID |
[29] | SHAHROKHI A, ADELIKHAH M, CHALUPNIK S, et al., 2021. Multivariate statistical approach on distribution of natural and anthropogenic radionuclides and associated radiation indices along the north-western coastline of Aegean Sea, Greece[J]. Marine Pollution Bulletin, 163: 112009. |
[30] | SHARMA R L, MAHUR A K, MEHRA R, et al., 2023. Natural radioactivity, radon exhalation rates and radiation doses in the soil samples collected from the vicinity of kolaghat thermal power plant, West Bengal, India[J]. Indian Journal of Pure & Applied Physics, 61: 653-658. |
[31] | TAGAMI K, TSUKADA H, UCHIDA S, 2019. Quantifying spatial distribution of 137Cs in reference site soil in Asia[J]. CATENA, 180: 341-345. |
[32] |
TASKIN H, KARAVUS M, AY P, et al., 2009. Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey[J]. Journal of Environmental Radioactivity, 100(1): 49-53.
DOI PMID |
[33] | TURHAN Ş, KÖSE A, VARİNLİOĞLU A, et al., 2012. Distribution of terrestrial and anthropogenic radionuclides in Turkish surface soil samples[J]. Geoderma, 187-188: 117-124. |
[34] | UNSCEAR, 2000. Sources and effects of ionizing radiation[R]. Report of the United Nations. Scientific Committee on the Effects of Atomic Radiation to the general Assembly. New York, USA: United Nations. |
[35] | VEERASAMY N, KASAR S, MURUGAN R, et al., 2023. 234U/238U disequilibrium and 235U/238U ratios measured using MC-ICP-MS in natural high background radiation area soils to understand the fate of uranium[J]. Chemosphere, 323: 138217. |
[36] |
WANG J L, DU J Z, BI Q Q, 2017. Natural radioactivity assessment of surface sediments in the Yangtze Estuary[J]. Marine Pollution Bulletin, 114(1): 602-608.
DOI PMID |
[37] | ZHIYANSKI M, BECH J, SOKOLOVSKA M, et al., 2007. Cs-137 distribution in forest floor and surface soil layers from two mountainous regions in Bulgaria[J]. Journal of Geochemical Exploration, 96(2): 256-266. |
[38] | ZORER Ö S, 2019. Evaluations of environmental hazard parameters of natural and some artificial radionuclides in river water and sediments[J]. Microchemical Journal, 145: 762-766. |
[39] | 曹龙生, 杨亚新, 张叶, 等, 2012. 中国大陆主要省份土壤中天然放射性核素含量分布规律研究[J]. 东华理工大学学报(自然科学版), 35(2): 167-172. |
CAO L S, YANG Y X, ZHANG Y, et al., 2012. Study on the distribution of natural radionuclide content in soil in major provinces of Chinese mainland[J]. Journal of East China University of Technology (Natural Science Edition), 35(2): 167-172. | |
[40] | 刘合凡, 葛良全, 吴和喜, 等, 2014. 成都市不同土壤天然放射性核素分析[J]. 核电子学与探测技术, 34(6): 703-707. |
LIU H F, GE L Q, WU H X, et al., 2014. Natural Radionuclide Analysis of the Soil Samples in Chengdu[J]. Nuclear Electronics & Detection Technology, 34(6): 703-707. | |
[41] | 马婷婷, 李冠超, 阙泽胜, 等, 2023. 基于GIS的某流域土壤放射性分布特征和健康风险评价[J]. 有色金属(冶炼部分) (8): 120-128. |
MA T T, LI G C, QUE Z S, et al., 2023. Distribution characteristics and health risk assessment of soil radioactivity in a watershed based on GIS[J]. Nonferrous Metals (Extractive Metallurgy) (8): 120-128. | |
[42] | 邵慧娟, 王金花, 2023. 137Cs在土壤-植物系统中的迁移及污染土壤修复技术[J]. 生态毒理学报, 18(4): 207-217. |
SHAO H J, WANG J H, 2023. Migration of 137Cs in soil-plant system and remediation technologies of contaminated soil[J]. Asian Journal of Ecotoxicology, 18(4): 207-217. | |
[43] | 田一平, 张家贤, 1992. 湖北省土壤中天然放射性核素含量调查[J]. 辐射防护, 12(4): 300-303. |
TIAN Y P, ZHANG J X, 1992. Survey of natural radionuclide contents in soil in Hubei province[J]. Radiation protection, 12(4): 300-303. | |
[44] | 王玮, 李鑫, 郑鑫, 等, 2025. 内蒙古城市土壤放射性水平分析及外照射水平估算[J]. 辐射防护通讯, 45(1): 34-39. |
WANG W, LI X, ZHENG X, et al., 2025. Analysis of soil radioactivity level and estimation of external exposure level in major cities of inner Mongolia autonomous region[J]. Radiation protection bulletin, 45(1): 34-39. | |
[45] | 杨剑洲, 龚晶晶, 唐世新, 等, 2020. 广东省部分地区土壤放射性核素的测定和剂量评估[J]. 物探与化探, 44(2): 419-425. |
YANG J Z, GONG J J, TANG S X, et al., 2020. The determination of radioactivity concentrations in soil samples and dose assessment in parts of Guangdong Province[J]. Geophysical and Geochemical Exploration, 44(2): 419-425. | |
[46] |
张坤, 王善强, 李战国, 等, 2021. 放射性污染土壤中铯的吸附/解析行为研究进展[J]. 原子能科学技术, 55(3): 405-416.
DOI |
ZHANG K, WANG S Q, LI Z G, et al., 2021. Research progress in adsorption/desorption behavior of Cesium in Radioactive contaminated soil[J]. Atomic Energy Science and Technology, 55(3): 405-416.
DOI |
|
[47] | 中华人民共和国生态环境部, 2023. 2022年全国辐射环境质量报告[R]. 北京: 中华人民共和国生态环境部. |
Ministry of Ecology and Environment of the People’s Republic of China, 2023. 2022 Annual report of the national radiation environment[R]. Beijing: Ministry of Ecology and Environment of the People’s Republic of China. |
[1] | 杜方旎, 冯青靓, 原寒, 曹少飞. 模式鱼类生物标志物在放射生态学研究中的应用及前景[J]. 生态环境学报, 2025, 34(8): 1182-1191. |
[2] | 贾琪琪, 都新丰, 袁益辉, 王宁. 核污染元素光化学检测方法的发展与前景[J]. 生态环境学报, 2025, 34(8): 1192-1202. |
[3] | 彭浩, 孙宏图, 滕柯延, 张爱玲, 吴迪, 朱培. 关于在核设施退役中加强土壤污染监管与防治工作的思考[J]. 生态环境学报, 2025, 34(8): 1203-1211. |
[4] | 庄丽, 孙浩容, 刘晓露, 方明. 由福岛放射性废水排海引发对放射性污染安全监管机制的探讨[J]. 生态环境学报, 2025, 34(8): 1212-1218. |
[5] | 吴桂玲, 吴晓晖, 欧为友, 周华坤, 马文文, 吉孝菲. 青海湖流域盐沼湿地典型植被群落土壤盐分离子分布研究[J]. 生态环境学报, 2025, 34(8): 1228-1239. |
[6] | 林嘉茵, 侯玉婷, 曾海岑, 李伟志, 李冬琴, 叶挺进, 陈火君. 硅钙基材料的制备及其对镉污染土壤钝化效果研究[J]. 生态环境学报, 2025, 34(8): 1282-1292. |
[7] | 周依湘, 唐斌, 付成忠, 许榕钦, 周东静, 王俊丽, 郑晶. 北江中下游水源地双酚类化合物和溴代阻燃剂的污染特征及风险评估[J]. 生态环境学报, 2025, 34(7): 1007-1019. |
[8] | 田蜜, 廖日权, 张健, 董凤凤, 唐建辉. 钦州湾全氟/多氟烷基化合物的污染特征及生态风险评估[J]. 生态环境学报, 2025, 34(7): 1020-1028. |
[9] | 肖咏茵, 王帆, 李灿桦, 汪超, 王万军. 淡水中可生物降解微塑料生物膜上耐药基因的富集特征及其健康风险[J]. 生态环境学报, 2025, 34(7): 1029-1041. |
[10] | 赵曦, 韦斯. 超短链PFASs类新污染物的环境特性、全球水平、来源及风险[J]. 生态环境学报, 2025, 34(7): 1064-1078. |
[11] | 丁馨, 刘健, 魏俐宏, 解德威, 郑昭佩. 基于GSMSR模型的山东省植被NEP时空格局及影响因素[J]. 生态环境学报, 2025, 34(7): 1079-1089. |
[12] | 郭家文, 刘凯, 刘高源, 高欣欣, 杨昆, 潘波. 外源不同形式蔗叶添加物对云南红壤及甘蔗生长的影响[J]. 生态环境学报, 2025, 34(7): 1100-1110. |
[13] | 刘泽渊, 魏有海, 严旭发, 程亮, 侯璐, 严紫玮, 郭良芝. 气候变化对入侵杂草续断菊潜在地理分布的影响[J]. 生态环境学报, 2025, 34(6): 845-852. |
[14] | 欧阳群文, 郭小平, 郝嘉航, 郭宇. 基于种子库视角的北京市高速路边坡喷播植被演替特征研究[J]. 生态环境学报, 2025, 34(6): 941-949. |
[15] | 孟畅, 红梅, 李斐. 高光谱敏感波段筛选与机器学习协同提升土壤重金属预测精度[J]. 生态环境学报, 2025, 34(6): 950-960. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||