生态环境学报 ›› 2025, Vol. 34 ›› Issue (7): 1100-1110.DOI: 10.16258/j.cnki.1674-5906.2025.07.010
郭家文1,2(), 刘凯2, 刘高源2, 高欣欣3, 杨昆2, 潘波1,*(
)
收稿日期:
2025-01-08
出版日期:
2025-07-18
发布日期:
2025-07-11
通讯作者:
*E-mail: 作者简介:
郭家文(1979年生),男,研究员,博士研究生,主要研究方向为甘蔗土壤碳循环。E-mail: 79jwguo@163.com
基金资助:
GUO Jiawen1,2(), LIU Kai2, LIU Gaoyuan2, GAO Xinxin3, YANG Kun2, PAN Bo1,*(
)
Received:
2025-01-08
Online:
2025-07-18
Published:
2025-07-11
摘要:
连续耕作导致土壤肥力和作物产量下降,添加外源物提升土壤肥力成为研究焦点。然而,目前对于不同形式蔗叶添加物如何影响土壤理化性质及甘蔗生长的机制尚未被充分探究。通过桶栽模拟试验,探究蔗叶生物炭、蔗叶灰和粉碎蔗叶处理对云南红壤基础养分、土壤溶解性有机碳氮组分、土壤微生物生物量碳氮以及甘蔗农艺性状的影响。结果表明,1)蔗叶生物炭在提升土壤养分和活性有机碳组分方面表现最优异,粉碎蔗叶次之。这归因于它们能有效改善土壤微生物群落结构,但粉碎蔗叶处理中的营养成分由于缺乏保护而不能被固存。2)3种处理均未显著促进甘蔗产量提升,但甘蔗叶片中叶绿素的相对含量(SPAD)和甘蔗锤度显著增加,尤其是生物炭对二者的提高效果最显著,说明蔗叶生物炭在提升甘蔗品质的应用上更有优势。3)相关性分析表明,叶片的SPAD与土壤中碳氮组分呈显著正相关,但与TP和pH表现较弱的负相关,这表明对蔗田土壤改良时应尽量增加富含碳氮的物质,但需注意磷的施用量,且要关注土壤酸碱度的变化。综上所述,蔗叶生物炭在改良土壤和提升甘蔗品质方面具有一定的应用潜力。同时建议在实际生产中,生物炭与蔗叶同施可能获得更佳效果。
中图分类号:
郭家文, 刘凯, 刘高源, 高欣欣, 杨昆, 潘波. 外源不同形式蔗叶添加物对云南红壤及甘蔗生长的影响[J]. 生态环境学报, 2025, 34(7): 1100-1110.
GUO Jiawen, LIU Kai, LIU Gaoyuan, GAO Xinxin, YANG Kun, PAN Bo. Effects of Exogenous Cane Leaf Additives in Different Forms on Properties of Red Soil and Sugarcane Growth Yunnan[J]. Ecology and Environmental Sciences, 2025, 34(7): 1100-1110.
样品 | w(C)/% | w(N)/% | w(H)/% | C/N |
---|---|---|---|---|
SLBC | 47.86 | 0.87 | 2.32 | 54.89 |
SLA | 14.33 | 0.25 | 0.90 | 57.04 |
SL | 39.81 | 0.47 | 6.01 | 85.54 |
表1 蔗叶生物炭、蔗叶灰和蔗叶的元素组成
Table 1 Element contents of cane leaf biochar, cane leaf ash and cane leaf
样品 | w(C)/% | w(N)/% | w(H)/% | C/N |
---|---|---|---|---|
SLBC | 47.86 | 0.87 | 2.32 | 54.89 |
SLA | 14.33 | 0.25 | 0.90 | 57.04 |
SL | 39.81 | 0.47 | 6.01 | 85.54 |
w(SOM)/(g·kg−1) | pH | w(AN)/(mg·kg−1) | w(AP)/(mg·kg−1) | w(AK)/(mg·kg−1) | w(TN)/(mg·kg−1) | w(TP)/(mg·kg−1) | w(TK)/(g·kg−1) | w(DOC)/(μg·g−1) | w(DON)/(μg·g−1) |
---|---|---|---|---|---|---|---|---|---|
9.75 | 8.0 | 26.09 | 9.75 | 105.04 | 550.00 | 757.74 | 1.17 | 135.46 | 27.47 |
表2 原始土壤的理化性质参数
Table 2 Physicochemical property parameters of the original soil
w(SOM)/(g·kg−1) | pH | w(AN)/(mg·kg−1) | w(AP)/(mg·kg−1) | w(AK)/(mg·kg−1) | w(TN)/(mg·kg−1) | w(TP)/(mg·kg−1) | w(TK)/(g·kg−1) | w(DOC)/(μg·g−1) | w(DON)/(μg·g−1) |
---|---|---|---|---|---|---|---|---|---|
9.75 | 8.0 | 26.09 | 9.75 | 105.04 | 550.00 | 757.74 | 1.17 | 135.46 | 27.47 |
图4 甘蔗农艺性状和土壤养分、土壤活性有机碳、氮组分之间的相关性分析 *表示指标间存在显著相关性(p<0.05);红色代表正相关,蓝色代表负相关,颜色越深,相关性越强
Figure 4 Correlation analysis between agronomic traits and soil nutrients, soil active organic carbon and nitrogen components of sugarcane
处理 | 株高(PH)/ cm | 茎径(SD)/ mm | 鲜质量(FW)/ kg | 锤度(Bx)/ (°) |
---|---|---|---|---|
CK | 211.30±10.44a | 21.49±1.40ab | 0.76±0.11a | 19.67±0.76b |
SLBC | 200.63±7.70a | 21.31±0.68b | 0.57±0.09b | 22.83±0.31a |
SLA | 212.13±16.70a | 20.69±1.19b | 0.78±0.15a | 22.00±0.58a |
SL | 211.93±4.97a | 22.89±1.43a | 0.79±0.14a | 21.67±0.49a |
表3 不同蔗叶添加物对甘蔗农艺性状的影响
Table 3 Effects of different cane leaf additives on agronomic characters of sugarcane
处理 | 株高(PH)/ cm | 茎径(SD)/ mm | 鲜质量(FW)/ kg | 锤度(Bx)/ (°) |
---|---|---|---|---|
CK | 211.30±10.44a | 21.49±1.40ab | 0.76±0.11a | 19.67±0.76b |
SLBC | 200.63±7.70a | 21.31±0.68b | 0.57±0.09b | 22.83±0.31a |
SLA | 212.13±16.70a | 20.69±1.19b | 0.78±0.15a | 22.00±0.58a |
SL | 211.93±4.97a | 22.89±1.43a | 0.79±0.14a | 21.67±0.49a |
[1] | ABIVEN S, HUND A, MARTINSEN V, et al., 2015. Biochar amendment increases maize root surface areas and branching: A shovelomics study in Zambia[J]. Plant and Soil, 395: 44-45. |
[2] | BERNAL S, BUTTURINI A, SABATER F, 2005. Seasonal variations of dissolved nitrogen and DOC꞉DON ratios in an intermittent Mediterranean stream[J]. Biogeochemistry, 75: 351-372. |
[3] | CALABRESE S, MOHANTY B P, MALIK A A, 2022. Soil microorganisms regulate extracellular enzyme production to maximize their growth rate[J]. Biogeochemistry, 158(3): 303-312. |
[4] | CERRI C C, GALDOS M V, MAIA S M F, et al., 2011. Effect of sugarcane harvesting systems on soil carbon stocks in Brazil: An examination of existing data[J]. European Journal of Soil Science, 62(1): 23-28. |
[5] | CHEN L M, SUN S L, ZHOU Y Y, et al., 2023. Straw and straw biochar differently affect fractions of soil organic carbon and microorganisms in farmland soil under different water regimes[J]. Environmental Technology and Innovation, 32: 103412. |
[6] | CHOWDHURY S, FARRELL M, BOLAN N, 2014. Distribution of photo-assimilated carbon as affected by nutrient addition to soil[J]. Korean Society of Soil Sciences and Fertilizer, 6: 52. |
[7] | DENG J H, HE D Y, ZHU X H, et al., 2024. Biochar amendment shifts bacterial keystone taxa regulating soil phosphorus dynamics[J]. Applied Soil Ecology, 201: 105521. |
[8] | DU PREEZ C C, STEYN J T, KOTZE E, 2001. Long-term effects of wheat residue management on some fertility indicators of a semi-arid Plinthosol[J]. Soil and Tillage Research, 63(1-2): 25-33. |
[9] | GHORBANI M, AMIRAHMADI E, 2024. Insights into soil and biochar variations and their contribution to soil aggregate status-A meta-analysis[J]. Soil and Tillage Research, 244: 106282. |
[10] |
GUMIERE T, ROUSSEAU A N, DA COSTA D P, et al., 2019. Phosphorus source driving the soil microbial interactions and improving sugarcane development[J]. Scientific Reports, 9(1): 4400.
DOI PMID |
[11] | GUO X X, LIU H T, ZHANG J, 2020. The role of biochar in organic waste composting and soil improvement: A review[J]. Waste Management, 102(1): 884-899. |
[12] | HALDER M, AHMAD S J, RAHMAN T, et al., 2023. Effects of straw incorporation and straw-burning on aggregate stability and soil organic carbon in a clay soil of Bangladesh[J]. Geoderma Regional, 32: e00620. |
[13] | HAN L F, SUN K, YANG Y, et al., 2020. Biochar’s stability and effect on the content, composition and turnover of soil organic carbon[J]. Geoderma, 364: 114184. |
[14] | HE X L, YANG Y R, HUANG B S, et al., 2024. An overview of characteristic factors of biochar as a soil improvement tool in rice growth: A review[J]. Environmental Research, 242: 117794. |
[15] | KALER A S, MCCRAY J M, WRIGHT A L, et al., 2017. Sugarcane yield and plant nutrient response to sulfur-amended Everglades histosols[J]. Journal of Plant Nutrition, 40(2): 187-196. |
[16] | KERSTEN P, CULLEN D, 2013. Recent advances on the genomics of litter-and soil-inhabiting Agaricomycetes[J]. Genomics of Soil-and Plant-Associated Fungi, 36: 311-332. |
[17] | KHAN A, WEI Y B, ADNAN M, et al., 2023. Dynamics of rhizosphere bacterial communities and soil physiochemical properties in response to consecutive ratooning of sugarcane[J]. Frontiers in Microbiology, 14: 1197246. |
[18] | LEITE L F C, SAGRILO E, DE ARAÚJO A S F, et al., 2018. Short-term effect of sugarcane straw on soil organic carbon pools[J]. Journal of Agricultural Science, 10(8): 405. |
[19] | LI S Q, ZHENG X H, LIU C Y, et al., 2018. Influences of observation method, season, soil depth, land use and management practice on soil dissolvable organic carbon concentrations: A meta-analysis[J]. Science of the Total Environment, 631-632: 105-114. |
[20] | LI Y, ABALOS D, ARTHUR E, et al., 2024. Different straw return methods have divergent effects on winter wheat yield, yield stability, and soil structural properties[J]. Soil and Tillage Research, 238: 105992. |
[21] | LIAO F, YANG L, LI Q, et al., 2018. Effect of biochar on growth, photosynthetic characteristics and nutrient distribution in sugarcane[J]. Sugar Tech, 21: 289-295. |
[22] | LIU Y F, TAN Y M, LIANG D, et al., 2023. Effects of sugarcane leaf return and fertilizer reduction on maize growth, yield and soil properties in red soil[J]. Plants, 12(5): 1029. |
[23] | LÜ L Q, YOUNAN O, IJAZ M, et al., 2024. Promotive effect of mechanochemically crushed straw on rice growth by improving soil properties and modulating bacterial communities[J]. Plant Growth Regulation, 103(2): 337-350. |
[24] |
PATOINE G, EISENHAUER N, CESARZ S, et al., 2022. Drivers and trends of global soil microbial carbon over two decades[J]. Nature Communications, 13(1): 4195.
DOI PMID |
[25] | PHUKONGCHAI W, KAEWPRADIT W, RASCHE F, 2022. Inoculation of cellulolytic and ligninolytic microorganisms accelerates decomposition of high C/N and cellulose rich sugarcane straw in tropical sandy soils[J]. Applied Soil Ecology, 172: 104355. |
[26] | POKHAREL P, MA Z L, CHANG S X, 2020. Biochar increases soil microbial biomass with changes in extra- and intracellular enzyme activities: A global meta-analysis[J]. Biochar, 2(1): 65-79. |
[27] | QING H C, ZHU X H, WU J, et al., 2021. Dynamics of microbial diversity during the composting of agricultural straw[J]. Journal of Integrative Agriculture, 20(5): 1121-1136. |
[28] | SALGADO-GARCíA S, LAGUNES-ESPINOZA L, CARRILLO-AVILA E, et al., 2006. Changes in the properties of a Mexican Fluvisol following 30 years of sugarcane cultivation[J]. Soil and Tillage Research, 88(1-2): 160-167. |
[29] |
SEABLOOM E W, CALDEIRA M C, DAVIES K F, et al., 2023. Globally consistent response of plant microbiome diversity across hosts and continents to soil nutrients and herbivores[J]. Nature Communications, 14(1): 3516.
DOI PMID |
[30] | SUWANREE S, KNIJNENBURG J T, KASEMSIRI P, et al., 2022. Engineered biochar from sugarcane leaves with slow phosphorus release kinetics[J]. Biomass and Bioenergy, 156: 106304. |
[31] | SEEMAKRAM W, SUEBRASRI T, KHAEKHUM S, et al., 2023. Enhancement of integrated sugarcane trash managements by co-inoculation of cellulolytic microorganisms for sustaining soil fertility[J]. Sugar Tech, 25(4): 925-937. |
[32] | VANCE E, BROOKES P, JENKINSON D, 1987. Microbial biomass measurements in forest soils: Determination of kc values and tests of hypotheses to explain the failure of the chloroform fumigation-incubation method in acid soils[J]. Soil Biology and Biochemistry, 19(6): 689-696. |
[33] | VUPPALADADIYAM A K, VUPPALADADIYAM S S V, SIKARWAR V S, et al., 2023. A critical review on biomass pyrolysis: Reaction mechanisms, process modeling and potential challenges[J]. Journal of the Energy Institute, 108: 101236. |
[34] | WANG J L, LIIU K L, ZHAO X Q, et al., 2022. Microbial keystone taxa drive crop productivity through shifting aboveground-belowground mineral element flows[J]. Science of The Total Environment, 811: 152342. |
[35] | WANG X P, SHI J M, 2024. Leaf chlorophyll content is the crucial factor for the temporal and spatial variation of global plants leaf maximum carboxylation rate[J]. Science of the Total Environment, 927: 172280. |
[36] |
XU X X, DU X, WANG F, et al., 2020. Effects of potassium levels on plant growth, accumulation and distribution of carbon, and nitrate metabolism in apple dwarf rootstock seedlings[J]. Frontiers in Plant Science, 11: 904.
DOI PMID |
[37] | ZHANG M M, DANG P F, HAEGEMAN B, et al., 2024. The effects of straw return on soil bacterial diversity and functional profiles: A meta-analysis[J]. Soil Biology and Biochemistry, 195: 109484. |
[38] | ZHAO H Y, KE Z Z, MENG X W, et al., 2019. Straw and biochar strongly affect functional diversity of microbial metabolism in paddy soils[J]. Journal of Integrative Agriculture, 18(7): 1474-1485. |
[39] | 白震, 张明, 宋斗妍, 等, 2008. 不同施肥对农田黑土微生物群落的影响[J]. 生态学报, 28(7): 3244-3253. |
BAI Z, ZHANG M, SONG D Y, et al., 2008. Effect of different fertilizaiton on microbial community in an arable mollisol[J]. Acta Ecologica Sinica, 28(7): 3244-3253. | |
[40] | 李新华, 郭洪海, 朱振林, 等, 2016. 不同秸秆还田模式对土壤有机碳及其活性组分的影响[J]. 农业工程学报, 32(9): 130-135. |
LI X H, GUO H H, ZHU Z L, et al., 2016. Effects of different straw return modes on contents of soil organic carbon and fractions of soil active carbon[J]. Transactions of the Chinese Society of Agricultural Engineering, 32(9): 130-135. | |
[41] | 刘杰云, 邱虎森, 汤宏, 等, 2019. 生物质炭对双季稻水稻土微生物生物量碳, 氮及可溶性有机碳氮的影响[J]. 环境科学, 40(8): 3799-3807. |
LIU J Y, QIU H S, TANG H, et al., 2019. Effects of biochar amendment on soil microbial biomass carbon, nitrogen and dissolved organic carbon, nitrogen in paddy soils[J]. Environmental Science, 40(8): 3799-3807. | |
[42] | 衣本骥, 刘畅, 韩宏伟, 等, 2024. 不同改性生物炭对稻田氮素损失及产量的影响[J]. 中国环境科学, 44(9): 5122-5133. |
YI B J, LIU C, HAN H W, et al., 2024. Effect of different modified biochar treatments on nitrogen loss and rice yield in paddy fields[J]. China Environmental Science, 44(9): 5122-5133. | |
[43] | 赵惠丽, 董金琎, 师江澜, 等, 2021. 秸秆还田模式对小麦-玉米轮作体系土壤有机碳固存的影响[J]. 土壤学报, 58(1): 213-224. |
ZHAO H L, DONG J J, SHI J L, et al., 2021. Effect of straw returning mode on soil organic carbon sequestration[J]. Acta Pedologica Sinica, 58(1): 213-224. | |
[44] |
张仲富, 王禹童, 艾静, 等, 2025. 钾肥对甘蔗根际微生物多样性和群落构建过程的影响[J]. 应用生态学报, 36(2) : 526-536.
DOI |
ZHANG Z F, WANG Y T, AI J, et al., 2024. Effects of potassium fertilizer on rhizosphere microbial diversity and community assembly in sugarcane[J]. Chinese Journal of Applied Ecology, 36(2): 526-536. |
[1] | 许铭宇, 俞龙生. 农林废弃有机材料对离子型稀土矿尾砂的土壤改良效应[J]. 生态环境学报, 2025, 34(1): 126-134. |
[2] | 李多美, 孔涛, 陈曦, 高明夫, 高熙梣, 曾泽宇, 保佳慧. 古龙酸母液混制肥和草席覆盖措施对新疆旱区牧草生长和土壤养分含量的影响[J]. 生态环境学报, 2024, 33(4): 548-559. |
[3] | 张传光, 沈艳, 张珊珊, 李玉文, 陈剑, 杨文忠. 原生与迁地毛枝五针松根际土壤微生物多样性分析[J]. 生态环境学报, 2024, 33(10): 1544-1553. |
[4] | 董智今, 张呈春, 展秀丽, 张维福. 宁夏河东沙地生物土壤结皮及其下伏土壤养分的空间分布特征[J]. 生态环境学报, 2023, 32(5): 910-919. |
[5] | 潘昱伶, 璩向宁, 李琴, 王磊, 王筱平, 谭鹏, 崔庚, 安雨, 佟守正. 黄河宁夏段典型滩涂湿地土壤理化因子空间分布特征及其对微地形的响应[J]. 生态环境学报, 2023, 32(4): 668-677. |
[6] | 张贝儿, 吴建强, 王敏, 熊丽君, 谭娟, 沈城, 黄波涛, 黄沈发. 耕地生态保育工程的土壤健康度评价方法初探[J]. 生态环境学报, 2023, 32(2): 388-396. |
[7] | 夏恩龙, 农珺清, 魏松坡, 刘希珍, 刘广路. 毛竹向阔叶林扩展过程中土壤养分变化特征[J]. 生态环境学报, 2022, 31(6): 1110-1117. |
[8] | 龙靖, 黄耀, 刘占锋, 简曙光, 魏丽萍, 王俊. 西沙热带珊瑚岛典型乔木叶片性状和养分再吸收特征[J]. 生态环境学报, 2022, 31(2): 248-256. |
[9] | 余斐, 叶彩红, 许窕孜, 张中瑞, 朱航勇, 张耕, 华雷, 邓鉴锋, 丁晓纲. 韶关市花岗岩地区森林土壤重金属污染评价[J]. 生态环境学报, 2022, 31(2): 354-362. |
[10] | 盛基峰, 李垚, 于美佳, 韩艳英, 叶彦辉. 氮磷添加对高寒草地土壤养分和相关酶活性的影响[J]. 生态环境学报, 2022, 31(12): 2302-2309. |
[11] | 张晓丽, 王国丽, 常芳弟, 张宏媛, 逄焕成, 张建丽, 王婧, 冀宏杰, 李玉义. 生物菌剂对根际盐碱土壤理化性质和微生物区系的影响[J]. 生态环境学报, 2022, 31(10): 1984-1992. |
[12] | 宋贤冲, 蔡雪梅, 陈韬, 潘文, 石媛媛, 唐健, 曹继钊. 不同萌芽代次桉树根际和非根际土壤养分的变化特征[J]. 生态环境学报, 2021, 30(9): 1814-1820. |
[13] | 廖迎春, 段洪浪, 施星星, 孟庆银, 刘文飞, 沈芳芳, 樊后保, 朱涛. 杉木(Cunninghamia lanceolate)人工林生长状况与根系生物量相关性研究[J]. 生态环境学报, 2021, 30(6): 1121-1128. |
[14] | 徐文印, 张宇鹏, 段成伟, 柴瑜, 宋娴, 李希来. 黄河源不同区域退化高寒草甸土壤养分空间变异研究[J]. 生态环境学报, 2021, 30(10): 1968-1975. |
[15] | 隋阳辉, 高继平, 王延波, 肖万欣, 刘晶, 史磊, 赵海岩, 张洋. 氮肥配施生物炭对旱地土壤养分和玉米根系径级分布的影响[J]. 生态环境学报, 2021, 30(10): 2026-2032. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||