生态环境学报 ›› 2024, Vol. 33 ›› Issue (11): 1756-1767.DOI: 10.16258/j.cnki.1674-5906.2024.11.010
颜思瑶1,2(), 杨光1,2, 白艳1,2, 高一帆1,2, 梁露予1,2, 龚凤1,2, 黄国勇1,2, 潘丹丹1,2, 李晓敏1,2,*(
)
收稿日期:
2024-06-29
出版日期:
2024-11-18
发布日期:
2024-12-06
通讯作者:
*李晓敏。E-mail: xiaomin.li@m.scnu.edu.cn作者简介:
颜思瑶(1999年生),女,硕士,研究方向为土壤重金属转化的生物调控研究。E-mail: 2249538170@qq.com
基金资助:
YAN Siyao1,2(), YANG Guang1,2, BAI Yan1,2, GAO Yifan1,2, LIANG Luyu1,2, GONG Feng1,2, HUANG Guoyong1,2, PAN Dandan1,2, LI Xiaomin1,2,*(
)
Received:
2024-06-29
Online:
2024-11-18
Published:
2024-12-06
摘要:
淹水条件下土壤砷的移动性和生物有效性显著提高,易被水稻吸收;然而水稻种植过程对土壤砷转化的影响机制尚不明确。选取了含低砷(15.5 mg·kg-1)和高砷(52.1 mg·kg-1)两种稻田土壤,每种土壤在淹水条件下分别设置种植和不种植水稻两种处理,在淹水培养期间的第7、14、28、42、56天采集土壤孔隙水、根际土壤,并在水稻成熟时采集水稻植株各部位样品。分析了不同砷形态、土壤砷组分、亚铁浓度、土壤溶解性有机质分子组分等的动态变化,探究了水稻对淹水土壤砷转化的影响机制。结果表明,与不种植水稻处理相比,种植水稻降低了淹水期土壤有效态砷和无定型铁铝氧化物结合态砷的比例,但提高了土壤腐殖酸结合态和富里酸结合态砷的比例。在第28天时种植水稻使孔隙水中溶解态Fe(II)质量浓度从43.6-51.3 mg·L-1降低至11.9-19.4 mg·L-1,使土壤吸附态Fe(II)质量分数从1.14-1.21 g·kg-1提高至3.73-4.28 g·kg-1。三维荧光光谱分析表明,种植水稻显著提高了土壤溶解性有机质中类富里酸、类腐殖酸、类酪氨酸和类色氨酸等组分的丰度,且相关性分析结果表明,四者均与土壤有机质结合态砷呈显著正相关(p≤0.05或p≤0.01),但与土壤可利用态砷呈显著负相关(p≤0.01或p≤0.001)。此外,在高砷土壤种植的水稻呈现直穗病,这可能跟高砷土壤溶解性有机质中CHOS和蛋白质/脂质化合物的相对丰度(16.4%和12.0%)比低砷土壤(12.8%和6.62%)高有关。水稻植株可能通过根际响应和根系吸收等作用,降低土壤有效态砷,提高土壤溶解性有机质的含量,并使更多砷与土壤有机质结合,有利于砷的固定。
中图分类号:
颜思瑶, 杨光, 白艳, 高一帆, 梁露予, 龚凤, 黄国勇, 潘丹丹, 李晓敏. 淹水条件下水稻对土壤砷转化的影响[J]. 生态环境学报, 2024, 33(11): 1756-1767.
YAN Siyao, YANG Guang, BAI Yan, GAO Yifan, LIANG Luyu, GONG Feng, HUANG Guoyong, PAN Dandan, LI Xiaomin. Effect of Rice on Arsenic Transformation in Paddy Soil under Flooded Conditions[J]. Ecology and Environment, 2024, 33(11): 1756-1767.
参数 | 单位 | 处理 | |
---|---|---|---|
Soil LAs | Soil HAs | ||
pH | - | 5.47 | 4.99 |
总砷 | mg·kg-1 | 15.5 | 52.1 |
总铁 | g·kg-1 | 16.3 | 16.8 |
总钙 | mg·kg-1 | 999 | 440 |
总镁 | mg·kg-1 | 997 | 195 |
总钾 | g·kg-1 | 32.9 | 15.0 |
总磷 | mg·kg-1 | 409 | 894 |
总有机质 | g·kg-1 | 20.2 | 24.3 |
表1 供试土壤的基本理化性质
Table 1 Physicochemical properties of the tested soils
参数 | 单位 | 处理 | |
---|---|---|---|
Soil LAs | Soil HAs | ||
pH | - | 5.47 | 4.99 |
总砷 | mg·kg-1 | 15.5 | 52.1 |
总铁 | g·kg-1 | 16.3 | 16.8 |
总钙 | mg·kg-1 | 999 | 440 |
总镁 | mg·kg-1 | 997 | 195 |
总钾 | g·kg-1 | 32.9 | 15.0 |
总磷 | mg·kg-1 | 409 | 894 |
总有机质 | g·kg-1 | 20.2 | 24.3 |
图1 低砷和高砷土壤不种植水稻处理(-R)和种植水稻处理(+R)中土壤砷组分的动态变化 F0:水溶态砷;F1:可交换态砷;F2:碳酸盐结合态砷;F3:无定型铁铝氧化物结合态砷;F4:硫化物结合态砷;F5:晶型铁铝氧化物结合态砷;F6:腐殖酸结合态砷;F7:富里酸结合态砷;F8:残渣态砷
Figure 1 Changes in soil arsenic fraction of non-rice cultivation treatment (-R) and rice cultivation treatment (+R) with low arsenic and high arsenic soils
图2 不种植水稻处理(-R)和种植水稻处理(+R)中土壤孔隙水砷形态的动态变化 无机三价砷(As(III));无机五价砷(As(V));一甲基砷(MMA);二甲基砷(DMA)
Figure 2 Changes in arsenic speciation in soil pore water of non-rice cultivation treatment (-R) and rice cultivation treatment (+R) with low arsenic and high arsenic soils
图3 不同处理中土壤氨基磺酸提取态Fe(II)和土壤孔隙水溶解态Fe(II)的动态变化 低砷土壤不种植(Soil LAs-R)和种植水稻处理(Soil LAs+R);高砷土壤不种植(Soil HAs-R)和种植水稻处理(Soil HAs+R)
Figure 3 Changes in sulfamic acid-extracted Fe(II) from soil and dissolved Fe(II) in soil pore water in different treatments
图4 低砷和高砷土壤溶解性有机质不同组分的最大荧光峰值(Fmax)的动态变化 C1:类富里酸;C2:类腐殖酸;C3:类酪氨酸;C4:类色氨酸
Figure 4 Changes in maximum intensity of fluorescence peak of different soil dissolved organic matter components in low arsenic and high arsenic soils
图5 土壤溶解性有机质组分、孔隙水砷形态、土壤砷组分以及Fe(II)物种之间的相关性 * p≤0.05,** p≤0.01,*** p≤0.001;颜色深浅代表相关性的强弱;红色代表正相关,蓝色代表负相关
Figure 5 Correlationp between dissolved organic matter components, arsenic speciation in soil pore water, soil arsenic fractions and Fe(II) species
图6 低砷(Soil LAs+R)和高砷(Soil HAs+R)土壤种植水稻处理成熟期水稻各部位干质量和砷质量分数以及生长情况 不同小写字母表示处理间的显著性差异(p<0.05)
Figure 6 Dry weight and arsenic concentration in each part of rice plants, and rice growth in low arsenic (Soil LAs+R) and high arsenic (Soil HAs+R) soils at maturity stage
图7 水稻成熟期低砷和高砷土壤溶解性有机质分子的Van Krevelen图、元素组成和有机组分的相对丰度以及修饰芳香度指数 木质素(Lignins);蛋白质/脂类(Protein/Lipids);单宁(Tannins);氨基糖(Aminosugars);碳水化合物(Carbohydrate);不饱和烃(Unsaturated Hydrocarbons);缩合芳香族(Condensed Aromatic Structures);修饰芳香度指数(AImod)
Figure 7 Van Krevelen diagram of organic matter molecules in low arsenic and high arsenic soils after rice cultivation at maturity stage, relative abundance of elemental components, relative abundance of major components, modified aromatics index
[1] | AMARAL D C, LOPES G, GUILHERME L R, et al., 2017. A new approach to sampling intact Fe plaque reveals Si-induced changes in Fe mineral composition and shoot As in rice[J]. Environmental Science & Technology, 51(1): 38-45. |
[2] | AULAKH M S, WASSMANN R, BUENO C, et al., 2001. Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars[J]. Plant Biology, 3(2): 139-148. |
[3] | BAO Y P, BOLAN N S, LAI J H, et al., 2021. Interactions between organic matter and Fe(hydr)oxides and their influences on immobilization and remobilization of metal(loid)s: A review[J]. Critical Reviews in Environmental Science and Technology, 52(22): 4016-4037. |
[4] |
BAUER M, BLODAU C, 2006. Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments[J]. Science of the Total Environment, 354(2-3): 179-190.
PMID |
[5] |
BOSE P, SHARMA A, 2002. Role of iron in controlling speciation and mobilization of arsenic in subsurface environment[J]. Water Research, 36(19): 4916-4926.
PMID |
[6] | BUSCHMANN J, KAPPELER A, LINDAUER U, et al., 2006. Arsenite and arsenate binding to dissolved humic acids: Influence of pH, type of humic acid, and aluminum[J]. Environmental Science & Technology, 40(19): 6015-6020. |
[7] | CHEN C, LI L Y, HUANG K, et al., 2019. Sulfate-reducing bacteria and methanogens are involved in arsenic methylation and demethylation in paddy soils[J]. The ISME Journal, 13(10): 2523-2535. |
[8] | CHEN W, WESTERHOFF P, LEENHEER J A, et al., 2003. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 37(24): 5701-5710. |
[9] |
CHEN Z, WANG Y P, XIA D, et al., 2016. Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition[J]. Journal of Hazardous Materials, 311: 20-29.
DOI PMID |
[10] | DING Y, SHI Z Q, YE Q T, et al., 2020. Chemodiversity of soil dissolved organic matter[J]. Environmental Science & Technology, 54(10): 6174-6184. |
[11] |
DUAN G L, SHAO G S, TANG Z, et al., 2017. Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars[J]. Rice, 10(1): 9.
DOI PMID |
[12] |
FITZ W J, WENZEL W W, 2002. Arsenic transformations in the soil-rhizosphere-plant system: Fundamentals and potential application to phytoremediation[J]. Journal of Biotechnology, 99(3): 259-278.
PMID |
[13] | GAO A X, CHEN C, GAO Z Y, et al., 2024. Soil redox status governs within-field spatial variation in microbial arsenic methylation and rice straighthead disease[J]. The ISME Journal, 18(1): wrae057. |
[14] | GAO A X, CHEN C, ZHANG H H, et al., 2023. Multi-site field trials demonstrate the effectiveness of silicon fertilizer on suppressing dimethylarsenate accumulation and mitigating straighthead disease in rice[J]. Environmental Pollution, 316(Part 1): 120515. |
[15] | HOFFMANN M, MIKUTTA C, KRETZSCHMAR R, 2013. Arsenite binding to natural organic matter: Spectroscopic evidence for ligand exchange and ternary complex formation[J]. Environmental Science & Technology, 47(21): 12165-12173. |
[16] | HONG Z B, HU S W, YANG Y, et al., 2023. The key roles of Fe oxyhydroxides and humic substances during the transformation of exogenous arsenic in a redox-alternating acidic paddy soil[J]. Water Research, 242: 120286. |
[17] | HOU D Y, O’CONNOR D, IGALAVITHANA A D, et al., 2020. Metal contamination and bioremediation of agricultural soils for food safety and sustainability[J]. Nature Reviews Earth & Environment, 1(7): 366-381. |
[18] | HU S W, LIANG Y Z, LIU T X, et al., 2020. Kinetics of As(V) and carbon sequestration during Fe(II)-induced transformation of ferrihydrite-As(V)-fulvic acid coprecipitates[J]. Geochimica et Cosmochimica Acta, 272: 160-176. |
[19] | HU S W, LU Y, PENG L F, et al., 2018. Coupled kinetics of ferrihydrite transformation and As(V) sequestration under the effect of humic acids: A mechanistic and quantitative study[J]. Environmental Science & Technology, 52(20): 11632-11641. |
[20] | HUANG B Y, ZHAO F J, WANG P, et al., 2022. The relative contributions of root uptake and remobilization to the loading of Cd and As into rice grains: Implications in simultaneously controlling grain Cd and As accumlation using a segmented water management strategy[J]. uEnvironmental Pollution, 293: 118497. |
[21] | HUANG H, JIA Y, SUN G X, et al., 2012. Arsenic speciation and volatilization from flooded paddy soils amended with different organic matters[J]. Environmental Science & Technology, 46(4): 2163-2168. |
[22] | JIA Y, HUANG H, CHEN Z, et al., 2014. Arsenic uptake by rice is influenced by microbe-mediated arsenic redox changes in the rhizosphere[J]. Environmental Science & Technology, 48(2): 1001-1007. |
[23] |
JIANG O Y, LI L Y, DUAN G L, et al., 2023. Root exudates increased arsenic mobility and altered microbial community in paddy soils[J]. Journal of Environmental Sciences, 127: 410-420.
DOI PMID |
[24] | JONES D L, WILLETT V B, 2006. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil[J]. Soil Biology & Biochemistry, 8(5): 991-999. |
[25] |
KAPPLER A, BRYCE C, MANSOR M, et al., 2021. An evolving view on biogeochemical cycling of iron[J]. Nature Reviews Microbiology, 19(6): 360-374.
DOI PMID |
[26] | KLUEGLEIN N, KAPPLER A, 2013. Abiotic oxidation of Fe(II) by reactive nitrogen species in cultures of the nitrate-reducing Fe(II) oxidizer Acidovorax sp. BoFeN1-questioning the existence of enzymatic Fe(II) oxidation[J]. Geobiology, 11(4): 396-396. |
[27] | KUMARATHILAKA P, SENEWEERA S, MEHARG A, et al., 2018. Arsenic speciationdynamics in paddy rice soil-water environment: Sources, physico-chemical, and biological factors: A review[J]. Water Research, 140: 403-414 |
[28] |
LI G, SUN G X, WILLIAMS P N, et al., 2011. Inorganic arsenic in Chinese food and its cancer risk[J]. Environment International, 37(7): 1219-1225.
DOI PMID |
[29] | LI X M, CHEN Q L, HE C, et al., 2019. Organic carbon amendments affect the chemodiversity of soil dissolved organic matter and its associations with soil microbial communities[J]. Environmental Science & Technology, 53(1): 50-59. |
[30] | LIU C J, HU C Y, XIAO S F, et al., 2024. Insoluble-phytate improves plant growth and arsenic accumulation in As-hyperaccumulator Pteris vittata: Phytase activity, nutrient uptake, and As-metabolism[J]. Environmental Science & Technology, 58(8): 3858-3868. |
[31] | LIU L, YANG Y P, DUAN G, et al., 2022. The chemical-microbial release and transformation of arsenic induced by citric acid in paddy soil[J]. Journal of Hazardous Materials, 421: 126731. |
[32] | LIU X, FU J W, GUAN D X, et al., 2016. Arsenic induced phytate exudation, and promoted FeAsO4 dissolution and plant growth in As-hyperaccumulator pteris vittata[J]. Environmental Science & Technology, 50(17): 9070. |
[33] | LIU Y, DING Y, SHENG A, et al., 2023. Fe(II)-catalyzed transformation of ferrihydrite with different degrees of crystallinity[J]. Environmental Science & Technology, 57(17): 6934-6943. |
[34] | MAISCH M, LUEDER U, KAPPLER A, et al., 2019. Iron lung: How rice roots induce iron redox changes in the rhizosphere and create niches for microaerophilic Fe (II)-oxidizing bacteria[J]. Environmental Science & Technology Letters, 6(10): 600-605. |
[35] |
MATERA V, LE HÉCHO I, LABOUDIGUE A, et al., 2003. A methodological approach for the identification of arsenic bearing phases in polluted soils[J]. Environmental Pollution, 126(1): 51-64.
PMID |
[36] | MEHARG A A, RAHMAN M, 2003. Arsenic contamination of Bangladesh paddy field soils: Implications for rice contribution to arsenic consumption[J]. Environmental Science & Technology, 37(2): 229-234. |
[37] | MEI K, LIU J C, FAN J, et al., 2021. Low-level arsenite boosts rhizospheric exudation of low-molecular-weight organic acids from mangrove seedlings (Avicennia marina): Arsenic phytoextraction, removal, and detoxification[J]. Science of the Total Environment, 775: 145685. |
[38] | MIKUTTA C, FROMMER J, VOEGELIN A, et al., 2010. Effect of citrate on the local Fe coordination in ferrihydrite, arsenate binding, and ternary arsenate complex formation[J]. Geochimica et Cosmochimica Acta, 74(19): 5574-5592. |
[39] | MIKUTTA C, KRETZSCHMAR R, 2011. Spectroscopic evidence for ternary complex formation between arsenate and ferric iron complexes of humic substances[J]. Environmental Science & Technology, 45(22): 9550-9557. |
[40] | MLADENOV N, ZHENG Y, MILLER M P, et al., 2010. Dissolved organic matter sources and consequences for iron and arsenic mobilization in Bangladesh aquifers[J]. Environmental Science & Technology, 44(1): 123-128. |
[41] | MLADENOV N, ZHENG Y, SIMONE B, et al., 2015. Dissolved organic matter quality in a shallow aquifer of Bangladesh: Implications for arsenic mobility[J]. Environmental Science & Technology, 49(18): 10815-10824. |
[42] | NIAZI N K, SINGH B, SHAH P, et al., 2011. Arsenic speciation and phytoavailability in contaminated soils using a sequential extraction procedure and XANES spectroscopy[J]. Environmental Science & Technology, 45(17): 7135-7142. |
[43] |
NORTON G J, ADOMAKO E E, DEACON C M et al., 2013. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species[J]. Environmental Pollution, 177: 38-47.
DOI PMID |
[44] | OHNO T, HE Z Q, TAZISONG I A, et al., 2009. Influence of tillage, cropping, and nitrogen source on the chemical characteristics of humic acid, fulvic acid, and water-soluble soil organic matter fractions of a long-term cropping system study[J]. Soil Science, 174(12): 652-660. |
[45] |
PAN D D, YI J C, LI F B, et al., 2020. Dynamics of gene expression associated with arsenic uptake and transport in rice during the whole growth period[J]. BMC Plant Biology, 20(1): 133.
DOI PMID |
[46] |
PODGORSKI J, BERG M, 2020. Global threat of arsenic in groundwater[J]. Science, 368(6493): 845-850.
DOI PMID |
[47] | QIAO J T, LI X M, HU M, et al., 2018. Transcriptional activity of arsenic-reducing bacteria and genes regulated by lactate and biochar during arsenic transformation in flooded paddy soil[J]. Environmental Science & Technology, 52(1): 61-70. |
[48] | QIAO J T, LI X M, LI F B, et al., 2019. Humic substances facilitate arsenic reduction and release in flooded paddy soil[J]. Environmental Science & Technology, 53(9): 5034-5042. |
[49] | RINKLEBE J, SHAHEEN S M, YU K, 2016. Release of As, Ba, Cd, Cu, Pb, and Sr under pre-definite redox conditions in different rice paddy soils originating from the USA and Asia[J]. Geoderma, 270(15): 21-32. |
[50] | ROTH V N, DITTMAR T, GAUPP R, et al., 2015. The molecular composition of dissolved organic matter in forest soils as a function of pH and temperature[J]. PloS One, 10(3): e0119188. |
[51] | SI D F, WU S, WU H T, et al., 2024. Activated carbon application simultaneously alleviates paddy soil arsenic mobilization and carbon emission by decreasing porewater dissolved organic matter[J]. Environmental Science & Technology, 58(18): 7880-7890. |
[52] | TAKAHASHI Y, MINAMIKAWA R, HATTORI K H, et al., 2004. Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods[J]. Environmental Science & Technology, 38(4): 1038-1044. |
[53] |
TANG Z, WANG Y J, GAO A X et al., 2020. Dimethylarsinic acid is the causal agent inducing rice straighthead disease[J]. Journal of Experimental Botany, 71(18): 5631-5644.
DOI PMID |
[54] | TU S X, MA L, LUONGO T, 2004. Root exudates and arsenic accumulation in arsenic hyperaccumulating Pteris vittata and non-hyperaccumulating Nephrolepis exaltata[J]. Plant and Soil, 258(1-2): 9-19. |
[55] | TUFANO K J, REYES C, SALTIKOV C W, et al., 2008. Reductive processes controlling arsenic retention: Revealing the relative importance of iron and arsenic reduction[J]. Environmental Science & Technology, 42(22): 8283-8289. |
[56] | WANG D M, MAI L W, YU Z, et al., 2024. Deciphering the bioavailability of dissolved organic matter in thermophilic compost and vermicompost at the molecular level[J]. Bioresource Technology, 391(Part A): 129947. |
[57] | WANG X Q, YU H Y, LI F B, et al., 2019. Enhanced immobilization of arsenic and cadmium in a paddy soil by combined applications of woody peat and Fe(NO3)3: Possible mechanisms and environmental implications[J]. Science of The Total Environment, 649: 535-543. |
[58] | WEBER F A, HOFACKER A F, VOEGELIN A, et al., 2010. Temperature dependence and coupling of iron and arsenic reduction and release during flooding of a contaminated soil[J]. Environmental Science & Technology, 44(1): 116-122. |
[59] | WELLS M J M, MULLINS G A, BELL K Y, et al., 2017. Fluorescence and quenching assessment (EEM-PARAFAC) of de facto potable reuse in the Neuse River, North Carolina, United States[J]. Environmental Science & Technology, 51(23): 13592-13602. |
[60] | WILLIAMS P N, VILLADA A, DEACON C, et al., 2007. Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley[J]. Environmental Science & Technology, 41(19): 6854-6859. |
[61] | WISAWAPIPAT W, CHOOAIEM N, ARAMRAK S, et al., 2021. Sulfur amendments to soil decrease inorganic arsenic accumulation in rice grain under flooded and nonflooded conditions: insights from temporal dynamics of porewater chemistry and solid-phase arsenic solubility[J]. Science of the Total Environment, 779: 146352. |
[62] | XU Y, HE Y, FENG X L, et al., 2014. Enhanced abiotic and biotic contributions to dechlorination of pentachlorophenol during Fe(III) reduction by an iron-reducing bacterium clostridium beijerinckii[J]. Science of the Total Environment, 473-474: 215-223. |
[63] | ZHAI W W, MA Y Y, YANG S, et al., 2023. Synchronous response of arsenic methylation and methanogenesis in paddy soils with rice straw amendment[J]. Journal of Hazardous Materials, 445: 130380. |
[64] | ZHANG G Q, YUAN Z D, LEI L, et al., 2019. Arsenic redistribution and transformation during Fe(II)-catalyzed recrystallization of As-adsorbed ferrihydrite under anaerobic conditions[J]. Chemical Geology, 525: 380-389. |
[65] | ZHANG S Y, ZHANG J J, NIU L L, et al., 2024. Escalating arsenic contamination throughout Chinese soils[J]. Nature Sustainability, 7: 766-775. |
[66] | ZHONG R L, PAN D D, HUANG G Y, et al., 2024. Colloidal fraction on pomelo peel-derived biochar plays a dual role as electron shuttle and adsorbent in controlling arsenic transformation in anoxic paddy soil[J]. Science of The Total Environment, 934: 173340. |
[67] | ZHU Y G, XUE X M, KAPPLER A, et al., 2017. Linking genes to microbial biogeochemical cycling: Lessons from arsenic[J]. Environmental Science & Technology, 51(13): 7326-7339. |
[68] | 鲍士旦, 2000. 土壤农化分析[M]. 3版. 北京: 中国农业出版社. |
BAO S D, 2000. Soil agrochemical analysis[M]. 3 edition. Beijing: China Agriculture Press. | |
[69] | 田晓庆, 王星皓, 徐昊, 等, 2024. 稻田土壤淹水期As/Sb释放的动态过程及因素探究[J]. 环境科学学报, 44(4): 324-332. |
TIAN X Q, WANG X H, XU H, et al., 2024. Study on the dynamic process and factors of As/Sb release in paddy soil during flooding period[J]. Acta Scientiae Circumstantiae, 44(4): 324-332. | |
[70] | 霍丽娟, 王美玲, 赵慧超, 等, 2022. 不同组成有机质对土壤中砷迁移行为的影响[J]. 地球与环境, 50(2): 184-191. |
HUO L J, WANG M L, ZHAO H C, et al., 2022. Effects of different organic matter on arsenic migration behavior in soil[J]. Earth and Enviroment, 50(2): 184-191. | |
[71] | 钟松雄, 何宏飞, 陈志良, 等, 2018. 水淹条件下水稻土中砷的生物化学行为研究进展[J]. 土壤学报, 55(1): 1-17. |
ZHONG S X, HE H F, CHEN Z L, et al., 2018. Research progress on the biochemical behavior of arsenic in paddy soil under flooding conditions[J]. Acta Pedologica Sinica, 55(1): 1-17. |
[1] | 丁昊, 李长鑫, 丁静, 兰昊. n-damo细菌在不同生态环境中的遗传多样性和潜在功能研究[J]. 生态环境学报, 2024, 33(2): 202-211. |
[2] | 李强, 汤秦, 吴锐. 抗生素添加对不同演替阶段岩溶生态系统土壤有机质激发效应的影响[J]. 生态环境学报, 2024, 33(11): 1717-1726. |
[3] | 李文章, 胡亚茹, 李法云, 王玮, 张继宁, 郭琴. 铁改性生物炭-凹凸棒石载体固定化菌剂制备及其对氯苯污染土壤修复作用[J]. 生态环境学报, 2024, 33(11): 1782-1791. |
[4] | 梁鑫, 韩亚峰, 郑柯, 王旭刚, 陈志怀, 杜鹃. 磁铁矿对稻田土壤碳矿化的影响[J]. 生态环境学报, 2023, 32(9): 1615-1622. |
[5] | 石润, 李法云, 周纯亮, 王玮, 周艳秋. 凤仙花种子包衣载体固定化微生物修复石油烃污染土壤的效应[J]. 生态环境学报, 2023, 32(9): 1700-1708. |
[6] | 梁燚彤, 李泽敏, 吴宇伦, 邱光磊, 吴海珍, 韦朝海. 亚硝酸盐对厌氧氨氧化耦合系统的脱氮效能及微生物群落的影响[J]. 生态环境学报, 2023, 32(7): 1275-1284. |
[7] | 苏丹, 罗桥冰, 董昱杉, 杨彩霞, 王鑫. 混合型生物炭对寒冷地区PAHs污染土壤微生物修复的强化作用[J]. 生态环境学报, 2023, 32(11): 1942-1951. |
[8] | 杨晓莉, 毛佳璇, 马露冉, 徐其静, 刘雪. 纳米材料固定化植酸酶的制备及其催化效率与影响因素综述[J]. 生态环境学报, 2023, 32(10): 1889-1900. |
[9] | 袁林江, 李梦博, 冷钢, 钟冰冰, 夏大朋, 王景华. 厌氧环境下硫酸盐还原与氨氧化的协同作用[J]. 生态环境学报, 2023, 32(1): 207-214. |
[10] | 王钊, 张曼胤, 胡宇坤, 刘魏魏, 张苗苗. 盐度对典型滨海湿地沉积物汞甲基化的影响[J]. 生态环境学报, 2022, 31(9): 1876-1884. |
[11] | 马闯, 王雨阳, 周通, 吴龙华. 污染土壤颗粒态有机质镉锌富集特征及其解吸行为研究[J]. 生态环境学报, 2022, 31(9): 1892-1900. |
[12] | 程传鹏, 徐明洁, 刘慧峰. 间伐对亚热带马尾松人工林碳动态及碳固定经济价值的影响[J]. 生态环境学报, 2022, 31(8): 1499-1509. |
[13] | 花莉, 成涛之, 梁智勇. 固定化混合菌对陕北黄土地区石油污染土壤的修复效果[J]. 生态环境学报, 2022, 31(8): 1610-1615. |
[14] | 王玉洁, 雷琴凯, 卜红玲, 童辉, 董乐恒, 陈曼佳, 刘承帅. Fe(Ⅱ)aq与纤铁矿-胡敏酸复合物交互反应及其结构转化过程研究[J]. 生态环境学报, 2022, 31(4): 777-784. |
[15] | 贺晓佳, 冯书华, 蒋明, 李明锐, 湛方栋, 李元, 何永美. UV-B辐射对水稻根际土壤活性有机碳转化和产甲烷潜力的影响[J]. 生态环境学报, 2022, 31(3): 556-564. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||