生态环境学报 ›› 2025, Vol. 34 ›› Issue (8): 1282-1292.DOI: 10.16258/j.cnki.1674-5906.2025.08.013
林嘉茵1,2(), 侯玉婷1,2, 曾海岑1,2, 李伟志5, 李冬琴4, 叶挺进3, 陈火君1,2,*(
)
收稿日期:
2024-12-05
出版日期:
2025-08-18
发布日期:
2025-08-01
通讯作者:
*E-mail: 作者简介:
林嘉茵(2000年生),女,硕士研究生,从事农业面源、重金属防控污染和绿色投入品研究。E-mail: ljylf0723@163.com
基金资助:
LIN Jiayin1,2(), HOU Yuting1,2, ZENG Haicen1,2, LI Weizhi5, LI Dongqin4, YE Tingjin3, CHEN Huojun1,2,*(
)
Received:
2024-12-05
Online:
2025-08-18
Published:
2025-08-01
摘要:
原位钝化技术作为一种简洁高效的土壤重金属化学修复手段,被广泛认为是实现镉污染农田安全生产的重要技术途径。为寻求高效经济的镉污染土壤钝化材料,以不同比例尾矿与石灰石进行混合,通过高温煅烧制备出粉末状(Calcium Silicate Powder,CSP)和球形(Calcium Silicate Sphere,CSS)硅钙基钝化材料。采用柠檬酸浸提缓释法研究两种硅钙基材料有效硅的释放特性,并通过土壤厌氧-好氧培养试验,评估不同形状硅钙基材料及其投加量对土壤中镉有效性的影响。结果表明,制备的CSP有效硅含量达20.3%,二氧化硅的活化率显著提高至60.8%,显著高于单一尾矿粉或石灰石粉。两种材料相比,CSS的初期溶出率为2.6%,表现出良好的缓释特性。两种硅钙基材料的施用显著提高了土壤pH值,降低了孔隙水中亚铁离子浓度,进而有效减少了土壤中镉的有效性。当两种材料的投加量为0.8%时,与对照组(不添加钝化材料)相比,CSP和CSS使土壤水溶态镉含量分别降低90.2%和61.4%,CaCl2提取态镉分别降低42.4%和24.3%,且土壤中可交换态镉显著转化为残渣态镉,其中添加0.8%CSP的效果最佳,可交换态镉降低了15.6%。综上,两种硅钙基材料均能显著提高土壤pH及有效硅含量,CSS相比CSP具有更显著的缓释特性,而CSP因比表面积大、吸附能力强,在降低土壤镉有效性方面效果更为优异,在镉污染土壤修复中具有重要应用潜力。
中图分类号:
林嘉茵, 侯玉婷, 曾海岑, 李伟志, 李冬琴, 叶挺进, 陈火君. 硅钙基材料的制备及其对镉污染土壤钝化效果研究[J]. 生态环境学报, 2025, 34(8): 1282-1292.
LIN Jiayin, HOU Yuting, ZENG Haicen, LI Weizhi, LI Dongqin, YE Tingjin, CHEN Huojun. Preparation of Silicon-calcium-based Materials and Their Passivation Effects on Cadmium Contaminated Soil[J]. Ecology and Environmental Sciences, 2025, 34(8): 1282-1292.
图1 球形硅钙基钝化材料(CSS)与粉末状硅钙基钝化材料(CSP)样品图
Figure 1 Sample diagram of sphere calcium silicate-based passivation material (CSS) and powdered calcium silicate-based passivation material (CSP)
材料类型 | w(SiO2)/% | w(CaO)/% | w(Al2O3)/% | w(Fe2O3)/% | w(MgO)/% | w(K2O)/% |
---|---|---|---|---|---|---|
尾矿粉 | 83.18 | 3.38 | 6.37 | 0.69 | 0.35 | 1.88 |
石灰石粉 | 7.09 | 80.76 | 1.82 | 12.70 | 8.11 | 0.56 |
表1 材料的基本氧化物模式组成
Table 1 Basic oxide mode composition of materials %
材料类型 | w(SiO2)/% | w(CaO)/% | w(Al2O3)/% | w(Fe2O3)/% | w(MgO)/% | w(K2O)/% |
---|---|---|---|---|---|---|
尾矿粉 | 83.18 | 3.38 | 6.37 | 0.69 | 0.35 | 1.88 |
石灰石粉 | 7.09 | 80.76 | 1.82 | 12.70 | 8.11 | 0.56 |
材料类型 | w(Cd)/ (mg·kg−1) | w(As)/ (mg·kg−1) | w(Cr)/ (mg·kg−1) | w(Pd)/ (mg·kg−1) |
---|---|---|---|---|
尾矿粉 | 0.18 | 6.27 | 40.35 | 14.21 |
石灰石粉 | - | 2.12 | 35.32 | 17.53 |
土壤调理剂通用要求(NY/T 3034— | 10 | 10 | 50 | 50 |
表2 供试材料各重金属总质量分数
Table 2 Total content of each heavy metal in the test materials
材料类型 | w(Cd)/ (mg·kg−1) | w(As)/ (mg·kg−1) | w(Cr)/ (mg·kg−1) | w(Pd)/ (mg·kg−1) |
---|---|---|---|---|
尾矿粉 | 0.18 | 6.27 | 40.35 | 14.21 |
石灰石粉 | - | 2.12 | 35.32 | 17.53 |
土壤调理剂通用要求(NY/T 3034— | 10 | 10 | 50 | 50 |
硅钙基材料 | 有效硅释放率/% | Sin/ % | Sd/ % | ||||||
---|---|---|---|---|---|---|---|---|---|
1 d | 2 d | 3 d | 4 d | 5 d | 6 d | 7 d | |||
CSS | 2.622 | 5.170 | 1.234 | 2.202 | 3.066 | 2.103 | 2.488 | 2.622 | 2.711 |
CSP | 14.701 | 10.538 | 12.493 | 7.951 | 4.943 | 2.965 | 1.437 | 14.701 | 6.725 |
表3 硅钙基材料的初期溶出率(Sin)和微分溶出率(Sd)
Table 3 Initial dissolution percentage (Sin) and differential dissolution percentage (Sd) of silica-calcium based materials
硅钙基材料 | 有效硅释放率/% | Sin/ % | Sd/ % | ||||||
---|---|---|---|---|---|---|---|---|---|
1 d | 2 d | 3 d | 4 d | 5 d | 6 d | 7 d | |||
CSS | 2.622 | 5.170 | 1.234 | 2.202 | 3.066 | 2.103 | 2.488 | 2.622 | 2.711 |
CSP | 14.701 | 10.538 | 12.493 | 7.951 | 4.943 | 2.965 | 1.437 | 14.701 | 6.725 |
图6 不同处理土壤中pH、Eh及悬浊液中亚铁、水溶态硅质量分数的变化曲线
Figure 6 Variation curves of pH, Eh and Fe(H2O) (Ⅱ) and water soluble silicon in the suspensions of different treated soils
图8 不同处理水溶态镉及CaCl2提取态镉质量分数的变化曲线
Figure 8 Variation curves of water soluble cadmium and cadmium in CaCl2 extracted state content in different treatments
[1] | CHEN H, SUN Q, ZHANG J, et al., 2022. Effect of MgF2 addition on sinterability and mechanical properties of fluorapatite ceramic composites fabricated by wollastonite and phosphate glass[J]. Ceramics International, 48(14): 20400-20408. |
[2] | CHEN Z Q, FU Q Q, CAO Y S, et al., 2021. Effects of lime amendment on the organic substances changes, antibiotics removal, and heavy metals speciation transformation during swine manure composting[J]. Chemosphere, 262: 128342. |
[3] | HONG Z B, HU S W, YANG Y, et al., 2023. The key roles of Fe oxyhydroxides and humic substances during the transformation of exogenous arsenic in a redox-alternating acidic paddy soil[J]. Water Research, 242: 120286. |
[4] | HU Y N, HE K L, SUN Z H, et al., 2020. Quantitative source apportionment of heavy metal(loid)s in the agricultural soils of an industrializing region and associated model uncertainty[J]. Journal of Hazardous Materials, 391: 122244. |
[5] | JIA Q, HU M, ZHANG Y Y, et al., 2017. Effect of silicon-calcium fertilizer on Pb and Cd absorption by rice in heavy metal polluted farmland[J]. Environmental Science & Technology (China), 40(6): 24-30. |
[6] |
LIU Z, WANG Q Q, HUANG S Y, et al., 2022. The risks of sulfur addition on cadmium accumulation in paddy rice under different water-management conditions[J]. Journal of Environmental Sciences, 118: 101-111.
DOI PMID |
[7] | LONG L L, HUANG N, LIU X, et al., 2023. Enhanced silicate remediation in cadmium-contaminated alkaline soil: Amorphous structure improves adsorption performance[J]. Journal of Environmental Management, 326(Part B): 116760. |
[8] |
MENG H B, HU S W, HONG Z B, et al., 2024. Effects of zero-valent iron added in the flooding or drainage process on cadmium immobilization in an acid paddy soil[J]. Journal of Environmental Sciences, 138: 19-31.
DOI PMID |
[9] | MU J, HU Z Y, HUANG L J, et al., 2020. Preparation of a silicon-iron amendment from acid-extracted copper tailings for remediating multi-metal-contaminated soils[J]. Environmental Pollution, 257: 113565. |
[10] | TABIT K, HAJJOU H, WAQIF M, et al., 2020. Effect of CaO/SiO2 ratio on phase transformation and properties of anorthite-based ceramics from coal fly ash and steel slag[J]. Ceramics International, 46(6): 7550-7558. |
[11] | TESSIER A, CAMPBELL P G C, BISSON M, 1979. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 51(7): 844-851. |
[12] | ULLAH A, TAHIR A, RASHID H U, et al., 2021. Strategies for reducing Cd concentration in paddy soil for rice safety[J]. Journal of Cleaner Production, 316: 128116. |
[13] | WANG C C, ZHANG Q C, YAN C G, et al., 2023. Heavy metal(loid)s in agriculture soils, rice, and wheat across China: Status assessment and spatiotemporal analysis[J]. Science of the Total Environment, 882: 163361. |
[14] | WANG G X, HU Z Y, LI S Y, et al., 2020. Sulfur controlled cadmium dissolution in pore water of cadmium-contaminated soil as affected by DOC under waterlogging[J]. Chemosphere, 240: 124846. |
[15] | WU Q M, HU W Y, WANG H F, et al., 2021. Spatial distribution, ecological risk and sources of heavy metals in soils from a typical economic development area, Southeastern China[J]. Science of the Total Environment, 780(1): 146557. |
[16] | WU W, JIANG M, JIN X, et al., 2022. Effects of pH and temperature on the properties of green synthesised iron oxide nanoparticles[J]. Contemporary Chemical Research, 23: 32-34. |
[17] |
ZHANG Y, WANG X, JI X H, et al., 2019. Effect of a novel Ca-Si composite mineral on Cd bioavailability, transport and accumulation in paddy soil-rice system[J]. Journal of Environmental Management, 233: 802-811.
DOI PMID |
[18] | 敖顺福, 2021. 有色金属矿山尾矿综合利用进展[J]. 矿产保护与利用, 41(3): 94-103. |
AO S F, 2021. Research progress of comprehensive utilization of nonferrous metals mine tailings[J]. Conservation and Utilization of Mineral Resources, 41(3): 94-103. | |
[19] | 陈盾, 王小兵, 汪晓丽, 等, 2020. 镉污染红壤的钝化剂筛选及钝化效果[J]. 生态与农村环境学报, 36(1): 115-120. |
CHEN D, WANG X B, WANG X L, et al., 2020. Screening of passivators for cadmium-contaminated red soil and their effects on soil remediation[J]. Journal of Ecology and Rural Environment, 36(1): 115-120. | |
[20] | 高宝林, 张冉, 高兴, 等, 2021. 适用于设施土壤镉钝化的材料选择与施用[J]. 中国蔬菜 (11): 17-26. |
GAO B L, ZHANG R, GAO X, et al., 2021. Selection and application of soil amendments for remediating cadmium-contaminated greenhouse soils[J]. China Vegetables (11): 17-26. | |
[21] | 国家市场监督管理总局, 2022. 土壤质量铅、镉的测定石墨炉原子吸收光谱法: GB/T 17141—2022[S]. 北京: 中国标准出版社. |
State Administration for Market Regulation of China, 2022. Soil quality -Determination of lead and cadmium-Graphite furnace atomic absorption spectrometry: GB/T 17141—2022[S]. Beijing: Standards Press of China. | |
[22] | 何明江, 李章涛, 上官宇先, 等, 2024. 农田土壤重金属外源识别及安全利用技术筛选——以宜宾市筠连县部分区域为例[J]. 西南农业学报, 37(6): 1340-1348. |
HE M J, LI Z T, SHANGGUAN Y X, et al., 2024. Source identification and screening of safe utilization methods of farmland soil heavy metals: Taking parts of Junlian county of Yibin as an example[J]. Southwest China Journal of Agricultural Sciences, 37(6): 1340-1348. | |
[23] | 胡榆杰, 伍钧, 杨刚, 等, 2023. 不同微塑料对水稻土性质、镉有效性及其形态的影响[J]. 农业环境科学学报, 42(8): 1721-1728. |
HU Y J, WU J, YANG G, et al., 2023. Effects of different microplastics on soil properties and Cd availability and fraction in paddy soil[J]. Journal of Agro-Environment Science, 42(8): 1721-1728. | |
[24] | 环境保护部, 国土资源部, 2014. 全国土壤污染状况调查公报[J]. 中国环保产业 (5): 8-10. |
Ministry of Environmental Protection, Ministry of Land and Resources, 2014. Report on the national general survey of soil contamination[J]. China Environmental Protection Industry (5): 8-10. | |
[25] | 黄蕊, 魏维, 谢运河, 等, 2023. 不同性质硅肥影响土壤生物有效态镉砷的主要因素[J]. 环境科学, 44(2): 991-1002. |
HUANG R, WEI W, XIE Y H, et al., 2023. Primary factors affecting soil bioavailable cadmium and asenic by different properties of silicon fertilizer[J]. Environmental Science, 44(2): 991-1002. | |
[26] | 姜德才, 蒋珍茂, 魏世强, 2025. 制约钝化剂对紫色土砷和镉污染修复效果的土壤性质因素分析[J]. 环境科学, 46(2): 1130-1144. |
JIANG D C, JIANG Z M, WEI S Q, et al., 2025. Analysis of soil property factors restricting the remediation effect of passivation agents on arsenic and cadmium pollution in purple soil[J]. Environmental Science, 46(2): 1130-1144. | |
[27] | 李文超, 王海军, 王雪峰, 等, 2020. 全国矿山资源节约与综合利用报告[M]. 北京: 地质出版社. |
LI W C, WANG H J, WANG X F, et al., 2020. National report on the conservation and comprehensive utilisation of mining resources[M]. Beijing: Geological Press. | |
[28] | 梁韵, 侯孟彬, 张维, 等, 2023. 胶体态及溶解态有机质对土壤镉吸附的影响[J]. 农业环境科学学报, 42(6): 1285-1293. |
LIANG Y, HOU M B, ZHANG W, et al., 2023. Effects of colloidal and dissolved organic matters on Cd adsorption in soil[J]. Journal of Hazardous Materials, 42(6): 1285-1293. | |
[29] | 梁志鹏, 孙畅, 毕万利, 等, 2022. 高硅型铁尾矿机械活化效果及机理研究[J]. 硅酸盐通报, 41(8): 2810-2818. |
LIANG Z P, SUN C, BI W L, et al., 2022. Mechanical activation of high silicon iron tailings and its mechanism[J]. Bulletin of the Chinese Ceramic Society, 41(8): 2810-2818. | |
[30] | 刘志豪, 胡宇聪, 张家鹏, 等, 2024. 不同钝化剂对镉污染稻田的修复效果比较[J]. 华中农业大学学报, 43(3): 176-184. |
LIU Z H, HU Y C, ZHANG J H, et al., 2024. Comparison of remediation effects of different passivators on cadmium-contaminated rice paddy[J]. Journal of Huazhong Agricultural University, 43(3): 176-184. | |
[31] | 邱炜, 周通, 李远, 等, 2022. 改性及复合黏土矿物调理剂对土壤镉有效性和稻米镉含量的影响[J]. 生态与农村环境学报, 38(5): 654-659. |
QIU W, ZHOU T, LI Y, et al., 2022. Effects of the modified and compounded clay Mineral conditioners on cadmium availability in soil and cadmium content in brown rice[J]. Journal of Ecology and Rural Environment, 38(5): 654-659. | |
[32] | 全国肥料和土壤调理剂标准化技术委员会, 2011. 脲甲醛缓释肥料: HG/T 4216—2011[S]. 北京: 中国标准出版社. |
National Technical Committee on Fertilizers and Soil Conditioners of China, 2011. Slow-release fertilizer of urea-formaldehyde condensate: HG/T 4216—2011[S]. Beijing: Standards Press of China. | |
[33] | 石晓莉, 杜根杰, 张铭, 等, 2022. 尾矿综合利用产业存在的问题及建议[J]. 现代矿业, 38(2): 38-40, 44. |
SHI X L, DU G J, ZHANG M, et al., 2022. Problems and suggestions of comprehensive utilization industrail of tailings[J]. Modern Mining, 38(2): 38-40, 44. | |
[34] | 孙华康, 李晨晓, 王书桓, 等, 2022. 小颗粒石灰石高温快速煅烧微观组织演变行为研究[J]. 炼钢, 38(5): 38-42, 58. |
SUN H K, LI C X, WANG S H, et al., 2022. Research on microstructure evolution behavior of small particle limestone during rapid calcination at high temperature[J]. Steelmaking, 38(5): 38-42, 58. | |
[35] | 唐碧玉, 施意华, 邱丽, 等, 2019. 电感耦合等离子体质谱法测定土壤中6种重金属可提取态的含量[J]. 理化检验(化学分册), 55(7): 846-852. |
TANG B Y, SHI Y H, QIU L, et al., 2019. Determination of six extractable heavy metals in soil by ICP-MS[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 55(7): 846-852. | |
[36] | 田雪, 周文君, 张正蕊, 等, 2019. 不同时间下钝化剂对污染土壤中Cd和Pb的钝化效果[J]. 生态与农村环境学报, 35(4): 522-528. |
TIAN X, ZHOU W J, ZHANG Z L, et al., 2019. Deactivation effects of deactivators on cadmium and plumbum polluted soil at different times[J]. Journal of Ecology and Rural Environment, 35(4): 522-528. | |
[37] | 吴乐诗, 余柏仲, 李冬琴, 等, 2024. 菜心与东南景天间作修复镉污染农田的生态效应[J]. 农业环境科学学报, 43(7): 1483-1491. |
WU L S, YU B Z, LI D Q, et al., 2024. Ecological effects of intercropping Brassica parachinensis and Sedum alfredii on the remediation of cadmium-contaminated farmland[J]. Journal of Hazardous Materials, 43(7): 1483-1491. | |
[38] | 吴霄霄, 曹榕彬, 米长虹, 等, 2019. 重金属污染农田原位钝化修复材料研究进展[J]. 农业资源与环境学报, 36(3): 253-263. |
WU X X, CAO R B, MI C H, et al., 2019. Research progress of in-situ passivated remedial materials for heavy metal contaminated soil[J]. Journal of Agricultural Resources and Environment, 36(3): 253-263. | |
[39] |
俞朝, 王音予, 刘奇珍, 等, 2024. 不同原料生物炭与无机钝化剂配施对小白菜地上部镉积累和土壤镉钝化的影响[J]. 浙江农业学报, 36(3): 613-621.
DOI |
YU Z, WANG Y Y, LIU Q Z, et al., 2024. Effects of application of biochar from different raw materials combined with inorganic amendments on cadmium accumulation in pakchoi shoots and soil cadmium inactivation[J]. Acta Agriculturae Zhejiangensis, 36(3): 613-621.
DOI |
|
[40] | 张丛香, 刘润华, 刘双安, 等, 2016. 利用铁尾矿改良苏打盐碱地技术研究与应用[J]. 矿业工程, 14(1): 39-41. |
ZHANG C X, LIU R H, LIU S A, et al., 2016. Research and application of improving the soda-based saline-alkali land technology by iron tailings[J]. Mining Engineering, 14(1): 39-41. | |
[41] | 张剑, 孔繁艺, 卢升高, 2022. 无机钝化剂对镉污染酸性水稻土的修复效果及其机制[J]. 环境科学, 43(10): 4679-4686. |
ZHANG J, KONG F Y, LU S G, 2022. Remediation effect and mechanism of inorganic passivators on cadmium contaminated acidic paddy soil[J]. Environmental Science, 43(10): 4679-4686. | |
[42] |
章明奎, 倪中应, 谢国雄, 等, 2022. 基于污染土壤基础性状的镉钝化材料选择与应用探讨[J]. 浙江农业科学, 63(1): 170-173.
DOI |
ZHANG M K, NI Z Y, XIE G X, et al., 2022. Selection and application of cadmium inactivation materials based on basic characteristics of contaminated soils[J]. Journal of Zhejiang Agricultural Sciences, 63(1): 170-173. | |
[43] | 郑建国, 于南树, 刘永秀, 等, 2019. 利用磷尾矿合成新型缓释肥料聚磷酸钙镁的试验研究[J]. 化工矿物与加工, 48(7): 64-67, 71. |
ZHENG J G, YU N S, LIU Y X, et al., 2019. Experimental study on synthesis of new slow release fertilizer calcium magnesium polyphosphate from phosphate tailings[J]. Industrial Minerals & Processing, 48(7): 64-67, 71. | |
[44] | 郑竞, 程波, 杨武, 等, 2022. 尾矿减量化、资源化和无害化实践状况与思考[J]. 矿山机械, 50(1): 38-43. |
ZHENG J, CHENG B, YANG W, et al., 2022. Practice and thinking on tailings reduction, recycling and harmlessness[J]. Mining & Processing Equipment, 50(1): 38-43. | |
[45] | 中华人民共和国农业农业部, 2006. 土壤检测第15部分:土壤有效硅的测定: NY/T 1121.15—2006[S]. 北京: 中国标准出版社. |
Ministry of Agriculture and Rural Development of the People’ s Republic of China, 2006. Soil testing-Part 15: Determination of available silicon in soil: NY/T 1121.15—2006[S]. Beijing: Standards Press of China. | |
[46] | 中华人民共和国农业农村部, 2016. 土壤调理剂通用要求: NY/T 3034—2016[S]. 北京: 中国农业出版社. |
Ministry of Agriculture and Rural Affairs of the People’ s Republic of China, 2016. General requirements for soil conditioners: NY/T 3034—2016[S]. Beijing: China Agriculture Press. | |
[47] | 中华人民共和国生态环境部, 2015. 土壤氧化还原电位的测定电位法: HJ 746—2015[S]. 北京: 中国环境科学出版社. |
Ministry of Ecology and Environment of China, 2015. Determination of soil redox potential: Potentiometry: HJ 746—2015[S]. Beijing: China Environmental Science Press. | |
[48] | 中华人民共和国生态环境部, 2016. 土壤 8种有效态元素的测定二乙烯三胺五乙酸浸提-电感耦合等离子体发射光谱法: HJ 803—2016[S]. 北京: 中国环境科学出版社. |
Ministry of Ecology and Environment of China, 2016. Soil - Determination of bioavailable form of eight elements - Extraction with buffered DTPA solution/Inductively coupled plasma optical emission spectrometry: HJ 803—2016[S]. Beijing: China Environmental Science Press. | |
[49] | 中华人民共和国生态环境部, 2018. 土壤 pH 值的测定电位法: HJ 962—2018[S]. 北京: 中国环境出版社. |
Ministry of Ecology and Environment of China, 2018. Determination of soil pH: Potentiometry: HJ 962—2018[S]. Beijing: China Environmental Publishing Group. | |
[50] |
周亮, 肖峰, 肖欢, 等, 2021. 施用石灰降低污染稻田上双季稻镉积累的效果[J]. 中国农业科学, 54(4): 780-791.
DOI |
ZHOU L, XIAO F, XIAO H, et al., 2021. Effects of lime on cadmium accumulation of double-season rice in paddy fields with different cadmium pollution degrees[J]. Scientia Agricultura Sinica, 54(4): 780-791.
DOI |
|
[51] | 周新元, 齐丽彬, 多晶, 等, 2024. 木醋液强化牧草修复石灰性Cd污染土壤效果研究[J]. 农业资源与环境学报, 36(3): 327-332. |
ZHOU X Y, QI L B, DUO J, et al., 2024. Enhanced remediation of Cd-contaminated calcareous soil with herbage by wood vinegar[J]. Journal of Agricultural Resources and Environment, 36(3): 327-332. |
[1] | 彭浩, 孙宏图, 滕柯延, 张爱玲, 吴迪, 朱培. 关于在核设施退役中加强土壤污染监管与防治工作的思考[J]. 生态环境学报, 2025, 34(8): 1203-1211. |
[2] | 李雪, 王震, 毛雪飞. 聚乙烯与聚丙烯微塑料对镉胁迫下水稻幼苗生长及抗氧化作用的影响[J]. 生态环境学报, 2025, 34(7): 1053-1063. |
[3] | 贺环, 周丹丹, 马芷萱, 李芳芳, 秦珊珊, 豆思娴. 钙改性对生物炭中溶解性有机质与Cd(Ⅱ)结合的影响[J]. 生态环境学报, 2025, 34(7): 1121-1132. |
[4] | 欧阳群文, 郭小平, 郝嘉航, 郭宇. 基于种子库视角的北京市高速路边坡喷播植被演替特征研究[J]. 生态环境学报, 2025, 34(6): 941-949. |
[5] | 黄邓铃尧, 唐炳然, 马媛媛, 何强, 李宏. 水稻土中砷对氮素转化的影响:以紫色土为例[J]. 生态环境学报, 2025, 34(5): 784-795. |
[6] | 崔雪丹, 段桂兰, 王向琴, 李志丰, 窦飞, 杜衍红, 袁雨珍, 刘传平, 李芳柏. 基于两地长期定位试验的铁改性木本泥炭修复中轻度镉砷污染稻田效果与土壤健康效应评价[J]. 生态环境学报, 2025, 34(4): 608-620. |
[7] | 吴昕优, 涂晨, 刘国明, 杨帅, 王译, 王旭洋, 骆润来, 李忠元, 骆永明. 毫米级磁性复合黏土矿物修复材料的结构、性质及其对镉的吸附特征[J]. 生态环境学报, 2025, 34(4): 621-630. |
[8] | 张淑娟, 陈昕龙, 亓静凡, 董月晓, 于佳正, 尤朝阳. 基于丛枝菌根的钒污染土壤修复[J]. 生态环境学报, 2025, 34(4): 631-641. |
[9] | 陈岩, 石成龙, 李璞君, 肖江, 陈光才. 含重金属林木生物质与骨粉共水热液相产物:解析及应用潜力初步评价[J]. 生态环境学报, 2025, 34(4): 642-652. |
[10] | 王龙飞, 张皎皎, 王子怡, 陈玉东, 李轶. 生物膜技术在河湖生态修复中的创新与实践[J]. 生态环境学报, 2025, 34(4): 653-664. |
[11] | 许铭宇, 俞龙生. 农林废弃有机材料对离子型稀土矿尾砂的土壤改良效应[J]. 生态环境学报, 2025, 34(1): 126-134. |
[12] | 韩军超, 郑茂坤, 涂晨, 刘颖, 曹振宇, 邢倩雯, 申卫收, 骆永明. 趋磁细菌在环境污染修复中的应用研究进展与展望[J]. 生态环境学报, 2025, 34(1): 145-155. |
[13] | 叶俊宏, 刘珍环, 刘子瑜. 珠江三角洲城市群国土空间生态修复分区情景模拟[J]. 生态环境学报, 2025, 34(1): 4-12. |
[14] | 宁静, 王淳, 卢莞玲, 韦露. 斑马鱼暴露于镉和褪黑素引起肠道组织、氧化损伤及微生物多样性变化[J]. 生态环境学报, 2025, 34(1): 77-88. |
[15] | 曹振宇, 涂晨, 刘颖, 韩军超, 邢倩雯, 骆永明. 趋磁细菌Magnetospirillum gryphiswaldense MSR-1对镉的生物吸附初步研究[J]. 生态环境学报, 2025, 34(1): 99-107. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||