生态环境学报 ›› 2025, Vol. 34 ›› Issue (11): 1770-1777.DOI: 10.16258/j.cnki.1674-5906.2025.11.010
梁亚迪1(
), 姚雪雯1, 李涵博1, 陈志怀1, 历红波2, 欧阳铭韩1, 罗小三1,*(
)
收稿日期:2025-04-04
出版日期:2025-11-18
发布日期:2025-11-05
通讯作者:
E-mail: 作者简介:梁亚迪(1997年生),女,硕士研究生,研究方向为大气环境与健康。E-mail:15236265027@163.com
基金资助:
LIANG Yadi1(
), YAO Xuewen1, LI Hanbo1, CHEN Zhihuai1, LI Hongbo2, OUYANG Minghan1, LUO Xiaosan1,*(
)
Received:2025-04-04
Online:2025-11-18
Published:2025-11-05
摘要:
轮胎磨损颗粒物(Tire Wear Particles,TWPs)作为环境中微塑料的主要来源之一,其所含的重金属等添加剂和污染物成分不仅通过径流等途径对生态系统造成风险,也会经扬尘等形式进入空气而威胁人体健康,但相关信息尚极度匮乏。为探究不同类型轮胎来源TWPs的重金属污染特征,在实验室模拟制备了重型货车、轻型货车、乘用汽车、摩托车、自行车这5种常见车型共计11个代表性的全新轮胎的胎面磨损颗粒,分析了其典型重金属(Cd、Cr、Cu、Mn、Ni、Pb、Zn)的含量分布,并采用潜在生态风险指数(IER)对TWPs进入水环境后其重金属的生态风险进行了评价,以及非致癌危害(IH)和致癌风险(ICR)指数对其大气颗粒物呼吸暴露途径进行人体健康风险评估。 结果如下:不同类型TWPs中所测重金属元素总含量为重型货车>轻型货车>乘用汽车>摩托车>自行车轮胎,其中Zn含量以乘用汽车TWPs最高,Cr为摩托车最高,其它元素均以重型货车最高;TWPs中各元素平均含量为Zn>>Mn>Cr>Pb>Cu>Ni>Cd。沉积物生态风险方面,TWPs中各元素的平均顺序为Cu>Pb>Zn>Ni>Cd>Cr>>Mn,IER为重型货车(尤其是Cd、Pb、Cu)>>轻型货车>摩托车>乘用汽车>>自行车。TWPs中重金属经扬尘吸入暴露的人体健康风险方面,非致癌危害为儿童高于成人,Mn>Cr>Cd>>Pb>Zn>Ni>Cu,重型货车>>摩托车>轻型货车>乘用汽车>自行车;终身致癌风险为Cr>>Cd>Ni,摩托车>>重型货车>轻型货车>乘用汽车>自行车;职业人群、儿童需加强防护。可见,轮胎胎面材料所含的有害重金属成分可通过道路交通排放TWPs形式进入水体和大气环境分别造成生态(Cu、Pb)和健康(Cr、Mn、Cd)风险,尤其是重型货车和摩托车,因此环境中微塑料和重金属的污染防控需加强相关针对性措施。
中图分类号:
梁亚迪, 姚雪雯, 李涵博, 陈志怀, 历红波, 欧阳铭韩, 罗小三. 典型轮胎磨损颗粒中重金属的含量特征及生态和健康风险评估[J]. 生态环境学报, 2025, 34(11): 1770-1777.
LIANG Yadi, YAO Xuewen, LI Hanbo, CHEN Zhihuai, LI Hongbo, OUYANG Minghan, LUO Xiaosan. The Content Characteristics, Ecological and Human Health Risk Assessments of Heavy Metals in Typical Tire Wear Particles (TWPs)[J]. Ecology and Environmental Sciences, 2025, 34(11): 1770-1777.
| 样品编号 | 轮胎规格型号 | 速度等级 | 车型 |
|---|---|---|---|
| 1 | 26x1.95 | 自行车 | |
| 2 | 70/80-10 | J | 摩托车 |
| 3 | 175/65R15 | H | 乘用汽车 |
| 4 | 185/60R15 | H | |
| 5 | 205/55R16 | W | |
| 6 | 205/55R16 | V | |
| 7 | 225/65R17 | V | |
| 8 | 175/70R14LT | S | |
| 9 | 175/70R14 | H | |
| 10 | 7.00R16 | M | 轻型卡车 |
| 11 | 12R22.5 | L | 重型卡车 |
表1 胎面磨损实验选用的11种代表性轮胎参数
Table 1 Parameters of 11 types of tires selected for the tread wearing experiment
| 样品编号 | 轮胎规格型号 | 速度等级 | 车型 |
|---|---|---|---|
| 1 | 26x1.95 | 自行车 | |
| 2 | 70/80-10 | J | 摩托车 |
| 3 | 175/65R15 | H | 乘用汽车 |
| 4 | 185/60R15 | H | |
| 5 | 205/55R16 | W | |
| 6 | 205/55R16 | V | |
| 7 | 225/65R17 | V | |
| 8 | 175/70R14LT | S | |
| 9 | 175/70R14 | H | |
| 10 | 7.00R16 | M | 轻型卡车 |
| 11 | 12R22.5 | L | 重型卡车 |
| 元素 | Zn | Mn | Cu | Cd | Cr | Ni | Pb | 参考文献 |
|---|---|---|---|---|---|---|---|---|
| 参考值 | 65.0 | 622 | 20.0 | 110 | 54.0 | 22.0 | 22.0 | 史长义等, |
表2 沉积物中重金属的背景参考值
Table 2 Background reference values of heavy metals in sediments mg?kg?1
| 元素 | Zn | Mn | Cu | Cd | Cr | Ni | Pb | 参考文献 |
|---|---|---|---|---|---|---|---|---|
| 参考值 | 65.0 | 622 | 20.0 | 110 | 54.0 | 22.0 | 22.0 | 史长义等, |
| IER, i | IER | 风险分级标准 |
|---|---|---|
| IER, i <40 | IER<150 | 轻微 |
| 40≤ IER, i <80 | 150≤IER<300 | 中等 |
| 80≤ IER, i <160 | 300≤IER<600 | 强 |
| 160≤ IER, i <320 | 600≤IER<1200 | 很强 |
| 320≤ IER, i | 1200≤IER | 极强 |
表3 水体沉积物中污染物的潜在生态风险分级表1)
Table 3 Potential ecological risk grading criteria for pollutants in sediments
| IER, i | IER | 风险分级标准 |
|---|---|---|
| IER, i <40 | IER<150 | 轻微 |
| 40≤ IER, i <80 | 150≤IER<300 | 中等 |
| 80≤ IER, i <160 | 300≤IER<600 | 强 |
| 160≤ IER, i <320 | 600≤IER<1200 | 很强 |
| 320≤ IER, i | 1200≤IER | 极强 |
| 参数 | 含义 | 单位 | 儿童(ch)取值 | 成人(a)取值 |
|---|---|---|---|---|
| F | 暴露频率 | d∙a−1 | 180 | 180 |
| Y | 暴露年限 | a | 6 | 24 |
| W | 平均体重 | kg | 24.5 | 60.1 |
| DH | 非致癌平均暴露时间 | d | Y | Y |
| DC | 致癌平均暴露时间 | d | 74.8 | 74.8 |
| FPE | 灰尘颗粒物排放因子 | m3∙kg−1 | 1.36×109 | 1.36×109 |
| RR | 吸入率 | m3∙d−1 | 9.3 | 16.3 |
表4 人体吸入扬尘颗粒物平均暴露量参数取值1)
Table 4 Average exposure parameters for the dust inhalation
| 参数 | 含义 | 单位 | 儿童(ch)取值 | 成人(a)取值 |
|---|---|---|---|---|
| F | 暴露频率 | d∙a−1 | 180 | 180 |
| Y | 暴露年限 | a | 6 | 24 |
| W | 平均体重 | kg | 24.5 | 60.1 |
| DH | 非致癌平均暴露时间 | d | Y | Y |
| DC | 致癌平均暴露时间 | d | 74.8 | 74.8 |
| FPE | 灰尘颗粒物排放因子 | m3∙kg−1 | 1.36×109 | 1.36×109 |
| RR | 吸入率 | m3∙d−1 | 9.3 | 16.3 |
| 参数 | 单位 | Zn | Mn | Cu | Cd | Cr | Ni | Pb |
|---|---|---|---|---|---|---|---|---|
| RRf, i | mg∙kg−1∙d−1 | 0.3 | 1.43×10−5 | 4.02×10−2 | 5.7×10−6 | 2.86×10−5 | 2.06×10−2 | 3.52×10−3 |
| RSF, i | (mg∙kg−1∙d−1)−1 | 7.05 | 42 | 0.84 |
表5 颗粒物中重金属人体呼吸暴露途径的参考剂量(RRf, i)和致癌斜率因子(RSF, i)1)
Table 5 Reference dose (RRf, i) and oncogenic slope factor (RSF, i) of heavy metals in particulate matter by inhalation exposure)
| 参数 | 单位 | Zn | Mn | Cu | Cd | Cr | Ni | Pb |
|---|---|---|---|---|---|---|---|---|
| RRf, i | mg∙kg−1∙d−1 | 0.3 | 1.43×10−5 | 4.02×10−2 | 5.7×10−6 | 2.86×10−5 | 2.06×10−2 | 3.52×10−3 |
| RSF, i | (mg∙kg−1∙d−1)−1 | 7.05 | 42 | 0.84 |
| 车型 | IER, i | IER | ||||||
|---|---|---|---|---|---|---|---|---|
| Zn | Mn | Cu | Cd | Cr | Ni | Pb | ||
| 自行车 | 2.43 | 0.03 | 2.35 | 0.51 | 0.45 | 1.49 | 2.29 | 9.55 |
| 摩托车 | 2.81 | 0.05 | 6.22 | 0.50 | 2.26 | 4.30 | 3.39 | 19.5 |
| 乘用汽车 | 6.23 | 0.03 | 5.27 | 0.23 | 0.72 | 1.89 | 4.21 | 18.6 |
| 轻型货车 | 5.85 | 0.06 | 4.53 | 0.23 | 0.74 | 2.80 | 6.51 | 20.7 |
| 重型货车 | 5.47 | 0.11 | 10.6 | 4.59 | 0.78 | 4.70 | 11.6 | 37.9 |
表6 不同类型轮胎胎面TWPs中重金属的潜在生态风险评估结果
Table 6 Ecological risks of heavy metals in TWPs of different types of tire treads
| 车型 | IER, i | IER | ||||||
|---|---|---|---|---|---|---|---|---|
| Zn | Mn | Cu | Cd | Cr | Ni | Pb | ||
| 自行车 | 2.43 | 0.03 | 2.35 | 0.51 | 0.45 | 1.49 | 2.29 | 9.55 |
| 摩托车 | 2.81 | 0.05 | 6.22 | 0.50 | 2.26 | 4.30 | 3.39 | 19.5 |
| 乘用汽车 | 6.23 | 0.03 | 5.27 | 0.23 | 0.72 | 1.89 | 4.21 | 18.6 |
| 轻型货车 | 5.85 | 0.06 | 4.53 | 0.23 | 0.74 | 2.80 | 6.51 | 20.7 |
| 重型货车 | 5.47 | 0.11 | 10.6 | 4.59 | 0.78 | 4.70 | 11.6 | 37.9 |
| 人群 | 车型 | Zn | Mn | Cu | Cd | Cr | Ni | Pb |
|---|---|---|---|---|---|---|---|---|
| 儿童 | 自行车 | 7.24×10−8 | 1.50×10−4 | 3.24×10−8 | 4.50×10−5 | 5.86×10−5 | 4.39×10−8 | 3.94×10−7 |
| 摩托车 | 8.37×10−8 | 3.23×10−4 | 8.56×10−8 | 4.41×10−5 | 2.94×10−4 | 1.26×10−7 | 5.82×10−7 | |
| 乘用汽车 | 1.86×10−7 | 1.94×10−4 | 7.25×10−8 | 2.01×10−5 | 9.34×10−5 | 5.54×10−8 | 7.24×10−7 | |
| 轻型货车 | 1.74×10−7 | 3.33×10−4 | 6.23×10−8 | 2.04×10−5 | 9.65×10−5 | 8.23×10−8 | 1.12×10−6 | |
| 重型货车 | 1.63×10−7 | 6.52×10−4 | 1.47×10−7 | 4.07×10−4 | 1.01×10−4 | 1.38×10−7 | 2.00×10−6 | |
| 成人 | 自行车 | 5.18×10−8 | 1.07×10−4 | 2.30×10−8 | 3.21×10−5 | 4.18×10−5 | 3.14×10−8 | 2.81×10−7 |
| 摩托车 | 5.98×10−8 | 2.30×10−4 | 6.08×10−8 | 3.15×10−5 | 2.10×10−4 | 9.03×10−8 | 4.16×10−7 | |
| 乘用汽车 | 1.33×10−7 | 1.39×10−4 | 5.15×10−8 | 1.44×10−5 | 6.67×10−5 | 3.96×10−8 | 5.18×10−7 | |
| 轻型货车 | 1.25×10−7 | 2.38×10−4 | 4.43×10−8 | 1.45×10−5 | 6.90×10−5 | 5.88×10−8 | 8.00×10−7 | |
| 重型货车 | 1.16×10−7 | 4.65×10−4 | 1.04×10−7 | 2.90×10−4 | 7.23×10−5 | 9.87×10−8 | 1.43×10−6 |
表7 不同类型TWPs中重金属经扬尘呼吸暴露途径的非致癌危害商(QH)
Table 7 Non-cancer hazard quotients (QH) for heavy metals in different types of TWPs by inhalation exposure pathway
| 人群 | 车型 | Zn | Mn | Cu | Cd | Cr | Ni | Pb |
|---|---|---|---|---|---|---|---|---|
| 儿童 | 自行车 | 7.24×10−8 | 1.50×10−4 | 3.24×10−8 | 4.50×10−5 | 5.86×10−5 | 4.39×10−8 | 3.94×10−7 |
| 摩托车 | 8.37×10−8 | 3.23×10−4 | 8.56×10−8 | 4.41×10−5 | 2.94×10−4 | 1.26×10−7 | 5.82×10−7 | |
| 乘用汽车 | 1.86×10−7 | 1.94×10−4 | 7.25×10−8 | 2.01×10−5 | 9.34×10−5 | 5.54×10−8 | 7.24×10−7 | |
| 轻型货车 | 1.74×10−7 | 3.33×10−4 | 6.23×10−8 | 2.04×10−5 | 9.65×10−5 | 8.23×10−8 | 1.12×10−6 | |
| 重型货车 | 1.63×10−7 | 6.52×10−4 | 1.47×10−7 | 4.07×10−4 | 1.01×10−4 | 1.38×10−7 | 2.00×10−6 | |
| 成人 | 自行车 | 5.18×10−8 | 1.07×10−4 | 2.30×10−8 | 3.21×10−5 | 4.18×10−5 | 3.14×10−8 | 2.81×10−7 |
| 摩托车 | 5.98×10−8 | 2.30×10−4 | 6.08×10−8 | 3.15×10−5 | 2.10×10−4 | 9.03×10−8 | 4.16×10−7 | |
| 乘用汽车 | 1.33×10−7 | 1.39×10−4 | 5.15×10−8 | 1.44×10−5 | 6.67×10−5 | 3.96×10−8 | 5.18×10−7 | |
| 轻型货车 | 1.25×10−7 | 2.38×10−4 | 4.43×10−8 | 1.45×10−5 | 6.90×10−5 | 5.88×10−8 | 8.00×10−7 | |
| 重型货车 | 1.16×10−7 | 4.65×10−4 | 1.04×10−7 | 2.90×10−4 | 7.23×10−5 | 9.87×10−8 | 1.43×10−6 |
| 车型 | Cd | Cr | Ni |
|---|---|---|---|
| 自行车 | 5.95×10−10 | 2.18×10−8 | 2.35×10−10 |
| 摩托车 | 5.83×10−10 | 1.09×10−7 | 6.77×10−10 |
| 乘用汽车 | 2.67×10−10 | 3.47×10−8 | 2.97×10−10 |
| 轻型货车 | 2.69×10−10 | 3.59×10−8 | 4.41×10−10 |
| 重型货车 | 5.38×10−9 | 3.76×10−8 | 7.40×10−10 |
表8 不同类型TWPs中重金属经扬尘呼吸暴露途径的终身致癌风险值(ICR, i)
Table 8 Lifetime cancer risk values (ICR, i) for heavy metals in different types of TWPs by inhalation exposure pathway
| 车型 | Cd | Cr | Ni |
|---|---|---|---|
| 自行车 | 5.95×10−10 | 2.18×10−8 | 2.35×10−10 |
| 摩托车 | 5.83×10−10 | 1.09×10−7 | 6.77×10−10 |
| 乘用汽车 | 2.67×10−10 | 3.47×10−8 | 2.97×10−10 |
| 轻型货车 | 2.69×10−10 | 3.59×10−8 | 4.41×10−10 |
| 重型货车 | 5.38×10−9 | 3.76×10−8 | 7.40×10−10 |
图2 不同类型TWPs中重金属经扬尘呼吸暴露途径的非致癌总危害指数(IH)和终身致癌总风险指数(ICR)
Figure 2 Non-cancer total hazard index (IH) and lifetime cancer total risk index (ICR) of heavy metals in different types of TWPs by inhalation exposure pathway
| [1] | ANGON P B, ISLAM M S, KC S, et al., 2024. Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain[J]. Heliyon, 10(7): e28357. |
| [2] |
BOUREDJI A, POURCHEZ J, FOREST V, 2023. Biological effects of Tire and Road Wear Particles (TRWP) assessed by in vitro and in vivo studies: A systematic review[J]. Science of The Total Environment, 894: 164989.
DOI URL |
| [3] |
BAUTISTA C J, ARANGO N, PLATA C, et al., 2024. Mechanism of cadmium-induced nephrotoxicity[J]. Toxicology, 502: 153726.
DOI URL |
| [4] |
CAMPONELLI K. M, CASEY R E, SNODGRASS J W, et al., 2009. Impacts of weathered tire debris on the development of Rana sylvatica larvae[J]. Chemosphere, 74(5): 717-722.
DOI PMID |
| [5] |
CAO G D, WANG W, ZHANG J, et al., 2022. New evidence of rubber-derived quinones in water, air, and soil[J]. Environmental Science & Technology, 56(7): 4142-4150.
DOI URL |
| [6] |
COUNCELL T B, DUCKENFIELD K U, LANDA E R, et al., 2004. Tire-wear particles as a source of zinc to the environment[J]. Environmental Science & Technology, 38(15): 4206-4214.
DOI URL |
| [7] |
CHEN L, FANG L C, YANG X, et al., 2024. Sources and human health risks associated with potentially toxic elements (PTEs) in urban dust: A global perspective[J]. Environment International, 187: 108708.
DOI URL |
| [8] |
DING J, LV M, WANG Q N, et al., 2023. Brand-specific toxicity of tire tread particles helps identify the determinants of toxicity[J]. Environmental Science & Technology, 57(30): 11267-11278.
DOI URL |
| [9] |
GOUTAM MUKHERJEE A, RAMESH WANJARI U, RENU K, et al., 2022. Heavy metal and metalloid-induced reproductive toxicity[J]. Environmental Toxicology and Pharmacology, 92: 103859.
DOI URL |
| [10] |
HAKANSON L, 1980. An ecological risk index for aquatic pollution control of sediment ecological approach[J]. Water Research, 14(8): 975-1000.
DOI URL |
| [11] | KENNEDY P, GADD J, 2003. Preliminary examination of trace elements in tyres, brake pads, and road bitumen in New Zealand[R]. Ministry of Transport, New Zealand. |
| [12] |
KOUJI A, YOSHIAKI T, 2004. Characterization of heavy metal particles embedded in tire dust[J]. Environment International, 30(8): 1009-1017.
PMID |
| [13] |
KNIGHT L J, PARKER-JURD F N F, AL-SID-CHEIKH M, et al., 2020. Tyre wear particles: An abundant yet widely unreported microplastic?[J]. Environmental Science and Pollution Research 27(15): 18345-18354.
DOI |
| [14] |
LI Y T, SHI T, LI X, et al., 2022. Inhaled tire-wear microplastic particles induced pulmonary fibrotic injury via epithelial cytoskeleton rearrangement[J]. Environment International, 164: 107257.
DOI URL |
| [15] | LING C Y, HIRVI J T, MARKKULA K, et al., 2018. Computational approach to study the influence of Mn, Fe, and Ni as additives toward rubber-brass adhesion[J]. Theoretical Chemistry Accounts, 137(5): 64. |
| [16] |
LIU Z, SUN Y J, WANG J Q, et al., 2022. In vitro assessment reveals the effects of environmentally persistent free radicals on the toxicity of photoaged tire wear particles[J]. Environmental Science & Technology, 56(3): 1664-1674.
DOI URL |
| [17] |
LIU M X, XU H M, FENG R, et al., 2023. Chemical composition and potential health risks of tire and road wear microplastics from light-duty vehicles in an urban tunnel in China[J]. Environmental Pollution, 330: 121835.
DOI URL |
| [18] |
LUO Z X, ZHOU X Y, SU Y, et al., 2021. Environmental occurrence, fate, impact, and potential solution of tire microplastics: Similarities and differences with tire wear particles[J]. Science of The Total Environment, 795: 148902.
DOI URL |
| [19] |
LUO X S, DING J, XU B, et al., 2012. Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils[J]. Science of The Total Environment, 424: 88-96.
DOI URL |
| [20] |
MA Y K, DEILAMI K, EGODAWATTA P, et al., 2019. Creating a hierarchy of hazard control for urban stormwater management[J]. Environmental Pollution, 255(Part 1): 113217.
DOI URL |
| [21] | MARING T, KUMAR S, JHA A K, et al., 2023. Airborne particulate matter and associated heavy metals: A review[J]. Macromolecular Symposia, 407(1): 2100487. |
| [22] |
MCCARTY K, MIAN H R, CHHIPI-SHRESTHA G, et al., 2023. Ecological risk assessment of tire and road wear particles: A preliminary screening for freshwater sources in Canada[J]. Environmental Pollution, 325: 121354.
DOI URL |
| [23] |
PAN Z, GONG T, LIANG P, 2024. Heavy metal exposure and cardiovascular disease[J]. Circulation Research, 134(9): 1160-1178.
DOI PMID |
| [24] |
PERKINS A N, INAYAT-HUSSAIN S H, DEZIEL N C, et al., 2019. Evaluation of potential carcinogenicity of organic chemicals in synthetic turf crumb rubber[J]. Environmental Research, 169: 163-172.
DOI PMID |
| [25] |
POMA A, VECCHIOTTI G, COLAFARINA S, et al., 2019. Exposure to particle debris generated from passenger and truck tires induces different genotoxicity and inflammatory responses in the RAW 264.7 cell line[J]. PloS One, 14(9): e0222044.
DOI URL |
| [26] |
PANKO J M, CHU J, KREIDER M L, et al., 2013. Measurement of airborne concentrations of tire and road wear particles in urban and rural areas of France, Japan, and the United States[J]. Atmospheric Environment, 72: 192-199.
DOI URL |
| [27] |
SHAO Y T, ZHENG L T, JIANG Y G, 2024. Cadmium toxicity and autophagy: A review[J]. BioMetals, 37(3): 609-629.
DOI PMID |
| [28] | SINGH V, SINGH N, VAMANU E, et al., 2022. Hexavalent-chromium-induced oxidative stress and the protective role of antioxidants against cellular toxicity[J]. Antioxidants, 11(12): 2375. |
| [29] |
SMOLDERS E, DEGRYSE F, 2002. Fate and effect of zinc from tire debris in soil[J]. Environmental Science & Technology, 36(17): 3706-3710.
DOI URL |
| [30] |
TRAN-NGUYEN Q A, LE T M, NGUYEN, H N Y, et al., 2024. Microplastics in the surface water of urban lakes in central Vietnam: Pollution level, characteristics, and ecological risk assessment[J]. Case Studies in Chemical and Environmental Engineering, 9: 100622.
DOI URL |
| [31] | US EPA, 2011. Exposure Factors Handbook. Office of Research and Development, U.S[S]. Environmental Protection Agency (US EPA), Washington, DC. |
| [32] | US EPA, 2022. Regional Screening Levels (RSLs)-Equations[S]. U.S. Environmental Protection Agency (US EPA), Washington, DC. |
| [33] |
WANG H, MATSUSHITA M T, 2021. Heavy metals and adult neurogenesis[J]. Current Opinion in Toxicology, 26: 14-21.
DOI URL |
| [34] | WINZ R, YU L L, SUNG L P, et al., 2023. Assessing children’s potential exposures to harmful metals in tire crumb rubber by accelerated photodegradation weathering[J]. Scientific Reports, 13(1): 13877. |
| [35] |
YI Y J, YANG Z F, ZHANG S H, 2011. Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin[J]. Environmental Pollution, 159(10): 2575-2585.
DOI PMID |
| [36] |
YAN R H, PENG X, LIN W Q, et al., 2022. Trends and challenges regarding the source-specific health risk of PM2.5-bound metals in a Chinese megacity from 2014 to 2020[J]. Environmental Science & Technology, 56(11): 6996-7005.
DOI URL |
| [37] |
ZHANG D, LI H H, LUO X S, et al., 2022. Toxicity assessment and heavy metal components of inhalable particulate matters (PM2.5 & PM10) during a dust storm invading the city[J]. Process Safety and Environmental Protection, 162: 859-866.
DOI URL |
| [38] | ZHONG C Z, SUN J X, ZHANG J, et al., 2024. Characteristics of vehicle tire and road wear particles’ size distribution and influencing factors examined via laboratory test[J]. Atmosphere, 15(4): 423. |
| [39] | 陈瑶, 刘金, 张颖昕, 等, 2022. 环境老化对轮胎磨损颗粒内源重金属释放的影响[J]. 天津科技大学学报, 37(2): 12-17, 70. |
| CHEN Y, LIU J, ZHANG Y X, et al., 2022. Effect of environmental aging on the release of endogenous heavy metals from tire wear particles[J]. Journal of Tianjin University of Science & Technology, 37(2): 12-17, 70. | |
| [40] | 史长义, 梁萌, 冯斌, 2016. 中国水系沉积物39种元素系列背景值[J]. 地球科学, 41(2): 234-251. |
| SHI C Y, LIANG M, FENG B, 2016. Average background values of 39 chemical elements in stream sediments of China[J]. Earth Science, 41(2): 234-251. | |
| [41] | 付佳祺, 杨馨蕊, 李坤禹, 等, 2024. 氧化锌在橡胶生产中的应用综述[J]. 煤炭与化工, 47(8): 134-136. |
| FU J Q, YANG X R, LI K Y, et al., 2024. Application of zinc oxide in rubber production[J]. Coal and Chemical Industry, 47(8): 134-136. | |
| [42] | 焦萌, 曹秉帝, 张涛, 等, 2020. 环境中的轮胎磨损颗粒: 从路面到海洋[J]. 环境科学学报, 40(12): 4263-4278. |
| JIAO M, CAO B D, ZHANG T, et al., 2020. Tire wear particles in the environment: From road to ocean[J]. Acta Scientiae Circumstantiae, 40(12): 4263-4278. | |
| [43] | 吴琳, 张新峰, 门正宇, 等, 2020. 机动车轮胎磨损颗粒物化学组分特征研究[J]. 中国环境科学, 40(4): 1486-1492. |
| WU L, ZHANG X F, MEN Z Y, et al., 2020. The chemical component characteristics of vehicle tire wear particles[J]. China Environmental Science, 40(4): 1486-1492. | |
| [44] | 逄见光, 徐辉, 马松涛, 等, 2025. 不同氧化锌在丁腈橡胶中的应用对比研究[J]. 特种橡胶制品, 46(1): 14-18. |
| PANG J G, XU H, MA S T, et al., 2025. Comparatives study on application of different zinc oxide in nitrile rubber[J]. Special Purpose Rubber Products, 46(1): 14-18. | |
| [45] | 郑鑫程, 王剑凯, 曾晓莹, 等, 2021. 不同车型的颗粒物及其重金属排放分担率研究[J]. 环境科学与技术, 44(7): 60-69. |
| ZHENG X C, WANG J K, ZENG X Y, et al., 2021. Study on the sharing rate of particulate matters and heavy metal emissions of different vehicle types[J]. Environmental Science & Technology, 44(7): 60-69. |
| [1] | 李雪, 王震, 毛雪飞. 聚乙烯与聚丙烯微塑料对镉胁迫下水稻幼苗生长及抗氧化作用的影响[J]. 生态环境学报, 2025, 34(7): 1053-1063. |
| [2] | 肖咏茵, 王帆, 李灿桦, 汪超, 王万军. 淡水中可生物降解微塑料生物膜上耐药基因的富集特征及其健康风险[J]. 生态环境学报, 2025, 34(7): 1029-1041. |
| [3] | 张传华, 刘力, 代杰, 李曼曼, 张凤太, 邓凌. 基于土壤重金属污染和累积性评价的耕地环境质量类别划分与风险管控[J]. 生态环境学报, 2025, 34(2): 311-320. |
| [4] | 汪彩琴, 杨潜英, 周名玉, 张道勇, 潘响亮. 微塑料对滨海湿地中污染物行为和元素循环的影响研究进展[J]. 生态环境学报, 2025, 34(10): 1519-1531. |
| [5] | 何艺, 秦欣欣, 张翔, 孙楠, 杨雅淋, 连军锋. 微塑料断面分布的不均一性——以赣江水域赣州段为例[J]. 生态环境学报, 2024, 33(4): 626-632. |
| [6] | 林健晖, 李萍萍, 刘敏, 邓希, 康子歆, 杨涛, 展舒悦, 曾映旭. 不同生物膜附着微塑料对文蛤鳃的毒性效应[J]. 生态环境学报, 2024, 33(1): 111-118. |
| [7] | 陈鸿展, 区晖, 叶四化, 张倩华, 周树杰, 麦磊. 珠江广州段水体微塑料的时空分布特征及生态风险评估[J]. 生态环境学报, 2023, 32(9): 1663-1672. |
| [8] | 冯树娜, 吕家珑, 何海龙. KI淋洗对黄绵土汞污染的去除效果及土壤理化性状的影响[J]. 生态环境学报, 2023, 32(4): 776-783. |
| [9] | 李海燕, 杨小琴, 简美鹏, 张晓然. 城市水体中微塑料的来源、赋存及其生态风险研究进展[J]. 生态环境学报, 2023, 32(2): 407-420. |
| [10] | 李成涛, 吴婉晴, 陈晨, 张勇, 张凯. 可生物降解PBAT微塑料对土壤理化性质及上海青生理指标的影响[J]. 生态环境学报, 2023, 32(11): 1964-1977. |
| [11] | 李文菁, 黄月群, 黄亮亮, 李向通, 苏琼源, 孙扬言. 北部湾海洋鱼类微塑料污染特征及其风险评估[J]. 生态环境学报, 2023, 32(11): 1913-1921. |
| [12] | 李双双, 蔡铭灿, 汪庆, 齐丽英, 魏贺红, 王纯. 淡水环境中微塑料与生物膜的相互作用及其生态效应研究进展[J]. 生态环境学报, 2023, 32(11): 2041-2049. |
| [13] | 何文宣, 李垒, 孙思宇, 李昌, 李久义, 田秀君. 北运河水体、沉积物和鱼类中微塑料的分布特征研究[J]. 生态环境学报, 2023, 32(11): 1901-1912. |
| [14] | 刘明宇, 郑旭, 强丽媛, 李鲁华, 张若宇, 王家平. 1994-2020年中国农用薄膜使用量变化与农膜微塑料污染现状分析[J]. 生态环境学报, 2023, 32(11): 2050-2061. |
| [15] | 马闯, 王雨阳, 周通, 吴龙华. 污染土壤颗粒态有机质镉锌富集特征及其解吸行为研究[J]. 生态环境学报, 2022, 31(9): 1892-1900. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||