生态环境学报 ›› 2025, Vol. 34 ›› Issue (5): 773-783.DOI: 10.16258/j.cnki.1674-5906.2025.05.011
刘鸿林1,2(), 赵方凯1,*(
), 杨磊3, 沈琳钧4, 杨恺丰4, 李敏3, 陈利顶1,2,3
收稿日期:
2024-11-02
出版日期:
2025-05-18
发布日期:
2025-05-16
通讯作者:
*赵方凯。E-mail: 作者简介:
刘鸿林(1998年生),男,硕士研究生,研究方向为景观格局、土壤污染与风险评价。E-mail: liuhonglin1@stu.ynu.edu.cn
基金资助:
LIU Honglin1,2(), ZHAO Fangkai1,*(
), YANG Lei3, SHEN Linjun4, YANG Kaifeng4, LI Min3, CHEN Liding1,2,3
Received:
2024-11-02
Online:
2025-05-18
Published:
2025-05-16
摘要: 城市公园作为居民休闲活动的重要场所,绿地土壤健康直接关系到居民的身心健康,而城市公园绿地土壤重金属污染往往成为一个被忽视的环节。以浙江省宁波市为研究区,选取20个建园年限不同的代表性城市公园,通过采样分析,研究了土壤重金属污染特征及其与公园景观格局的关系。结果表明:1)不同城市公园土壤重金属含量具有显著的差异性,Cu、Zn、Cd和Pb的含量明显高于背景值,分别为背景值的2.1、2.2、10、1.9倍,Cr和Ni的含量与土壤背景值接近;2)土壤中重金属Zn、Cd和Pb含量随着城市公园建设年限增加呈现增加趋势;3)乔木林地斑块比重与城市公园土壤重金属含量有显著的正相关性,其与Zn、Cd和Pb的p值分别为0.021、0.018和0.011。由此表明,城市公园中的土壤受人类活动干扰明显,其土壤重金属随着时间演替不断富集,且乔木林地斑块会影响城市公园对大气中重金属颗粒物的捕获量,从而影响城市公园土壤重金属含量。该研究为城市公园的规划、建设和改造提供了科学依据;建议在新建或改造公园时合理控制乔木林地斑块比重,优化景观格局,以降低土壤重金属富集风险。
中图分类号:
刘鸿林, 赵方凯, 杨磊, 沈琳钧, 杨恺丰, 李敏, 陈利顶. 城市公园土壤重金属污染及影响因素研究——以宁波市为例[J]. 生态环境学报, 2025, 34(5): 773-783.
LIU Honglin, ZHAO Fangkai, YANG Lei, SHEN Linjun, YANG Kaifeng, LI Min, CHEN Liding. Study on Heavy Metal Pollution in Urban Park Soil and Influencing Factors: A Case Study of Ningbo City[J]. Ecology and Environmental Sciences, 2025, 34(5): 773-783.
指标 | 描述 |
---|---|
最大面积斑块面积占比(LPI) | 反映优势景观斑块类型 |
蔓延度指数(CONTAG) | 描述景观组成分散度、连接性 |
边界密度(ED) | 景观或类型被边界分割程度 |
面积加权的平均形状指数 (SHAPE-AM) | 反映斑块形状的复杂程度 |
香农多样性指数(SHDI) | 反映景观异质性 |
香农均匀度指数(SHEI) | 反映景观分布的均匀度和优势度 |
表1 城市公园空间结构指标
Table 1 Landscape characteristics
指标 | 描述 |
---|---|
最大面积斑块面积占比(LPI) | 反映优势景观斑块类型 |
蔓延度指数(CONTAG) | 描述景观组成分散度、连接性 |
边界密度(ED) | 景观或类型被边界分割程度 |
面积加权的平均形状指数 (SHAPE-AM) | 反映斑块形状的复杂程度 |
香农多样性指数(SHDI) | 反映景观异质性 |
香农均匀度指数(SHEI) | 反映景观分布的均匀度和优势度 |
参数 | 最大值 | 最小值 | 平均值 | 标准差 | 中位数 | 变异系数 | 浙江省土壤背景值 |
---|---|---|---|---|---|---|---|
Cr | 102.2 | 40.2 | 61.5 | 21.5 | 53.5 | 0.35 | 52.9 |
Ni | 43.8 | 16.1 | 23.2 | 6.7 | 21.0 | 0.29 | 24.6 |
Cu | 62.8 | 16.0 | 36.7 | 13.6 | 36.0 | 0.37 | 17.6 |
Zn | 375.2 | 76.0 | 152.5 | 76.5 | 129.0 | 0.50 | 70.6 |
Cd | 2.8 | 0.4 | 1.0 | 0.6 | 0.8 | 0.61 | 0.1 |
Pb | 62.5 | 31.4 | 46.0 | 6.8 | 44.2 | 0.15 | 23.7 |
表2 城市公园土壤重金属质量分数与环境背景值比较
Table 2 Statistics of soil environmental quality elements in urban parks mg·kg?1
参数 | 最大值 | 最小值 | 平均值 | 标准差 | 中位数 | 变异系数 | 浙江省土壤背景值 |
---|---|---|---|---|---|---|---|
Cr | 102.2 | 40.2 | 61.5 | 21.5 | 53.5 | 0.35 | 52.9 |
Ni | 43.8 | 16.1 | 23.2 | 6.7 | 21.0 | 0.29 | 24.6 |
Cu | 62.8 | 16.0 | 36.7 | 13.6 | 36.0 | 0.37 | 17.6 |
Zn | 375.2 | 76.0 | 152.5 | 76.5 | 129.0 | 0.50 | 70.6 |
Cd | 2.8 | 0.4 | 1.0 | 0.6 | 0.8 | 0.61 | 0.1 |
Pb | 62.5 | 31.4 | 46.0 | 6.8 | 44.2 | 0.15 | 23.7 |
名称 | 成分 | |
---|---|---|
成分1 | 成分2 | |
Cr | 0.20 | 0.92 |
Ni | 0.12 | 0.83 |
Cu | 0.82 | 0.31 |
Zn | 0.97 | −0.14 |
Cd | 0.94 | −0.11 |
Pb | 0.83 | −0.33 |
特征根 | 3.22 | 1.76 |
方差解释率/% | 53.66 | 29.41 |
累计百分比/% | 53.66 | 83.07 |
表3 城市公园土壤重金属主成分分析
Table 3 Principal components analysis of heavy metals in urban parks
名称 | 成分 | |
---|---|---|
成分1 | 成分2 | |
Cr | 0.20 | 0.92 |
Ni | 0.12 | 0.83 |
Cu | 0.82 | 0.31 |
Zn | 0.97 | −0.14 |
Cd | 0.94 | −0.11 |
Pb | 0.83 | −0.33 |
特征根 | 3.22 | 1.76 |
方差解释率/% | 53.66 | 29.41 |
累计百分比/% | 53.66 | 83.07 |
[1] | BECKETT K P, FREER-SMITH P H, TAYLOR G, 2000. Particulate pollution capture by urban trees: effect of species and windspeed[J]. Global Change Biology, 6(8): 995-1003. |
[2] | CAI L M, WANG Q S, WEN H H, et al., 2019. Heavy metals in agricultural soils from a typical township in Guangdong Province, China: Occurrences and spatial distribution[J]. Ecotoxicology and Environmental Safety, 168: 184-191. |
[3] | CHEN H Y, TENG Y G, LU S J, et al., 2015. Contamination features and health risk of soil heavy metals in China[J]. Science of The Total Environment, 512-513: 143-153. |
[4] | CHEN T, CHANG Q R, LIU J, et al., 2016. Identification of soil heavy metal sources and improvement in spatial mapping based on soil spectral information: A case study in northwest China[J]. Science of The Total Environment, 565: 155-164. |
[5] | CHEN X D, LU X W, LI L Y, et al., 2013. Spatial distribution and contamination assessment of heavy metals in urban topsoil from inside the Xi’an second ringroad, NW China[J]. Environmental Earth Sciences, 68(7): 1979-1988. |
[6] | FOWLER D, SKIBA U, NEMITZ E, et al., 2004. Measuring aerosol and heavy metal deposition on urban woodland and grass using inventories of 210Pb and metal concentrations in soil[J]. Water, Air, and Soil Pollution: Focus, 4: 483-499. |
[7] | HA J, KIM H J, WITH K A, 2022. Urban green space alone is not enough: A landscape analysis linking the spatial distribution of urban green space to mental health in the city of Chicago[J]. Landscape and Urban Planning, 218: 104309. |
[8] | JAMAL A, DELAVAR M A, NADERI A, et al., 2019. Distribution and health risk assessment of heavy metals in soil surrounding a lead and zinc smelting plant in Zanjan, Iran[J]. Human and Ecological Risk Assessment, 25(4): 1018-1033. |
[9] | KIM S, LEE S, HWANG K, et al., 2017. Exploring sustainable street tree planting patterns to be resistant against fine particles (PM2.5)[J]. Sustainability, 9(10): 1709. |
[10] |
LANPHEAR B P, ROGHMANN K J, 1997. Pathways of lead exposure in urban children[J]. Environmental Research, 74(1): 67-73.
PMID |
[11] | LAI D Y, LIU Y Q, LIAO M C, et al., 2023. Effects of different tree layouts on outdoor thermal comfort of green space in summer Shanghai[J]. Urban Climate, 47: 101398. |
[12] |
LI C, LI F B, WU Z F, et al., 2015. Effects of landscape heterogeneity on the elevated trace metal concentrations in agricultural soils at multiple scales in the Pearl River Delta, South China[J]. Environmental Pollution, 206: 264-274.
DOI PMID |
[13] | LI C, SUN G, WU Z F, et al., 2019a. Soil physiochemical properties and landscape patterns control trace metal contamination at the urban-rural interface in southern China[J]. Environmental Pollution, 250: 537-545. |
[14] | LI C, SANCHEZ G M, WU Z F, et al., 2020. Spatiotemporal patterns and drivers of soil contamination with heavy metals during an intensive urbanization period (1989-2018) in southern China[J]. Environmental Pollution, 260: 114075. |
[15] | LI F J, YANG H W, AYYAMPERUMAL R, et al., 2022. Pollution, sources, and human health risk assessment of heavy metals in urban areas around industrialization and urbanization-Northwest China[J]. Chemosphere, 308(Part 2): 136396. |
[16] | LI G, SUN G X, REN Y, et al., 2018. Urban soil and human health: A review[J]. European Journal of Soil Science, 69(1): 196-215. |
[17] |
LI J Q, CEN D Z, HUANG D L, et al., 2014. Detection and analysis of 12 heavy metals in blood and hair sample from a general population of Pearl River Delta area[J]. Cell Biochemistry and Biophysics, 70(3): 1663-1669.
DOI PMID |
[18] | LI S J, YANG L, CHEN L D, et al., 2019b. Spatial distribution of heavy metal concentrations in peri-urban soils in eastern China[J]. Environmental Science and Pollution Research, 26(2): 1615-1627. |
[19] | LIU L, GUAN D S, PEART M R, et al., 2013. The dust retention capacities of urban vegetation-a case study of Guangzhou, South China[J]. Environmental Science and Pollution Research, 20(9): 6601-6610. |
[20] | LIU L L, LIU Q Y, MA J, et al., 2020. Heavy metal(loid)s in the topsoil of urban parks in Beijing, China: Concentrations, potential sources, and risk assessment[J]. Environmental Pollution, 260(12): 114083. |
[21] | LIU Y J, YANG Z, ZHU M H, et al., 2017. Role of plant leaves in removing airborne dust and associated metals on Beijing roadsides[J]. Aerosol and Air Quality Research, 17(10): 2566-2584. |
[22] | LIU Y, LIU G J, YOUSAF B, et al., 2021. Identification of the featured-element in fine road dust of cities with coal contamination by geochemical investigation and isotopic monitoring[J]. Environment International, 152(1): 106499. |
[23] | LI X D, POON C S, LIU P S, 2001. Heavy metal contamination of urban soils and street dusts in Hong Kong[J]. Applied Geochemistry, 16(11-12): 1361-1368. |
[24] | MAAS J, VERHEIJ R A, GROENEWEGEN P P, et al., 2005. Green space, urbanity, and health: How strong is the relation?[J] Journal of Epidemiology and Community Health, 60(7): 587-592. |
[25] | MCDONALD A G, BEALEY W J, FOWLER D, et al., 2007. Quantifying the effect of urban tree planting on concentrations and depositions of PM10 in two UK conurbations[J]. Atmospheric Environment, 41(38): 8455-8467. |
[26] | MILENKOVIC B, STAJIC J M, GULAN L J, et al., 2015. Radioactivity levels and heavy metals in the urban soil of Central Serbia[J]. Environmental Science and Pollution Research, 22(21): 16732-16741. |
[27] | MULLER G, 1979. Schwermetalle in den sedimenten des Rheins-Vernderungen seit 1971[J]. Umschanvol, 79(24): 778-783. |
[28] | OULD-DADA Z, BAGHINI N M, 2001. Resuspension of small particles from tree surfaces[J]. Atmospheric Environment, 35(22): 3799-3809. |
[29] | PENG J, DAN Y Z, QIAO R L, et al., 2021. How to quantify the cooling effect of urban parks? Linking maximum and accumulation perspectives[J]. Remote Sensing of Environment, 252: 112135. |
[30] | PENG T Y, O'CONNOR D, ZHAO B, et al., 2019. Spatial distribution of lead contamination in soil and equipment dust at children’s playgrounds in Beijing, China[J]. Environmental Pollution, 245: 363-370. |
[31] | SÆBØ A, ROBERT P, NAWROT B, et al., 2012. Plant species differences in particulate matter accumulation on leaf surfaces[J]. Science of The Total Environment, 427-428: 347-354. |
[32] | SCHAUBROECK T, DECKMYN G, NEIRYNCK J, et al., 2014. Multilayered modeling of particulate matter removal by a growing Forest over Time, from plant surface deposition to washoff via rainfall[J]. Environmental Science & Technology, 48(18): 10785-10794. |
[33] | SHI J N, ZHANG G, AN H L, et al., 2017. Quantifying the particulate matter accumulation on leaf surfaces of urban plants in Beijing, China[J]. Atmospheric Pollution Research, 8(5): 836-842. |
[34] | SONG Y S, MAHER B A, LI F, et al., 2015. Particulate matter deposited on leaf of five evergreen species in Beijing, China: Source identification and size distribution[J]. Atmospheric Environment, 105: 53-60. |
[35] | SU X C, CAI H, CHEN Z L, et al., 2017. Influence of the ground greening configuration on the outdoor thermal environment in residential areas under different underground space overburden thicknesses[J]. Sustainability, 9(9): 1656. |
[36] | WANG M S, HAN Q, GUI C L, et al., 2019. Differences in the risk assessment of soil heavy metals between newly built and original parks in Jiaozuo, Henan Province, China[J]. Science of The Total Environment, 676: 1-10. |
[37] | WILDING L, 1985. Spatial variability: Its documentation, accommodation and implication to soil surveys[C]// Soil spatial variability proceedings of a workshop of the ISSS and the SSA, Las Vegas. |
[38] |
XIA X H, CHEN X, LIU R M, et al., 2011. Heavy metals in urban soils with various types of land use in Beijing, China[J]. Journal of Hazardous Materials, 186(2-3): 2043-2050.
DOI PMID |
[39] | XU S S, ZHAO Q H, QIN C Z, et al., 2021. Effects of vegetation restoration on accumulation and translocation of heavy metals in post-mining areas[J]. Land Degradation and Development, 32(5): 2000-2012. |
[40] | YU G, CHEN F, ZHANG H L, et al., 2021. Pollution and health risk assessment of heavy metals in soils of Guizhou, China[J]. Ecosystem Health and Sustainability, 7(1): 1859948. |
[41] | ZHANG Y, ZHANG Z Q, ZHANG J Q, et al., 2009. Estimation of non-point source pollution load in Tumenxigou watershed of Miyun Reservoir[J]. Transactions of the Chinese Society of Agricultural Engineering, 25(5): 183-191. |
[42] | ZHAO S T, LI X Y, LI Y M, et al., 2024. Differential impacts of functional traits across 65 plant species on PM retention in the urban environment[J]. Ecological Engineering, 200(9): 107184. |
[43] | ZHOU M, LIAO B, SHU W S, et al., 2015. Pollution assessment and potential sources of heavy metals in agricultural soils around four Pb/Zn mines of Shaoguan City, China[J]. Soil and Sediment Contamination, 24(1): 76-89. |
[44] | 安江梅朵, 张瑞卿, 郭广慧, 等, 2023. 北京市城市公园土壤铅累积特征、来源及健康风险[J]. 环境科学, 44(11): 6287-6296. |
AN J M D, ZHANG R Q, GUO G H, et al., 2023. Accumulation characteristics, sources, and health risks of soil lead of urban parks in Beijing[J]. Environmental Science, 44(11): 6287-6296. | |
[45] | 陈利顶, 傅伯杰, 赵文武, 2006. “源” “汇” 景观理论及其生态学意义[J]. 生态学报, 26(5): 1444-1449. |
CHEN L D, FU B J, ZHAO W W, 2006. Source-sink landscape theory and its ecological significance[J]. Acta Ecologica Sinica, 26(5): 1444-1449. | |
[46] | 陈海珍, 龚春生, 李文立, 等, 2010. 广州市不同功能区土壤重金属污染特征及评价[J]. 环境与健康杂志, 27(8): 700-703. |
CHEN H Z, GONG C S, LI W L, et al., 2010. Characteristic and evaluation of soil pollution by heavy metal in different functional zones of Guangzhou[J]. Journal of Environment and Health, 27(8): 700-703. | |
[47] | 胡鹏杰, 李柱, 钟道旭, 等, 2014. 我国土壤重金属污染植物吸取修复研究进展[J]. 植物生理学报, 50(5): 577-584. |
HU P J, LI Z, ZHONG D X, et al., 2014. Research progress on the phytoextraction of heavy metal contaminated soils in China[J]. Plant Physiology Journal, 50(5): 577-584. | |
[48] |
李佳, 杜瑞英, 王旭, 等, 2023. 植物铜胁迫响应的生理与分子机制研究进展[J]. 中国农学通报, 39(11): 18-28.
DOI |
LI J, DU R Y, WANG X, et al., 2023. Physiological and molecular mechanism of plants response to copper stress: A review[J]. Chinese Agricultural Science Bulletin, 39(11): 18-28.
DOI |
|
[49] | 刘玥, 郭文强, 武晔秋, 2023. 大同市城区公园表层土壤重金属污染特征和健康风险及来源解析[J]. 土壤通报, 54(1): 180-191. |
LIU Y, GUO W Q, WU Y Q, 2023. Pollution characteristics, health risks and source analysis of surface soil heavy metals in urban parks of Datong City[J]. Chinese Journal of Soil Science, 54(1): 180-191. | |
[50] | 庞阔, 李敏, 刘璐, 等, 2022. 基于蒙特卡洛模拟与PMF模型的黄河流域沉积物重金属污染评价及源解析[J]. 环境科学, 43(8): 4008-4017. |
PANG K, LI M, LIU L, et al., 2022. Evaluation and source analysis of heavy metal pollution in sediments of the Yellow River basin based on Monte Carlo simulation and PMF model[J]. Environmental Science, 43(8): 4008-4017. | |
[51] | 徐晓丹, 马志影, 张杰, 等, 2021. 植物叶表毛状体对空气PM净沉降的影响[J]. 中国城市林业, 19(6): 35-40. |
XU X D, MA Z Y, ZHANG J, et al., 2021. Effects of leaf-surface trichomes on the net-deposition of airborne particulate matters[J]. Journal of Chinese Urban Forestry, 19(6): 35-40. | |
[52] | 王景云, 乔鹏炜, 杨军, 等, 2018. 基于空间结构特征的土壤Cu、Pb来源解析——以北京市东南郊污灌区为例[J]. 植物营养与肥料学报, 24(1): 195-202. |
WANG J Y, QIAO P W, YANG J, et al., 2018. Source tracing of soil Cu and Pb based on spatial structure characteristics: A case study in the sewage irrigated area in the southeast suburb of Beijing[J]. Journal of Plant Nutrition and Fertilizers, 24(1): 195-202. | |
[53] | 王子诚, 陈梦霞, 杨毓贤, 等, 2021. 铜胁迫对植物生长发育影响与植物耐铜机制的研究进展[J]. 植物营养与肥料学报, 27(10): 1849-1863. |
WANG Z C, CHEN M X, YANG Y X, et al., 2021. Effects of copper stress on plant growth and advances in the mechanisms of plant tolerance research[J]. Journal of Plant Nutrition and Fertilizers, 27(10): 1849-1863. | |
[54] | 邬建国, 2007. 景观生态学:格局、 过程、尺度与等级[M]. 2版. 北京: 高等教育出版社. |
WU J G, 2007. Landscape ecology:Pattern, process, scale and hierarchy[M]. 2nd edition. Beijing: Higher Education Press. | |
[55] | 中华人民共和国国土资源部, 2016. 土地质量地球化学评价规范: DZ/T 0295—2016[S]. 北京: 中国地质大学. |
Ministry of Land and Resources of the People’s Republic of China, 2016. Specification of land quality geochemical assessment: DZ/T 0295—2016[S]. Beijing: China University of Geosciences. | |
[56] | 郑袁明, 余轲, 吴泓涛, 等, 2002. 北京城市公园土壤铅含量及其污染评价[J]. 地理研究, 21(4): 418-424. |
ZHENG Y M, YU K, WU H T, et al., 2002. Lead concentrations of soils in Beijing urban parks and their pollution assessment[J]. Geographical Research, 21(4): 418-424. |
[1] | 张任菲, 肖萌, 刘志成. 京津冀地区景观破碎化的时空异质性及驱动因素研究[J]. 生态环境学报, 2025, 34(3): 461-473. |
[2] | 刘东宜, 屈永华, 冯耀伟, 屈冉. 基于网格搜索优化CatBoost模型的GF-5卫星影像铬离子含量反演研究[J]. 生态环境学报, 2024, 33(9): 1460-1470. |
[3] | 吴文伟, 沈城, 沙晨燕, 林匡飞, 吴健, 谢雨晴, 周璇. 城市工业地块土壤重金属污染风险评价与源解析[J]. 生态环境学报, 2024, 33(5): 791-801. |
[4] | 古佳玮, 郭彩霞, 朱铧楠, 谭玉坤, 陈红跃. 广东丰溪省级自然保护区景观格局变化及其驱动力研究[J]. 生态环境学报, 2024, 33(2): 222-230. |
[5] | 唐舒娅, 王春辉, 宋靖, 李刚. 环象山港区域土壤重金属污染特征及风险评估[J]. 生态环境学报, 2024, 33(11): 1768-1781. |
[6] | 刘炳妤, 王一佩, 姚作芳, 杨钙仁, 徐晓楠, 邓羽松, 黄钰涵. 沼液还田下不同种植模式的重金属风险评价及安全消纳量分析[J]. 生态环境学报, 2023, 32(8): 1507-1515. |
[7] | 张钧韦, 夏圣洁, 陈慧儒, 刘艳红. 山西中部城市群景观格局演变对其热环境的影响研究[J]. 生态环境学报, 2023, 32(5): 943-955. |
[8] | 陈敏毅, 朱航海, 佘伟铎, 尹光彩, 黄祖照, 杨巧玲. 珠三角某遗留造船厂场地土壤重金属人体健康风险评估及源解析[J]. 生态环境学报, 2023, 32(4): 794-804. |
[9] | 肖洁芸, 周伟, 石佩琪. 土壤重金属含量高光谱反演[J]. 生态环境学报, 2023, 32(1): 175-182. |
[10] | 王晨茜, 张琼锐, 张若琪, 孙学超, 徐颂军. 广东省珠江流域景观格局对水质净化服务的影响[J]. 生态环境学报, 2022, 31(7): 1425-1433. |
[11] | 施建飞, 靳正忠, 周智彬, 王鑫. 额尔齐斯河流域典型尾矿库区周边土壤重金属污染评价[J]. 生态环境学报, 2022, 31(5): 1015-1023. |
[12] | 余斐, 叶彩红, 许窕孜, 张中瑞, 朱航勇, 张耕, 华雷, 邓鉴锋, 丁晓纲. 韶关市花岗岩地区森林土壤重金属污染评价[J]. 生态环境学报, 2022, 31(2): 354-362. |
[13] | 刘娣, 苏超, 张红, 秦冠宇. 典型煤炭产业聚集区土壤重金属污染特征与风险评价[J]. 生态环境学报, 2022, 31(2): 391-399. |
[14] | 玄锦, 李祖婵, 邹诚, 秦子博, 吴雅华, 黄柳菁. 江心洲景观类型和格局对植物多样性的多尺度影响——以闽江流域福州段为例[J]. 生态环境学报, 2022, 31(12): 2320-2330. |
[15] | 刘志坚, 董元华, 张琇, 卿成实. 卫宁平原农用地土壤重金属污染特征与生态风险研究[J]. 生态环境学报, 2022, 31(11): 2216-2224. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||