生态环境学报 ›› 2024, Vol. 33 ›› Issue (2): 272-281.DOI: 10.16258/j.cnki.1674-5906.2024.02.011

• 研究论文【环境科学】 • 上一篇    下一篇

电子穿梭体介导土壤锑还原成矿的微生物机制

蓝浚1,2(), 陈冠虹2,*(), 张俊涛3, Hemmat-Jou Mohammad Hossein2, 舒小华1, 方利平2, 李芳柏2   

  1. 1.桂林理工大学环境科学与工程学院,广西 桂林 541000
    2.广东省科学院生态环境与土壤研究所/广东省农业环境综合治理重点实验室,广东 广州 510650
    3.广州市林业和园林科学研究院,广东 广州 510405
  • 收稿日期:2023-12-03 出版日期:2024-02-18 发布日期:2024-04-03
  • 通讯作者: *陈冠虹。E-mail: ghchen@soil.gd.cn
  • 作者简介:蓝浚(2000年生),男,硕士研究生,研究方向为土壤锑污染控制。E-mail: lanjun9527@163.com
  • 基金资助:
    国家自然科学基金项目(42077354);国家自然科学基金项目(42377395);广州市科技计划项目“广州市生态园林科技协同创新中心”(202206010058);韶关市省科技专项资金项目(220716096270196);韶关市省科技创新战略专项项目(230225176275072)

Microbial Mechanism of Electron Shuttle-mediated Antimony Reduction and Mineralization by Soil Microorganism

LAN Jun1,2(), CHEN Guanhong2,*(), ZHANG Juntao3, HEMMAT-JOU Mohammad Hossein2, SHU Xiaohua1, FANG Liping2, LI Fangbai2   

  1. 1. College of Environmental Science and Engineering, Guilin University of Science and Technology, Guilin 541000, P. R. China
    2. Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences/Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangzhou 510650, P. R. China
    3. Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou 510405, P. R. China
  • Received:2023-12-03 Online:2024-02-18 Published:2024-04-03

摘要:

微生物锑还原成矿有助于降低土壤锑的生物有效性和移动性,是土壤锑污染修复的重要策略之一。电子穿梭体AQDS能够加速土壤富集菌群锑还原速率,可能与其促进微生物呼吸及细胞生长有关。理解电子穿梭体(ES)介导微生物锑还原过程与机制可为土壤锑污染控制提供关键理论支撑。醌类和黄素类电子穿梭体(AQDS和FMN)存在时可能改变微生物呼吸代谢中的电子传递过程,然而ES介导下的微生物锑还原过程及转录响应机制尚不清楚。利用锑污染稻田土壤分离的兼性厌氧锑还原细菌Mesobacillus jeotgali PS1作为研究对象,探究醌类和黄素类电子穿梭体(AQDS和FMN)对菌株PS1锑还原过程及关键功能基因转录活性的影响。结果表明,菌株PS1驱动Sb(V)还原为Sb(III)过程中水溶态Sb(III) 随培养时间先累积后下降,培养72 h后水溶态锑去除率为64%,生成十四面体方锑矿,表明菌株PS1驱动锑还原成矿有助于锑的钝化。两种ES能够加速细菌锑还原反应,而对胞外生成的方锑矿晶型没有影响。通过定量分析菌株PS1潜在功能基因转录表达活性,结果表明AQDS相比FMN更能促进菌株PS1细胞膜二甲基亚砜还原酶(DMSOR)基因和胞内解毒型砷还原基因(arsC)转录活性,有助于增加菌株PS1呼吸代谢活性和胞内锑解毒从而加速锑还原,所以AQDS可能在强化微生物锑还原钝化中更具有优势。该研究揭示了不同电子穿梭体介导锑还原的微生物机制,为锑污染土壤生物修复提供重要理论支撑。

关键词: 锑还原细菌, 电子穿梭体, 方锑矿, 锑解毒, 转录响应, 二甲基亚砜还原酶

Abstract:

Microbially mediated antimonate [Sb(V)] reduction and subsequent mineralization decrease the availability and mobility of Sb, which is one of the strategies for the remediation of Sb-contaminated soils. Electron shuttle (ES) AQDS has been reported to accelerate Sb reduction by soil microbial enrichment, probably due to stimulated microbial respiration and growth. Understanding the microbial mechanisms underlying Sb reduction is important for controlling Sb contamination in soil. Despite the critical role of ES in altering the electron transport pathway in respiratory metabolism, ES-mediated Sb reduction and microbial transcriptional responses during this process remain unclear. In this study, Mesobacillus jeotgali PS1, a facultative anaerobic Sb-reducing bacterium, was isolated from Sb-contaminated paddy soil to investigate the effects of electron shuttles (AQDS and FMN) on microbial Sb reduction and transcriptional activities of functional genes. The results showed that the dissolved Sb(III) concentration first increased and then decreased over time during the Sb reduction. The efficiency of dissolved Sb removal was 64% after 72 h of incubation and cuboctahedral Sb2O3 was produced, suggesting that Sb reduction and mineralization by strain PS1 can lead to Sb passivation. Electron shuttles accelerated Sb reduction and did not affect the crystalline structure or morphology of the mineral products. Quantitative analysis of the transcript abundances of functional genes in strain PS1 influenced by ES revealed that AQDS treatment resulted in a relatively greater upregulation of cytosolic dimethyl sulfoxide reductase (DMSOR) family genes and intracellular detoxifying arsenic reduction gene (arsC) in strain PS1 than that with FM, which could result in greater respiratory metabolic activity and intracellular Sb detoxification, thereby promoting microbial Sb reduction. This study revealed the microbial mechanism of electron shuttle-mediated antimony reduction and mineralization by soil microorganisms, which may be useful for improving bioremediation of Sb-contaminated paddy fields.

Key words: antimony-reducing bacteria, electron shuttle, senarmontite, antimony detoxification, transcriptional responses, dimethyl sulfoxide reductase

中图分类号: