生态环境学报 ›› 2025, Vol. 34 ›› Issue (9): 1421-1431.DOI: 10.16258/j.cnki.1674-5906.2025.09.009
李冬林1,3(), 张姣佼1,3, 杨磊2, 王鹏2, 何冬梅3
收稿日期:
2025-02-12
出版日期:
2025-09-18
发布日期:
2025-09-05
作者简介:
李冬林(1969年生),男,研究员,博士,研究方向为湿地生态学。E-mail: 704020830@qq.com
基金资助:
LI Donglin1,3(), ZHANG Jiaojiao1,3, YANG Lei2, WANG Peng2, HE Dongmei3
Received:
2025-02-12
Online:
2025-09-18
Published:
2025-09-05
摘要: 滨海湿地是自然界遭受人类活动干扰最频繁、退化最严重的生态系统之一,实施以遏制滨海土壤退化、促进植被进展演替、改善动植物栖息地生境为目标的湿地修复尤为迫切。在江苏盐城通过实施土地平整+水系连通+碱蓬复播(Ⅰ)、土地平整+水系连通(Ⅱ)、土地平整+自然生长(Ⅲ)等3种处理技术,研究了水系连通与碱蓬复播对滨海湿地植被恢复、土壤理化及酶活性的影响,比较了不同修复措施对湿地碱蓬生长、土壤理化性质及酶活性的效应。结果表明:处理区植被恢复效果明显,植物回归22 种,覆盖6个科19属,处理Ⅰ和处理Ⅱ下植被盖度分别达58%、46%,显著高于对照(19%),并以碱蓬植物占绝对优势;水系连通处理后土壤主要物理参数变化不明显,SOC、TN、AP质量分数显著降低,而AK、SS质量分数显著增加;水系连通措施促进了表层土壤CAT活性提高,但短期内对深层次ALP、SUE活性的影响作用不显著。相关分析表明,SOC与TN、AP呈极显著正相关(p<0.01),与AK、SS呈极显著负相关(p<0.01),3种土壤酶活性与土壤理化指标间的相关性均不显著(p>0.05)。冗余分析表明,0-10 cm深度土壤SOC、AK、SS、TN、CAT、ALP活性与植被恢复指标呈显著正相关(p<0.05),BD、SWC、NCP、AP、SUE活性与其呈显著负相关(p<0.05)。该研究结果可为滨海退化湿地实施生态修复及盐土改良提供一定的技术参考。
中图分类号:
李冬林, 张姣佼, 杨磊, 王鹏, 何冬梅. 水系连通与碱蓬复播对滨海退化湿地植被恢复及土壤理化性质的影响[J]. 生态环境学报, 2025, 34(9): 1421-1431.
LI Donglin, ZHANG Jiaojiao, YANG Lei, WANG Peng, HE Dongmei. The Influence of Water System Connectivity and Reseeding of Suaeda glauca on Vegetation Restoration and Soil Physical and Chemical Properties in Degraded Coastal Wetlands[J]. Ecology and Environmental Sciences, 2025, 34(9): 1421-1431.
中文名 | 学名 | 科 | 属 | 生活型 | 处理区 | ||
---|---|---|---|---|---|---|---|
Ⅰ | Ⅱ | Ⅲ | |||||
盐地碱蓬 | Suaeda salsa | 苋科 | 碱蓬属 | 一年生 | √ | √ | |
碱蓬 | Suaeda glauca | 苋科 | 碱蓬属 | 一年生 | √ | √ | √ |
小藜 | Chenopodium album | 藜科 | 藜属 | 一年生 | √ | ||
灰绿藜 | Oxybasis glauca | 藜科 | 藜属 | 一年生 | √ | ||
萝藦 | Metaplexis japonica | 萝藦科 | 萝藦属 | 一年生 | √ | ||
互花米草 | Spartina alterniflora | 禾本科 | 米草属 | 多年生 | √ | √ | √ |
芦苇 | Phragmites australis | 禾本科 | 芦苇属 | 多年生 | √ | √ | |
鹅观草 | Elymus kamoji | 禾本科 | 鹅观草属 | 一年生 | √ | √ | √ |
白茅 | Imperata cylindrica | 禾本科 | 白茅属 | 多年生 | √ | √ | √ |
牛筋草 | Eleusine indica | 禾本科 | 牛筋草属 | 一年生 | √ | √ | √ |
狗尾草 | Setaria viridis | 禾本科 | 狗尾草属 | 一年生 | √ | √ | √ |
马唐 | Digitaria sanguinalis | 禾本科 | 马唐属 | 一年生 | √ | √ | |
莎草 | Cyperus rotundus | 莎草科 | 莎草属 | 一年生 | √ | √ | √ |
山柳菊 | Hieracium umbellatum | 菊科 | 山柳菊属 | 一年生 | √ | √ | |
邹叶酸模 | Rumex crispus | 菊科 | 酸模属 | 一年生 | √ | ||
茵陈蒿 | Artemisia capillaris | 菊科 | 蒿属 | 多年生 | √ | √ | √ |
小蓟 | Cirsium arvense | 菊科 | 蓟属 | 一年生 | √ | √ | √ |
苦苣菜 | Sonchus oleraceus | 菊科 | 苦苣菜属 | 一年生 | √ | ||
野菊 | Dendranthema indicum | 菊科 | 菊属 | 一年生 | √ | √ | √ |
盐蒿 | Artemisia halodendron | 菊科 | 蒿属 | 一年生 | √ | √ | √ |
小蓬草 | Erigeron canadensis | 菊科 | 飞蓬属 | 一年生 | √ | √ | |
盐角草 | Salicornia europaea | 苋科 | 盐角草属 | 一年生 | √ | √ |
表1 不同处理区回归植物名录及分布
Table 1 List and distribution of plant species in different treatment areas
中文名 | 学名 | 科 | 属 | 生活型 | 处理区 | ||
---|---|---|---|---|---|---|---|
Ⅰ | Ⅱ | Ⅲ | |||||
盐地碱蓬 | Suaeda salsa | 苋科 | 碱蓬属 | 一年生 | √ | √ | |
碱蓬 | Suaeda glauca | 苋科 | 碱蓬属 | 一年生 | √ | √ | √ |
小藜 | Chenopodium album | 藜科 | 藜属 | 一年生 | √ | ||
灰绿藜 | Oxybasis glauca | 藜科 | 藜属 | 一年生 | √ | ||
萝藦 | Metaplexis japonica | 萝藦科 | 萝藦属 | 一年生 | √ | ||
互花米草 | Spartina alterniflora | 禾本科 | 米草属 | 多年生 | √ | √ | √ |
芦苇 | Phragmites australis | 禾本科 | 芦苇属 | 多年生 | √ | √ | |
鹅观草 | Elymus kamoji | 禾本科 | 鹅观草属 | 一年生 | √ | √ | √ |
白茅 | Imperata cylindrica | 禾本科 | 白茅属 | 多年生 | √ | √ | √ |
牛筋草 | Eleusine indica | 禾本科 | 牛筋草属 | 一年生 | √ | √ | √ |
狗尾草 | Setaria viridis | 禾本科 | 狗尾草属 | 一年生 | √ | √ | √ |
马唐 | Digitaria sanguinalis | 禾本科 | 马唐属 | 一年生 | √ | √ | |
莎草 | Cyperus rotundus | 莎草科 | 莎草属 | 一年生 | √ | √ | √ |
山柳菊 | Hieracium umbellatum | 菊科 | 山柳菊属 | 一年生 | √ | √ | |
邹叶酸模 | Rumex crispus | 菊科 | 酸模属 | 一年生 | √ | ||
茵陈蒿 | Artemisia capillaris | 菊科 | 蒿属 | 多年生 | √ | √ | √ |
小蓟 | Cirsium arvense | 菊科 | 蓟属 | 一年生 | √ | √ | √ |
苦苣菜 | Sonchus oleraceus | 菊科 | 苦苣菜属 | 一年生 | √ | ||
野菊 | Dendranthema indicum | 菊科 | 菊属 | 一年生 | √ | √ | √ |
盐蒿 | Artemisia halodendron | 菊科 | 蒿属 | 一年生 | √ | √ | √ |
小蓬草 | Erigeron canadensis | 菊科 | 飞蓬属 | 一年生 | √ | √ | |
盐角草 | Salicornia europaea | 苋科 | 盐角草属 | 一年生 | √ | √ |
处理 | 植被盖度/ % | 单位面积株数/ (plant·m−2) | 单位面积生物量/ (kg·m−2) | 单位面积碱蓬株数/ (plant·m−2) | 单位面积碱蓬生物量/ (kg·m−2) | 碱蓬株高/ cm |
---|---|---|---|---|---|---|
Ⅰ | 58±9a | 68±12a | 0.187±0.009a | 66±11a | 0.179±0.011a | 62.00±6a |
Ⅱ | 46±11a | 39±9b | 0.155±0.011b | 36±6b | 0.143±0.008b | 57.88±4a |
Ⅲ | 19±6b | 14±6c | 0.048±0.010c | 4±2c | 0.014±0.005c | 28.21±4b |
表2 不同处理区植被恢复指标的变化
Table 2 Variation of vegetation restoration indexes in different treatment areas
处理 | 植被盖度/ % | 单位面积株数/ (plant·m−2) | 单位面积生物量/ (kg·m−2) | 单位面积碱蓬株数/ (plant·m−2) | 单位面积碱蓬生物量/ (kg·m−2) | 碱蓬株高/ cm |
---|---|---|---|---|---|---|
Ⅰ | 58±9a | 68±12a | 0.187±0.009a | 66±11a | 0.179±0.011a | 62.00±6a |
Ⅱ | 46±11a | 39±9b | 0.155±0.011b | 36±6b | 0.143±0.008b | 57.88±4a |
Ⅲ | 19±6b | 14±6c | 0.048±0.010c | 4±2c | 0.014±0.005c | 28.21±4b |
处理 | 土壤深度/cm | SWC/% | BD/(g·cm−3) | CP/% | NCP/% | TP/% |
---|---|---|---|---|---|---|
Ⅰ | 0-10 | 0.79±0.14Ba | 1.46±0.12Aa | 44.94±4.80Ab | 0.58±0.26Bb | 45.52±5.53Aa |
10-20 | 0.89±0.24Aa | 1.53±0.09Aa | 42.72±6.07Ab | 0.64±0.18Bb | 43.36±6.93Ac | |
20-30 | 1.04±0.14Aa | 1.54 ±0.09Aa | 42.74±1.63Ab | 0.84±0.38Ab | 43.58±1.70Ab | |
Ⅱ | 0-10 | 1.57±0.20Aa | 1.51±0.19Aa | 44.14±4.08Ab | 0.66±0.17Ab | 44.54±4.26Aa |
10-20 | 1.22±0.33Aa | 1.42±0.11Aa | 46.44±3.90Ab | 0.56±0.05Ab | 46.78±4.44Ab | |
20-30 | 1.76±0.20Aa | 1.43 ±0.1Ab | 45.20±2.94Ab | 0.56±0.12Ac | 45.54±3.20Ab | |
Ⅲ | 0-10 | 1.05±0.31Aa | 1.14±0.03Ab | 55.16±2.29Aa | 0.92±0.23Aa | 56.08±2.63Aa |
10-20 | 1.02±0.51Aa | 1.34±0.2)Ab | 49.08±7.82Aa | 0.96±0.26Aa | 50.04±8.74Aa | |
20-30 | 1.33±0.39Aa | 1.33±0.19Ab | 48.52±4.71Aa | 0.94±0.24Aa | 49.46±5.25Aa |
表3 不同处理区湿地土壤物理参数的变化
Table 3 Variation of main soil physical indexes in different treatment areas
处理 | 土壤深度/cm | SWC/% | BD/(g·cm−3) | CP/% | NCP/% | TP/% |
---|---|---|---|---|---|---|
Ⅰ | 0-10 | 0.79±0.14Ba | 1.46±0.12Aa | 44.94±4.80Ab | 0.58±0.26Bb | 45.52±5.53Aa |
10-20 | 0.89±0.24Aa | 1.53±0.09Aa | 42.72±6.07Ab | 0.64±0.18Bb | 43.36±6.93Ac | |
20-30 | 1.04±0.14Aa | 1.54 ±0.09Aa | 42.74±1.63Ab | 0.84±0.38Ab | 43.58±1.70Ab | |
Ⅱ | 0-10 | 1.57±0.20Aa | 1.51±0.19Aa | 44.14±4.08Ab | 0.66±0.17Ab | 44.54±4.26Aa |
10-20 | 1.22±0.33Aa | 1.42±0.11Aa | 46.44±3.90Ab | 0.56±0.05Ab | 46.78±4.44Ab | |
20-30 | 1.76±0.20Aa | 1.43 ±0.1Ab | 45.20±2.94Ab | 0.56±0.12Ac | 45.54±3.20Ab | |
Ⅲ | 0-10 | 1.05±0.31Aa | 1.14±0.03Ab | 55.16±2.29Aa | 0.92±0.23Aa | 56.08±2.63Aa |
10-20 | 1.02±0.51Aa | 1.34±0.2)Ab | 49.08±7.82Aa | 0.96±0.26Aa | 50.04±8.74Aa | |
20-30 | 1.33±0.39Aa | 1.33±0.19Ab | 48.52±4.71Aa | 0.94±0.24Aa | 49.46±5.25Aa |
处理 | 土壤深度/cm | w(SOC)/(g·kg−1) | w(TN)/(g·kg−1) | w(AP)/(g·kg−1) | w(AK)/(g·kg−1) | w(SS)/(g·kg−1) |
---|---|---|---|---|---|---|
Ⅰ | 0-10 | 2.47± 0.10Ab | 0.27±0.23Ab | 8.58±4.24Ab | 0.60±0.22Aa | 4.32±1.53Aa |
10-20 | 2.58±0.90Ab | 0.21±0.13Ab | 8.88±3.33Ab | 0.56±0.11Aa | 3.17±1.64Ba | |
20-30 | 2.33±0.27Ab | 0.20±0.06Ab | 10.66±7.07Ab | 0.50±0.09Aa | 2.69±1.25Ba | |
Ⅱ | 0-10 | 1.44±0.36Ab | 0.16±0.02Ab | 6.25±0.58Ac | 0.57±0.10Aa | 5.07±1.66Aa |
10-20 | 1.90±0.61Ab | 0.23±0.12Ab | 7.90±1.12Ac | 0.74±0.32Aa | 4.64±1.25Ba | |
20-30 | 2.33±1.27Ab | 0.18±0.04Ab | 9.67±1.54Ab | 0.60±0.14Aa | 4.17±1.48Ca | |
Ⅲ | 0-10 | 5.93±0.22Aa | 0.40±0.15Aa | 52.79±4.87Aa | 0.34±0.04Ab | 0.72±0.17Bb |
10-20 | 5.27±0.30Aa | 0.53±0.24Aa | 41.41±8.59Ba | 0.36±0.08Ab | 0.87±0.33Ab | |
20-30 | 4.02±0.95Ba | 0.40±0.18Aa | 29.89±12.22Ca | 0.36±0.05Ab | 0.91±0.28Ab |
表4 不同处理区湿地土壤主要化学指标的变化
Table 4 Variation of main soil chemical parameters in different treatment areas
处理 | 土壤深度/cm | w(SOC)/(g·kg−1) | w(TN)/(g·kg−1) | w(AP)/(g·kg−1) | w(AK)/(g·kg−1) | w(SS)/(g·kg−1) |
---|---|---|---|---|---|---|
Ⅰ | 0-10 | 2.47± 0.10Ab | 0.27±0.23Ab | 8.58±4.24Ab | 0.60±0.22Aa | 4.32±1.53Aa |
10-20 | 2.58±0.90Ab | 0.21±0.13Ab | 8.88±3.33Ab | 0.56±0.11Aa | 3.17±1.64Ba | |
20-30 | 2.33±0.27Ab | 0.20±0.06Ab | 10.66±7.07Ab | 0.50±0.09Aa | 2.69±1.25Ba | |
Ⅱ | 0-10 | 1.44±0.36Ab | 0.16±0.02Ab | 6.25±0.58Ac | 0.57±0.10Aa | 5.07±1.66Aa |
10-20 | 1.90±0.61Ab | 0.23±0.12Ab | 7.90±1.12Ac | 0.74±0.32Aa | 4.64±1.25Ba | |
20-30 | 2.33±1.27Ab | 0.18±0.04Ab | 9.67±1.54Ab | 0.60±0.14Aa | 4.17±1.48Ca | |
Ⅲ | 0-10 | 5.93±0.22Aa | 0.40±0.15Aa | 52.79±4.87Aa | 0.34±0.04Ab | 0.72±0.17Bb |
10-20 | 5.27±0.30Aa | 0.53±0.24Aa | 41.41±8.59Ba | 0.36±0.08Ab | 0.87±0.33Ab | |
20-30 | 4.02±0.95Ba | 0.40±0.18Aa | 29.89±12.22Ca | 0.36±0.05Ab | 0.91±0.28Ab |
参数 | SWC | BD | CP | NCP | TP | SOC | TN | AP | AK | SS | CAT | ALP | SUE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SWC | 1.000 | 0.050 | 0.068 | −0.214 | −0.098 | −0.305 | −0.338 | −0.204 | 0.173 | 0.306 | −0.313 | −0.561 | −0.289 |
BD | 1.000 | −0.994** | −0.548 | −0.991** | −0.850** | −0.692* | −0.892** | −0.600 | −0.668* | −0.372 | −0.437 | −0.609 | |
CP | 1.000 | 0.593 | 0.998** | 0.868** | 0.730* | 0.916** | −0.635 | −0.683* | 0.417 | −0.434 | −0.613 | ||
NCP | 1.000 | 0.633 | 0.804** | 0.786* | 0.824** | −0.937** | −0.927** | 0.262 | −0.457 | −0.095 | |||
TP | 1.000 | 0.890** | 0.755* | 0.935** | −0.672* | −0.720* | 0.416 | −0.437 | −0.588 | ||||
SOC | 1.000 | 0.899** | 0.894** | −0.858** | −0.915** | 0.470 | −0.475 | −0.432 | |||||
TN | 1.000 | 0.874** | −0.774* | −0.848** | −0.634 | −0.296 | −0.455 | ||||||
AP | 1.000 | −0.858** | −0.891** | 0.461 | −0.515 | −0.476 | |||||||
AK | 1.000 | 0.925** | −0.137 | 0.628 | 0.168 | ||||||||
SS | 1.000 | −0.303 | 0.483 | 0.211 | |||||||||
CAT | 1.000 | 0.137 | −0.565 | ||||||||||
ALP | 1.000 | 0.438 | |||||||||||
SUE | 1.000 |
表5 3种土壤酶活性与土壤理化参数的相关系数
Table 5 Correlation coefficient between three soil enzyme activities and soil physicochemical parameters
参数 | SWC | BD | CP | NCP | TP | SOC | TN | AP | AK | SS | CAT | ALP | SUE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SWC | 1.000 | 0.050 | 0.068 | −0.214 | −0.098 | −0.305 | −0.338 | −0.204 | 0.173 | 0.306 | −0.313 | −0.561 | −0.289 |
BD | 1.000 | −0.994** | −0.548 | −0.991** | −0.850** | −0.692* | −0.892** | −0.600 | −0.668* | −0.372 | −0.437 | −0.609 | |
CP | 1.000 | 0.593 | 0.998** | 0.868** | 0.730* | 0.916** | −0.635 | −0.683* | 0.417 | −0.434 | −0.613 | ||
NCP | 1.000 | 0.633 | 0.804** | 0.786* | 0.824** | −0.937** | −0.927** | 0.262 | −0.457 | −0.095 | |||
TP | 1.000 | 0.890** | 0.755* | 0.935** | −0.672* | −0.720* | 0.416 | −0.437 | −0.588 | ||||
SOC | 1.000 | 0.899** | 0.894** | −0.858** | −0.915** | 0.470 | −0.475 | −0.432 | |||||
TN | 1.000 | 0.874** | −0.774* | −0.848** | −0.634 | −0.296 | −0.455 | ||||||
AP | 1.000 | −0.858** | −0.891** | 0.461 | −0.515 | −0.476 | |||||||
AK | 1.000 | 0.925** | −0.137 | 0.628 | 0.168 | ||||||||
SS | 1.000 | −0.303 | 0.483 | 0.211 | |||||||||
CAT | 1.000 | 0.137 | −0.565 | ||||||||||
ALP | 1.000 | 0.438 | |||||||||||
SUE | 1.000 |
指标 | 0-10 cm | 10-20 cm | 20-30 cm | |||||
---|---|---|---|---|---|---|---|---|
第1排序轴 | 第2排序轴 | 第1排序轴 | 第2排序轴 | 第1排序轴 | 第2排序轴 | |||
特征值 | 0.8573 | 0.1427 | 0.8573 | 0.1427 | 0.8573 | 0.1427 | ||
相关系数 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ||
累积特征比/% | 85.73 | 100.00 | 85.73 | 100.00 | 85.73 | 100.00 |
表6 排序轴的特征值及植被恢复指标与土壤参数之间的相关系数
Table 6 Eigen values of ordering axis and correlation coefficient between vegetation restoration indexes and soil parameters
指标 | 0-10 cm | 10-20 cm | 20-30 cm | |||||
---|---|---|---|---|---|---|---|---|
第1排序轴 | 第2排序轴 | 第1排序轴 | 第2排序轴 | 第1排序轴 | 第2排序轴 | |||
特征值 | 0.8573 | 0.1427 | 0.8573 | 0.1427 | 0.8573 | 0.1427 | ||
相关系数 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ||
累积特征比/% | 85.73 | 100.00 | 85.73 | 100.00 | 85.73 | 100.00 |
[1] | CUI B S, HE Q, GU B H, et al., 2016. China’s coastal wetlands: Understanding environmental changes and human impacts for management and conservation[J]. Wetlands, 36(1): 1-9. |
[2] |
DAY J W, BOESCH D F, CLAIRAIN E J, et al., 2007. Restoration of the Mississippi Delta: Lessons from Hurricanes Katrina and Rita[J]. Science, 315(5819): 1679-1684.
PMID |
[3] | JIA M M, WANG Z M, LIU D W, et al., 2015. Monitoring loss and recovery of salt marshes in the Liao River delta, China[J]. Journal of Coastal Research, 31(2): 371-377. |
[4] |
MA Z J, WANG Y, GAN X J, et al., 2009. Waterbird population changes in the wetlands at Chongming Dongtan in the Yangtze River Estuary, China[J]. Environmental Management, 43(6): 1187-120.
DOI PMID |
[5] | SCHMIDT K F, 2001. A true blue vision for the Danube[J]. Science, 294: 1444-1447. |
[6] | YANG R M, CHEN L M, 2021. Spartina alterniflora invasion alters soil bulk density in coastal wetlands of China[J]. Land Degradation & Development, 32(5): 1993-1999. |
[7] | ZHANG L, WU B F, YIN K, et al., 2015. Impacts of human activities on the evolution of estuarine wetland in the Yangtze Delta from 2000 to 2010[J]. Environmental Earth Sciences, 73(1): 435-447. |
[8] |
ZHAO J K, LI L X, ZHANG A S, et al., 2017. A New approach for the health assessment of river systems based on interconnected water system networks[J]. Journal of Resources and Ecology, 8(3): 251-257.
DOI |
[9] | 鲍士旦, 2000. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社. |
BAO S D, 2000. Soil Agricultural Chemistry Analysis[M]. Third edition. Beijing: China Agriculture Press. | |
[10] | 戴雅奇, 陆金忠, 陈雪初, 2021. 海岸带侵蚀岸段湿地恢复设计及运行成效分析——以杭州湾北岸奉贤段为例[J]. 园林, 38(8): 20-24. |
DAI Y Q, LU J Z, CEHN X C, 2021. The schemes of coastal wetland restoration in eroded area and its operation effect after implementation: Taking the Fengxian section of the north bank of Hangzhou Bay as an example[J]. Garden, 38(8): 20-24. | |
[11] | 冯建祥, 黄茜, 陈卉, 等, 2018. 互花米草入侵对盐沼和红树林滨海湿地底栖动物群落的影响[J]. 生态学杂志, 37(3): 943-951. |
FENG J X, HUANG Q, CHEN H, et al., 2018. Effects of Spartina alterniflora invasion on benthic faunal community in saltmarsh and mangrove wetland[J]. Chinese Journal of Ecology, 37(3): 943-951. | |
[12] | 付建鑫, 张桂香, 张炳文, 等, 2019. 碱蓬的营养价值及开发利用[J]. 中国食物与营养, 25(4): 59-63. |
FU J X, ZHANG G X, ZHANG B W, et al., 2019. Nutritional Function, Development and Utilization of Suaeda[J]. Food and Nutrition in China, 25(4): 59-63. | |
[13] | 国家林业局, 1999. 森林土壤水分-物理性质的测定: LY/T 1215—1999[S]. 北京: 中国标准出版社. |
China’s State Forestry Administration, 1999. Determination of forest soil water-physical properties: LY/T 1215—1999[S]. Beijing: Standards Press of China. | |
[14] | 国家林业局, 1999. 森林土壤水溶性盐分分析: LY/T 1251—1999[S]. 北京: 中国标准出版社. |
China’s State Forestry Administration, 1999. Analysis methods of water soluble salt of forest soil: LY/T 1251—1999[S]. Beijing: Standards Press of China. | |
[15] | 国家林业局, 2015. 森林土壤氮的测定元素分析仪法: LY/T 1228—2015[S]. 北京: 中国标准出版社. |
China’s State Forestry Administration, 2015. Nitrogen determinations of forest soils: LY/T 1228—2015[S]. Beijing: Standards Press of China. | |
[16] | 韩广轩, 王光美, 毕晓丽, 等, 2018. 黄河三角洲滨海湿地演变机制与生态修复[M]. 北京: 科学出版社. |
HAN G X, WANG G M, BI X L, et al., 2018. Evolution mechanism and ecological restoration of coastal wetland in the Yellow River Delta[M]. Beijing: The Science Publishing Company. | |
[17] | 贺文君, 韩广轩, 颜坤, 等, 2021. 微地形对滨海盐碱地土壤水盐分布和植物生物量的影响[J]. 生态学杂志, 40(11): 3585-3597. |
HE W J, HAN G X, YAN K, et al., 2021. Effects of micro topography on plant biomass and the distribution of both soil water and salinity in coastal saline-alkali land[J]. Chinese Journal of Ecology, 40(11): 3585-3597. | |
[18] | 姜经梅, 赵慧, 沈铭能, 等, 2011. 长江口潮滩表层沉积物中碱性磷酸酶活性及其影响因素[J]. 环境科学学报, 31(10): 2233-2239. |
JIANG J M, ZHAO H, SHEN M N, et al., 2011. Distribution and impact factor of alkaline phosphatase activity in the intertidal surface sediments of the Yangtze Estuary[J]. Acta Scientiae Circumstantiae, 31(10): 2233-2239. | |
[19] |
蒋科毅, 吴明, 邵学新, 等, 2013. 杭州湾及钱塘江河口南岸滨海湿地鸟类群落多样性及其对滩涂围垦的响应[J]. 生物多样性, 21(2): 214-223.
DOI |
JIANG K Y, WU M, SHAO X X, et al., 2013. Diversity of bird communities in southern Hangzhou Bay and the Qiantang River estuary and their responses to reclamation of intertidal mudflats[J]. Biodiversity Science, 21(2): 214-223.
DOI |
|
[20] | 李春荣, 李雅, 张涛, 等, 2023. 江苏盐城湿地珍禽国家级自然区鸟类种群组成及年际间变化[J]. 中国禽业导刊, 10(10): 39-44. |
LI C R, LI Y, ZHANG T, et al., 2023. Bird population composition and annual changes in Jiangsu Yancheng Wetland National Nature Reserve, Rare Birds[J]. Guide to Chinese Poultry, 10(10): 39-44. | |
[21] | 李云桑, 党玮, 郭沛涌, 等, 2020. 泉州湾滨海退化湿地红树林修复工程对土壤酶活性的影响[J]. 浙江大学学报(理学版), 47(5): 624-629. |
LI Y S, DANG W, GUO P Y, et al., 2020. Effects of mangrove restoration on the soil enzyme activity at Quanzhou bay degraded coastal wetland[J]. Journal of Zhejiang University (Science Edition), 47(5): 624-629. | |
[22] | 李原园, 黄火键, 李宗礼, 等, 2014. 河湖水系连通实践经验与发展趋势[J]. 南水北调与水利科技, 12(4): 81-85. |
LI Y Y, HUANG H J, LI Z Y, et al., 2014. Practical experience and development trend of the interconnected river system Network[J]. South-to-North Water Diversion Project and Water Conservancy Science and Technology, 12(4): 81-85. | |
[23] | 林先贵, 2010. 土壤微生物研究原理与方法[M]. 北京: 高等教育出版社. |
LIN X G, 2010. Principles and Methods of Soil Microbiology Research[M]. Beijing: Higher Education Press. | |
[24] | 刘百桥, 孟伟庆, 赵建华, 等, 2015. 中国大陆1990-2013年海岸线资源开发利用特征变化[J]. 自然资源学报, 30(12): 2033-2044. |
LIU B Q, MENGW Q, ZHAO J H, et al., 2015. Variation of Coastline Resources Utilization in China from 1990 to 2013[J]. Journal of Natural Resources, 30(12): 2033-2044. | |
[25] | 吕林, 崔丹丹, 陈艳艳, 等, 2019. 1984-2016年江苏省海岸线和沿海滩涂的变迁[J]. 海洋开发与管理 (8): 52-54. |
LÜ L, CUI D D, CHEN Y Y, et al., 2019. The changes of coastline and coastal beach in Jiangsu province from 1984-2016[J]. Ocean Development and Management (8): 52-54. | |
[26] | 庞博, 杨文鑫, 崔保山, 等, 2023. 黄河三角洲湿地生物多样性保护工程植被修复效果评估[J]. 环境工程, 41(1): 213-221. |
PANG B, YANG W X, CUI B S, et al., 2023. Evaluation of the effect of vegetation restoration in the yellow river delta wetland biodiversity conservation project[J]. Environmental Engineering, 41(1): 213-221. | |
[27] | 彭钼植, 雷春英, 吉小敏, 2021. 藜科碱蓬属植物研究进展[J]. 江西农业学报, 33(2): 42-46. |
PENG M Z, LEI C Y, JI X M, 2021. Research Advances in Suaeda Plants[J]. Acta Agriculturae Jiangxi, 33(2): 42-46. | |
[28] | 孙乾照, 林海英, 张美琦, 等, 2021. 滨海盐沼湿地生态修复研究进展[J]. 北京师范大学学报(自然科学版), 57(1): 151-158. |
SUN Q Z, LIN H Y, ZHANG M Q, et al., 2021. Ecological restoration of coastal salt marsh[J]. Journal of Beijing Normal University (Natural Science), 57(1): 151-158. | |
[29] | 王成, 刘红玉, 李玉凤, 等, 2022. 盐城滨海湿地水鸟类群生境适宜性及生态阈值研究: 对栖息地景观结构恢复的启示[J]. 生态与农村环境学报, 38(7): 897-908. |
WANG C, LIU H Y, LI Y F, et al., 2022. A study on habitat suitability and ecological threshold of water bird guilds in Yancheng coastal wet-lands: Implications for habitat structure restoration[J]. Journal of Ecology and Rural Environment, 38(7): 897-908. | |
[30] | 王加连, 刘忠权, 2006. 盐城滩涂生物多样性保护及其可持续利用[J]. 生态学杂志, 29(5): 475-478. |
WANG J L, LIU Z Q, 2006. Protection and sustainable utilization for the biodiversity of Yancheng seashore[J]. Chinese Journal of Ecology, 29(5): 475-478. | |
[31] | 王树梅, 庞元湘, 宋爱云, 等, 2018. 基于林龄的滨海盐碱地杨树刺槐混交林土壤理化性质及草本植物多样性动态[J]. 生态学报, 38(18): 6539-6548. |
WANG S M, PANG Y X, SONG A Y, et al., 2018. Soil physiochemical properties and diversity of herbaceous plants dynamic on the different ages mixed forests of Populus×Euramercana ‘Neva’ and Robinia pseucdoacacia in coastal saline-alkali area[J]. Acta Ecologica Sinica, 38(18): 6539-6548. | |
[32] | 王树起, 韩晓增, 乔云发, 等, 2007. 不同土地利用方式对三江平原湿地土壤酶分布特征及相关肥力因子的影响[J]. 水土保持学报, 21(4): 150-153, 192. |
WANG S Q, HAN X Z, QIAO Y F, et al., 2007. Characteristics of soil enzyme activity and fertility under different types of land use in wetland of Sanjiang Plain[J]. Journal of Soiland Water Conservation, 21(4): 150-153, 192. | |
[33] | 王逸飞, 王艳红, 杨啸宇, 等, 2025. 水系连通工程对近海潮汐水域水动力的影响[J]. 人民珠江, 46(1): 78-87. |
WANG Y F, WANG Y H, YANG X Y, et al., 2025. Influence of water system connectivity project on hydrodynamics of offshore tidal waters[J]. Pearl River, 46(1): 78-87. | |
[34] | 邢伟, 王进欣, 王今殊, 等, 2011. 盐城海岸带湿地土地覆盖变化及其生态效应研究[J]. 海洋湖沼通报 (1): 122-130. |
XING W, WANG J X, WANG J S, et al., 2011. Land-covered changes and its ecological effects in the coastal wetlands of Yancheng[J]. Transactions of Oceanology and Limnology (1): 122-130. | |
[35] | 杨刚, 谢永宏, 陈心胜, 等, 2009. 洞庭湖区退田还湖后不同恢复模式下土壤酶活性的变化[J]. 应用生态学报, 20(9): 2187-2192. |
YANG G, XIE Y H, CHEN X S, et al., 2009. Soil enzyme activities under different restoration modes after returning farmland to lake in Dongting Lake area[J]. Chinese Journal of Applied Ecology, 20(9): 2187-2192. | |
[36] | 杨文举, 菲尔卡特·甫力东, 俞程奕, 等, 2020. 滨海湿地在沿海地区海绵城市建设中的功能与应用研究[J]. 华北水利水电大学学报(自然科学版), 41(3): 78-83. |
YANG W J, PLETON F, YU C Y, et al., 2020. Research on function and application of coastal wetlands in construction of sponge city in coastal areas[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 41(3): 78-83. | |
[37] | 张明亮, 康亚茹, 陈旭, 等, 2021. 一种河口湿地植被生境修复方法: CN112307420A[P]. 2021-02-02. [https://pss-system.cponline.cnipa.gov.cn/retrieveList?prevPageTit=changgui]. |
ZHANG M L, KANG Y R, CHEN X, et al., 2021. A method of vegetation habitat restoration in estuarine wetland: CN112307420A[P]. 2021-02-02. [https://pss-system.cponline.cnipa.gov.cn/retrieveList?prevPageTit=changgui]. | |
[38] | 中国植物志编辑委员会, 1979. 中国植物志 (第25卷, 第二分册)[M]. 北京: 科学出版社. |
Delectis Florae Reipublicae Popularis Sinicae Agendae Academiae Sinicae Edita, 1979. Flora of China. Vol. 25, Second fascicle[M]. Beijing: Science Press. | |
[39] | 中华人民共和国环境保护部, 2014. 土壤有效磷的测定碳酸氢钠浸提-钼锑抗分光光度法: HJ 704—2014[S]. 北京: 中国标准出版社. |
Ministry of Environmental Protection of the People’s Republic of China, 2014. Soilquality-Determination of available phosphorus- Sodium hydrogen carbonate solution-Mo-Sb anti spectrophotometric method: HJ 704—2014[S]. Beijing: Standards Press of China. | |
[40] | 中华人民共和国环境保护部, 2011. 土壤干物质和水分的测定重量法: HJ 613—2011[S]. 北京: 中国标准出版社. |
Ministry of Environmental Protection of the People’s Republic of China, 2011. Soil-Determination of dry matter and water content- Gravime: HJ 613—2011[S]. Beijing: Standards Press of China. |
[1] | 刘亚军, 段亦鹏, 李荣富, 池泽涌, 吴永明. 不同养分环境下入湖河口沉积物原核生物群落特征——以饶河入湖口为例[J]. 生态环境学报, 2025, 34(6): 853-862. |
[2] | 吴东阳, 吴家欢, 李伟志, 黄志杰, 杨春亚, 陈火君. 蚓粪、猪粪配施化肥对土壤质量、辣椒生长及品质的影响[J]. 生态环境学报, 2024, 33(9): 1416-1425. |
[3] | 庞波, 海香, 张海芳, 张艳军, 王慧, 刘红梅, 杨殿林. 藜芦扩散对山地草甸草地植被特征和土壤理化性质的影响[J]. 生态环境学报, 2024, 33(8): 1174-1181. |
[4] | 罗庆, 何清, 吴慧秋, 寇力月, 方旭, 张鑫雨, 李缘, 柴育廷, 张瑞生, 代文举. 辽河口湿地土壤有机碳组分特征及其影响因素[J]. 生态环境学报, 2024, 33(3): 333-340. |
[5] | 张腾云, 王静, 高健磊, 葛文静, 王宗耀, 韩龙. 碱性农田土壤冬小麦不同生育期镉的迁移转化研究[J]. 生态环境学报, 2024, 33(3): 450-459. |
[6] | 曹晓霭, 张睿, 温云浩, 王建, 徐智超, 田雅婷, 王立新, 刘华民. 春季冻融过程对河滨带湿地土壤酶活性的影响[J]. 生态环境学报, 2024, 33(2): 212-221. |
[7] | 宋江琴, 尹亚丽, 赵文, 刘燕, 随奇奇, 火久艳, 郑文贤, 李世雄. 青海高原黑土滩退化草地土壤微生物群落空间分异特征[J]. 生态环境学报, 2024, 33(11): 1696-1707. |
[8] | 谢舒雅, 李香兰. 互花米草入侵对中国滨海湿地土壤碳收支的影响[J]. 生态环境学报, 2024, 33(10): 1516-1524. |
[9] | 陈会玲, 勾蒙蒙, 刘常富, 雷蕾, 胡建文, 朱粟锋, 斛如媛, 肖文发. 鄂中丘陵区不同林龄马尾松人工林林下植物多样性与土壤理化性质关系[J]. 生态环境学报, 2024, 33(10): 1525-1533. |
[10] | 宋思梦, 林冬梅, 周恒宇, 罗宗志, 张丽丽, 易超, 林辉, 林兴生, 刘斌, 苏德伟, 郑丹, 余世葵, 林占熺. 种植巨菌草对乌兰布和沙漠植物物种多样性与土壤理化性质的影响[J]. 生态环境学报, 2023, 32(9): 1595-1605. |
[11] | 王玉琴, 宋梅玲, 周睿, 王宏生. 黄帚橐吾扩散对高寒草甸土壤理化特性及酶活性的影响[J]. 生态环境学报, 2023, 32(8): 1384-1391. |
[12] | 杜丹丹, 高瑞忠, 房丽晶, 谢龙梅. 旱区盐湖盆地土壤重金属空间变异及对土壤理化因子的响应[J]. 生态环境学报, 2023, 32(6): 1123-1132. |
[13] | 盛美君, 李胜君, 杨昕玥, 王蕊, 李洁, 李刚, 修伟明. 华北潮土农田土壤酶活性对土地利用强度的响应特征探讨[J]. 生态环境学报, 2023, 32(2): 299-308. |
[14] | 袁佳宝, 宋艳宇, 刘桢迪, 朱梦圆, 程小峰, 马秀艳, 陈宁, 李晓宇. 松嫩平原芦苇湿地土壤酶活性剖面分布特征及其微生物养分限制指示作用[J]. 生态环境学报, 2023, 32(12): 2141-2153. |
[15] | 赵蔓, 张晓曼, 杨明洁. 林火干扰对栓皮栎-辽东栎混交林植物多样性与土壤理化性质的影响[J]. 生态环境学报, 2023, 32(10): 1732-1740. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||