[1] |
AOYAMA M, 1998. Effects of heavy metal accumulation in apple orchard soils on the mineralization of humified plant residues[J]. Soil Science and Plant Nutrition, 44(2): 209-215.
|
[2] |
BERGAMASCO M A M, BRAOS L B, GUIDINI LOPES I, et al., 2019. Nitrogen mineralization and nitrification in two soils with different pH levels[J]. Communications in Soil Science and Plant Analysis, 53(20): 2778-2788.
|
[3] |
CHEN G N, DU Y H, FANG L P, et al., 2022. Distinct arsenic uptake feature in rice reveals the importance of N fertilization strategies[J]. Science Total Environment, 854: 158801.
|
[4] |
CHEN C, SHEN Y, LI Y H, et al., 2021. Demethylation of the antibiotic methylarsenite is coupled to denitrification in anoxic paddy soil[J]. Environmental Science & Technology, 55(22): 15484-15494.
|
[5] |
CHEN X P, ZHU Y G, HONG M N, et al., 2007. Effects of different forms of nitrogen fertilizers on arsenic uptake by rice plants[J]. Environmental Toxicology and Chemistry, 27(4): 881-887.
|
[6] |
DAI Z M, YU M J, CHEN H H, et al., 2020. Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems[J]. Global Change Biology, 26(9): 5267-5276.
|
[7] |
FENG M, DU Y H, LI X M, et al., 2023. Insight into universality and characteristics of nitrate reduction coupled with arsenic oxidation in different paddy soils[J]. Science Total Environment, 866: 161-342.
|
[8] |
FENG Q Z, ZHANG Z Y, CHEN Y, et al., 2013. Adsorption and desorption characteristics of arsenic on soils: Kinetics, equilibrium, and effect ofFe(OH)3 colloid, H2SiO3 colloid and phosphate[J]. Procedia Environmental Sciences, 18: 26-36.
|
[9] |
GALLMETZER A, SILVESTRINI L, SCHINKO T, et al., 2015. Reversible oxidation of a conserved methionine in the nuclear export sequence determines subcellular distribution and activity of the fungal nitrate regulator nirA[J]. PLoS Genetics, 11(7): e1005297.
|
[10] |
PEDERSEN H, DUNKIN K B A, FIRESTONE M K, et al., 1999. The relative importance of autotrophic and heterotrophic nitrification in a conifer forest soil as measured by 15N tracer and pool dilution techniques[J]. Biogeochemistry, 44(2): 135-150.
|
[11] |
HUSSAIN M M, BIBI I, NIAZI N K, et al., 2021. Arsenic biogeochemical cycling in paddy soil-rice system: Interaction with various factors, amendments and mineral nutrients[J]. Science of the Total Environment, 773: 145040.
|
[12] |
KUYPERS M M, MARCHANT H K, KARTAL B, 2018. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 16(5): 263-276.
DOI
PMID
|
[13] |
LI S, WU J L, HUO Y L, et al., 2021. Profiling multiple heavy metal contamination and bacterial communities surrounding an iron tailing pond in northwest China[J]. Science of The Total Environment, 752: 141827.
|
[14] |
LIN Z J, WANG X, WU X, et al., 2018. Nitrate reduced arsenic redox transformation and transfer in flooded paddy soil-rice system[J]. Environmental Pollution, 243(Part B): 1015-1025.
DOI
PMID
|
[15] |
LIU C P, YU H Y, LIU C S, et al., 2015. Arsenic availability in rice from a mining area: Is amorphous iron oxide-bound arsenic a source or sink[J]. Environmental Pollution, 199: 95-101.
|
[16] |
LIU Y, LI H D, HU T S, et al., 2022. A quantitative review of the effects of biochar application on rice yield and nitrogen use efficiency in paddy fields: A meta-analysis[J]. Science Total Environment, 830: 154-792.
|
[17] |
MA L J, GUO H J, MIN W, 2019. Nitrous oxide emission and denitrifier bacteria communities in calcareous soil as affected by drip irrigation with saline water[J]. Applied Soil Ecology, 143: 222-235.
|
[18] |
MUKHTAR H, LIN Y P, ANTHONY J, 2017. Ammonia oxidizing archaea and bacteria in east asian paddy soils: A Mini Review[J]. Environments, 4(4): 84.
|
[19] |
NGUYEN K T, AHMED M B, MOJIRI A, et al., 2021. Advances in As contamination and adsorption in soil for effective management[J]. Journal of Environmental Management, 296: 113274.
|
[20] |
PHAN K, STHIANNOPKAO S, HENG S, et al., 2013. Arsenic contamination in the food chain and its risk assessment of populations residing in the Mekong River basin of Cambodia[J]. Journal of Hazardous Materials, 262(15): 64-71.
|
[21] |
RAMA S, DUBEY R K, SRIVASTAVA M, et al., 2014. Physiological mechanisms of nitrogen absorption and assimilation in plants under stressful conditions[C]// Handbook of Plant and Crop Physiology, 4th Edition, Boca Raton; Mohammad Pessarakli: 453-487.
|
[22] |
ROKONUZZAMAN M D, YE Z, WU C, et al., 2022. Arsenic accumulation in rice: Alternative irrigation regimes produce rice safe from arsenic contamination[J]. Environmental Pollution, 310: 119829.
|
[23] |
SANTOS L A, SANTOS W A, SPERANDIO M V L, et al., 2011. Nitrate uptake kinetics and metabolicparameters in two rice varieties rown in high and low nitrate[J]. Journal of Plant Nutrition, 34(7): 988-1002.
|
[24] |
THROBÄCK I, ENWALl K, JARVIS A, et al., 2004. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE[J]. FEMS Microbiology Ecology, 49(3): 401-417.
DOI
PMID
|
[25] |
WANG C X, JU J J, ZHANG H K, et al., 2022. Disclosing the ecological implications of heavy metal disturbance on the microbial N-transformation process in the ocean tidal flushing urban estuary[J]. Ecological Indicators, 144: 109504.
|
[26] |
WANG H Y, CHEN P, ZHU Y G, et al., 2019. Simultaneous adsorption and immobilization of As and Cd by birnessite-loaded biochar in water and soil[J]. Environmental Science and Pollution Research, 26(9): 8575-8584.
|
[27] |
WANG H R, LIANG J M, HUO P J, et al., 2023. Understanding the cadmium passivation and nitrogen mineralization of aminated lignin in soil[J]. Science of The Total Environment, 873: 162334.
|
[28] |
WEI C, ZHANG N, YANG L, 2011. The fluctuation of arsenic levels in lake taihu[J]. Biological Trace Element Research, 143(3): 1310-1318.
DOI
PMID
|
[29] |
WILLIAMS L E, BARNETT M O, KRAMER T A, et al., 2003. Adsorption and transport of arsenic(V) in experimental subsurface systems[J]. Journal of Environmental Quality, 32(3): 841-850.
PMID
|
[30] |
XIE Z M, WANG J, WEI X F, et al., 2018. Interactions between arsenic adsorption/desorption and indigenous bacterial activity in shallow high arsenic aquifer sediments from the Jianghan Plain, Central China[J]. Science of The Total Environment, 644: 382-388.
|
[31] |
XUE S G, JIANG X X, WU C, et al., 2020. Microbial driven iron reduction affects arsenic transformation and transportation in soil-rice system[J]. Environmental Pollution, 24(6): 14921499.
|
[32] |
YUAN Z F, ZHOU Y J, CHEN Z, et al., 2023. Sustainable immobilization of arsenic by man-made aerenchymatous tissues in paddy soil[J]. Environmental Science & Technology, 57(33): 80-90.
|
[33] |
ZHANG X, YANG Y Q, FU Q L, et al., 2021. Comparing effects of ammonium and nitrate nitrogen on arsenic accumulation in brown rice and its dynamics in soil-plant system[J]. Journal of Soils and Sediments, 21(7): 2650-2658.
|
[34] |
ZHANG X M, ZHANG H Y, HUANG T S, et al., 2023. Dynamics of soil net nitrogen mineralization and controlled effect of microbial functional genes in the restoration of cold temperate forests[J]. Applied Soil Ecology, 189: 4898-4898
|
[35] |
ZHAO F J, HARRIS E, YAN J, et al., 2013. Arsenic methylation in soils and its relationship with microbial arsM abundance and diversity, and as speciation in rice[J]. Environmental Science & Technology, 47(13): 47-54.
|
[36] |
陈荣山, 郭徐魁, 刘长辉, 等, 2009. 无机砷对稻田土微生物活性的影响[J]. 环境科学与管理, 34(9): 136-138, 159.
|
|
CHEN R S, GUO X K, LIU C H, et al., 2009. Effect of microbial activity in paddy soil responding to inorganic arsenic[J]. Environmental Science and Management, 34(9): 136-138, 159.
|
[37] |
串丽敏, 赵同科, 安志装, 等, 2010. 土壤硝态氮淋溶及氮素利用研究进展[J]. 中国农学通报, 26(11): 200-205.
|
|
CHUAN L M, ZHAO T K, AN Z Z, et al., 2010. Research advancement in nitrate leaching and nitrogen use in soils[J]. Chinese Agricultural Science Bulletin, 26(11): 200-205
DOI
|
[38] |
李艳, 张薇薇, 程永毅, 等, 2017. 重庆紫色母岩及土壤As、Hg环境地球化学基线研究[J]. 土壤学报, 54(4): 917-926.
|
|
LI Y, ZHANG W W, CHENG Y Y, et al., 2017. Environmental geochemical baseline of As and Hg in purple soil and its parent rock in Chongqing[J]. Acta Pedologica Sinica, 54(4): 917-926.
|
[39] |
刘利军, 洪坚平, 闫双堆, 等, 2013. 不同pH条件下腐植酸对土壤中砷形态转化的影响[J]. 植物营养与肥料学报, 19(1): 134-141.
|
|
LIU L J, HONG J P, YAN S D, et al., 2013. Effects of humic acid on soil As in different pH conditions[J]. Plant Nutrition and Fertilizer Science, 19(1): 134-141.
|
[40] |
卢璇, 王云燕, 瞿才燕, 等, 2022. 水体硝化体系中砷的解毒机制探讨[J]. 微生物学报, 62(6): 2212-2225.
|
|
LU X, WANG Y Y, QU C Y, et al., 2022. Detoxification mechanisms of arsenic in nitrification in water systems[J]. Acta Microbiologica Sinica, 62(6): 2212-2225.
|
[41] |
王齐齐, 徐虎, 马常宝, 等, 2018. 西部地区紫色土近30年来土壤肥力与生产力演变趋势分析[J]. 植物营养与肥料学报, 24(6): 1492-1499.
|
|
WANG Q Q, XU H, MA C B, et al., 2018. Change of soil fertility and productivity of purple soil in Western China in recent 30 years[J]. Journal of Plant Nutrition and Fertilizers, 24(6): 1492-1499.
|
[42] |
中华人民共和国环境保护部,2009. 水质氨氮的测定纳氏试剂分光光度法: HJ/T 535—2009[S].
|
|
Ministry of Environmental Protection of the People’ s Republic of China,2009. Water quality-determination of ammonia nitrogen-nessler’s reagent spectrophotometry: HJ/T 535—2009[S].
|
[43] |
中华人民共和国环境保护部,2014. 土壤质量全氮的测定凯氏法: GB HJ717—2014[S].
|
|
Ministry of Environmental Protection of the People’s Republic of China,2014. Soil quality-determination of total nitrogen-modified Kjeldahl method: GB HJ717—2014[S].
|
[44] |
中华人民共和国生态环境部,2018. 土壤环境质量农用地土壤污染风险管控标准 (试行): GB 15618—2018[S].
|
|
Ministry of Ecology and Environment of the People’s Republic of China,2018. Soil environmental quality risk control standard for soil contamination of agricultural land: GB 15618—2018[S].
|
[45] |
朱忆雯, 尹丹, 胡敏, 等, 2023. 稻田土壤氮循环与砷形态转化耦合的研究进展[J]. 生态环境学报, 32(7): 1344-1354.
DOI
|
|
ZHU Y W, YIN D, HU M, et al., 2023. Research progress on coupling of nitrogen cycle and arsenic speciation transformation in paddy soil[J]. Ecology and Environmental Sciences, 32(7): 1344-1354.
|