生态环境学报 ›› 2024, Vol. 33 ›› Issue (1): 156-166.DOI: 10.16258/j.cnki.1674-5906.2024.01.016
• 综述 •
上一篇
杨正桥1,2,3(), 邹奇2,3, 韦行2,3, 周凯1,*(
), 陈志良2,3,*(
)
收稿日期:
2023-09-01
出版日期:
2024-01-18
发布日期:
2024-03-19
通讯作者:
陈志良。E-mail: chenzhiliang@scies.org作者简介:
杨正桥(1995年生),男,硕士研究生,研究方向为生态修复研究。E-mail: 1620696965@qq.com
基金资助:
YANG Zhengqiao1,2,3(), ZOU Qi2,3, WEI Hang2,3, ZHOU Kai1,*(
), CHEN Zhiliang2,3,*(
)
Received:
2023-09-01
Online:
2024-01-18
Published:
2024-03-19
摘要:
当前中国金属尾矿产生量和贮存量大、分布广、监管难度大、综合利用率低,由此而引起的环境污染问题引起了广泛关注。研究金属尾矿微生物对尾矿环境的适应和调控机制对于尾矿的生物修复具有重要的现实意义,是加强重金属污染防控的重要组成部分。综述了金属尾矿微生物群落的物种组成,并从pH、重金属和养分方面阐明其对尾矿环境的适应和调控机制。结果表明,金属尾矿中的优势细菌主要为变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、绿弯菌门(Chloroflexi)、厚壁菌门(Firmicutes)和酸杆菌门(Acidobacteria);优势真菌主要为子囊菌门(Ascomycota)、担子菌门(Basidiomycota)和罗兹菌门(Rozellomycota);奇古菌门(Thaumarchaeota)和广古菌门(Euryarchaeota)是其中的优势古菌。金属尾矿微生物属于K型策略微生物,它们通过阻止质子和重金属离子进入细胞和从细胞内部排出质子和重金属离子的方式来适应尾矿极酸性和高含量重金属环境,并在养分限制下利用有限的资源获取营养。微生物还进化出了主动改变尾矿环境的能力,它们通过中和质子以及转化和沉淀重金属的方式提高尾矿环境pH值和降低重金属的毒性,并通过固碳、固氮作用和溶解无机磷来积累养分。此外,豆科植物等修复植物能通过分泌次级代谢产物,吸引有益微生物参与尾矿环境的改善。对于金属尾矿的微生物修复研究,可以从金属尾矿风化和修复期间微生物群落的动态变化、多组学技术联合筛选尾矿修复菌剂、微生物的水平基因转移机制、金属尾矿中病毒多样性、微生物之间和微生物与植物的相互作用等方面深入研究,充分发掘金属尾矿微生物在促进生态修复方面的潜力,为金属尾矿环境治理提供科学的解决方案。
中图分类号:
杨正桥, 邹奇, 韦行, 周凯, 陈志良. 金属尾矿微生物对尾矿环境的适应与调控机制研究进展[J]. 生态环境学报, 2024, 33(1): 156-166.
YANG Zhengqiao, ZOU Qi, WEI Hang, ZHOU Kai, CHEN Zhiliang. Research Progress on the Adaptation and Regulation Mechanism of Micro-organisms in Metal Tailings[J]. Ecology and Environment, 2024, 33(1): 156-166.
[1] |
AYANGBENRO A S, OLANREWAJU O S, BABALOLA O O, 2018. Sulfate-reducing bacteria as an effective tool for sustainable acid mine bioremediation[J]. Frontiers in Microbiology, 9: 1986.
DOI PMID |
[2] |
AYANGBENRO A, BABALOLA O, 2017. A new strategy for heavy metal polluted environments: A review of microbial biosorbents[J]. International Journal of Environmental Research and Public Health, 14(1): 94.
DOI URL |
[3] |
BAKER-AUSTIN C, DOPSON M, 2007. Life in acid: pH homeostasis in acidophiles[J]. Trends in Microbiology, 15(4): 165-171.
DOI URL |
[4] |
BAR-EVEN A, NOOR E, MILO R, 2012. A survey of carbon fixation pathways through a quantitative lens[J]. Journal of Experimental Botany, 63(6): 2325-2342.
DOI URL |
[5] |
BRUNEEL O, MGHAZLI N, HAKKOU R, et al., 2017. In-depth characterization of bacterial and archaeal communities present in the abandoned mine tailings (Morocco)[J]. Extremophiles, 21(4): 671-685.
DOI URL |
[6] |
CHATTERJEE S, KUMARI S, RATH S, et al., 2020. Diversity, structure and regulation of microbial metallothionein: Metal resistance and possible applications in sequestration of toxic metals[J]. Metallomics, 12(11): 1637-1655.
DOI URL |
[7] |
CHEN L X, LI J T, CHEN Y T, et al., 2013. Shifts in microbial community composition and function in the acidification of a lead/zinc mine tailings[J]. Environmental Microbiology, 15(9): 2431-2444.
DOI URL |
[8] |
CHEN L, ZHOU M X, WANG J Z, et al., 2022. A global meta-analysis of heavy metal(loid)s pollution in soils near copper mines: Evaluation of pollution level and probabilistic health risks[J]. Science of The Total Environment, 835: 155441.
DOI URL |
[9] |
CHEN X, SUN C Y, ZHANG Q, et al., 2023. Selected rhizobacteria facilitated phytoremediation of barren and heavy metal contaminated gold mine tailings by Festuca arundinacea[J]. Chemosphere, 337: 139297.
DOI URL |
[10] |
CHEN Y J, NEILSON J W, KUSHWAHA P, et al., 2021. Life-history strategies of soil microbial communities in an arid ecosystem[J]. The ISME Journal, 15(3): 649-657.
DOI URL |
[11] |
CUAXINQUE-FLORES G, AGUIRRE-NOYOLA J L, HERNÁNDEZ-FLORES G, et al., 2020. Bioimmobilization of toxic metals by precipitation of carbonates using Sporosarcina luteola: An in vitro study and application to sulfide-bearing tailings[J]. Science of The Total Environment, 724: 138124.
DOI URL |
[12] |
DENEF V J, BANFIELD J F, 2012. In situ evolutionary rate measurements show ecological success of recently emerged bacterial hybrids[J]. Science, 336(6080): 462-466.
DOI PMID |
[13] |
DEY S, 2022. Indigenous microbial populations of abandoned mining sites and their role in natural attenuation[J]. Archives of Microbiology, 204(5): 251.
DOI PMID |
[14] |
FASHOLA M, NGOLE-JEME V, BABALOLA O, 2016. Heavy metal pollution from gold mines: Environmental effects and bacterial strategies for resistance[J]. International Journal of Environmental Research and Public Health, 13(11): 1047.
DOI URL |
[15] |
FENG S W, LU J L, LIANG J L, et al., 2022. Functional guilds, community assembly, and co-occurrence patterns of fungi in metalliferous mine tailings ponds in mainland China[J]. Microbial Ecology, 86(2): 843-858
DOI |
[16] |
FENG Z, JI S Y, PING J F, et al., 2021. Recent advances in metabolomics for studying heavy metal stress in plants[J]. TrAC Trends in Analytical Chemistry, 143: 116402.
DOI URL |
[17] |
FIERROS ROMERO G, RIVAS CASTILLO A, GÓMEZ RAMÍREZ M, et al., 2016. Expression analysis of Ni- and V-associated resistance genes in a Bacillus megaterium strain isolated from a mining site[J]. Current Microbiology, 73(2): 165-171.
DOI URL |
[18] |
FIERROS-ROMERO G, WROSEK-CABRERA J A, GÓMEZ-RAMÍREZ M, et al., 2017. Expression changes in metal-resistance genes in Microbacterium liquefaciens under nickel and vanadium exposure[J]. Current Microbiology, 74(7): 840-847.
DOI URL |
[19] |
GAN C D, YANG J Y, LIU R, et al., 2022. Contrasted speciation distribution of toxic metal(loid)s and microbial community structure in vanadium-titanium magnetite tailings under dry and wet disposal methods[J]. Journal of Hazardous Materials, 439: 129624.
DOI URL |
[20] |
GAO T, WANG X, LIU Y, et al., 2022. Characteristics and diversity of microbial communities in lead-zinc tailings under heavy metal stress in north-west China[J]. Letters in Applied Microbiology, 74(2): 277-287.
DOI URL |
[21] |
GENG H H, WANG F, YAN C C, et al., 2022. Rhizosphere microbial community composition and survival strategies in oligotrophic and metal(loid) contaminated iron tailings areas[J]. Journal of Hazardous Materials, 436: 129045.
DOI URL |
[22] |
GENG Y C, DING Y, ZHOU P P, et al., 2023. Soil microbe-mediated carbon and nitrogen cycling during primary succession of biological soil crusts in tailings ponds[J]. Science of The Total Environment, 894: 164969.
DOI URL |
[23] |
GUAN N Z, LIU L, 2020. Microbial response to acid stress: mechanisms and applications[J]. Applied Microbiology and Biotechnology, 104(1): 51-65.
DOI PMID |
[24] |
HAN R, CHEN J Y, HE S X, et al., 2023. Phytate and arsenic enhance each other’s uptake in As-hyperaccumulator Pteris vittata: root exudation of phytate and phytase, and plant uptake of Phytate-P[J]. Environmental Science & Technology, 57(1): 190-200.
DOI URL |
[25] |
HARTMAN K, VAN DER HEIJDEN M G, ROUSSELY-PROVENT V, et al., 2017. Deciphering composition and function of the root microbiome of a legume plant[J]. Microbiome, 5(1): 2.
DOI PMID |
[26] |
HE Z F, SHEN J Q, LI Q Q, et al., 2023a. Bacterial metal(loid) resistance genes (MRGs) and their variation and application in environment: A review[J]. Science of The Total Environment, 871: 162148.
DOI URL |
[27] |
HE Z F, XU Y T, WANG W Y, et al., 2023b. Synergistic mechanism and application of microbially induced carbonate precipitation (MICP) and inorganic additives for passivation of heavy metals in copper-nickel tailings[J]. Chemosphere, 311(Part 1): 136981.
DOI URL |
[28] |
HELLEQUIN E, COLLIN S, SEDER-COLOMINA M, et al., 2023. Membrane lipid adaptation of soil Bacteroidetes isolates to temperature and pH[J]. Frontiers in Microbiology, 14: 1032032.
DOI URL |
[29] |
HERRERA-QUITERIO A, TOLEDO-HERNÁNDEZ E, AGUIRRE-NOYOLA J L, et al., 2020. Antagonic and plant growth-promoting effects of bacteria isolated from mine tailings at El Fraile, Mexico[J]. Revista Argentina de Microbiología, 52(3): 231-239.
DOI URL |
[30] |
HU W B, FENG S S, TONG Y J, et al., 2020. Adaptive defensive mechanism of bioleaching microorganisms under extremely environmental acid stress: Advances and perspectives[J]. Biotechnology Advances, 42: 107580.
DOI URL |
[31] |
HUANG L N, TANG F Z, SONG Y S, et al., 2011. Biodiversity, abundance, and activity of nitrogen-fixing bacteria during primary succession on a copper mine tailings[J]. FEMS Microbiology Ecology, 78(3): 439-450.
DOI URL |
[32] |
JEEWANI P H, LUO Y, YU G H, et al., 2021. Arbuscular mycorrhizal fungi and goethite promote carbon sequestration via hyphal-aggregate mineral interactions[J]. Soil Biology and Biochemistry, 162: 108417.
DOI URL |
[33] |
JIANG X W, LIU W H, XU H, et al., 2021. Characterizations of heavy metal contamination, microbial community, and resistance genes in a tailing of the largest copper mine in China[J]. Environmental Pollution, 280: 116947.
DOI URL |
[34] |
JOHNSON D B, HALLBERG K B, 2005. Acid mine drainage remediation options: A review[J]. Science of The Total Environment, 338(1): 3-14.
DOI URL |
[35] |
KAN X Q, DONG Y Q, FENG L, et al., 2021. Contamination and health risk assessment of heavy metals in China’s lead-zinc mine tailings: A meta-analysis[J]. Chemosphere, 267: 128909.
DOI URL |
[36] |
KLAPPENBACH J A, DUNBAR J M, SCHMIDT T M, 2000. rRNA operon copy number reflects ecological strategies of bacteria[J]. Applied and Environmental Microbiology, 66(4): 1328-1333.
DOI PMID |
[37] |
KOCH S, MAJEWSKI E, SCHMEISKY H, et al., 2012. Critical evaluation of phosphate solubilizing pseudomonads isolated from a partially recultivated potash tailings pile[J]. Current Microbiology, 65(2): 202-206.
DOI PMID |
[38] |
KODAMA K, RICH M K, YODA A, et al., 2022. An ancestral function of strigolactones as symbiotic rhizosphere signals[J]. Nature Communications, 13(1): 3974.
DOI PMID |
[39] |
KOVALEVA O L, TOUROVA T P, MUYZER G, et al., 2011. Diversity of RuBisCO and ATP citrate lyase genes in soda lake sediments[J]. FEMS Microbiology Ecology, 75(1): 37-47.
DOI PMID |
[40] |
KULAKOVSKAYA T, 2018. Inorganic polyphosphates and heavy metal resistance in microorganisms[J]. World Journal of Microbiology and Biotechnology, 34(9): 139.
DOI |
[41] |
KUYPERS M M M, MARCHANT H K, KARTAL B, 2018. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 16(5): 263-276.
DOI PMID |
[42] |
LAI H J, DING X Z, CUI M J, et al., 2023. Mechanisms and influencing factors of biomineralization based heavy metal remediation: A review[J]. Biogeotechnics, 1(4): 100039.
DOI URL |
[43] |
LI C N, LIAO H J, XU L, et al., 2022b. The adjustment of life history strategies drives the ecological adaptations of soil microbiota to aridity[J]. Molecular Ecology, 31(10): 2920-2934.
DOI URL |
[44] |
LI H J, SHEN Y Y, HE Y Q, et al., 2021a. Effects of heavy metals on bacterial community structures in two lead-zinc tailings situated in northwestern China[J]. Archives of Microbiology, 204(1): 78.
DOI |
[45] |
LI H, YANG S, SEMENOV M V, et al., 2021c. Temperature sensitivity of SOM decomposition is linked with a K-selected microbial community[J]. Global Change Biology, 27(12): 2763-2779.
DOI URL |
[46] |
LI H, YAO J, MIN N, et al., 2022a. Relationships between microbial activity, enzyme activities and metal(loid) form in Ni-Cu tailings area[J]. Science of The Total Environment, 812: 152326.
DOI URL |
[47] |
LI S, WU J L, HUO Y L, et al., 2021b. Profiling multiple heavy metal contamination and bacterial communities surrounding an iron tailing pond in Northwest China[J]. Science of The Total Environment, 752(2): 141827.
DOI URL |
[48] |
LI X H, LIU X X, CAO N, et al., 2021d. Adaptation mechanisms of arsenic metabolism genes and their host microorganisms in soils with different arsenic contamination levels around abandoned gold tailings[J]. Environmental Pollution, 291: 117994.
DOI URL |
[49] |
LI Y B, GUO L F, HÄGGBLOM M M, et al., 2022c. Serratia spp. are responsible for nitrogen fixation fueled by As(III) oxidation, a novel biogeochemical process identified in mine tailings[J]. Environmental Science & Technology, 56(3): 2033-2043.
DOI URL |
[50] |
LI Y B, GUO L, KOLTON M, et al., 2023. Chemolithotrophic biological nitrogen fixation fueled by antimonite oxidation may be widespread in Sb-contaminated habitats[J]. Environmental Science & Technology, 57(1): 231-243.
DOI URL |
[51] |
LI Y B, LIN H Z, GAO P, et al., 2022d. Synergistic impacts of arsenic and antimony co-contamination on diazotrophic communities[J]. Microbial Ecology, 84(1): 44-58.
DOI |
[52] |
LI Y H, HANNA M N, SVENSÄTER G, et al., 2001. Cell density modulates acid adaptation in streptococcus mutans: Implications for survival in biofilms[J]. Journal of Bacteriology, 183(23): 6875-6884.
PMID |
[53] |
LI Y, WU Z, DONG X, et al., 2019. Pyrite oxidization accelerates bacterial carbon sequestration in copper mine tailings[J]. Biogeosciences, 16(2): 573-583.
DOI URL |
[54] |
LIANG C, AMELUNG W, LEHMANN J, et al., 2019. Quantitative assessment of microbial necromass contribution to soil organic matter[J]. Global Change Biology, 25(11): 3578-3590.
DOI PMID |
[55] |
LIANG J L, LIU J, JIA P, et al., 2020b. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining[J]. The ISME Journal, 14(6): 1600-1613.
DOI URL |
[56] |
LIANG J L, LIU J, YANG T T, et al., 2020a. Contrasting soil fungal communities at different habitats in a revegetated copper mine wasteland[J]. Soil Ecology Letters, 2(1): 8-19.
DOI |
[57] |
LIDOY J, BERRIO E, GARCÍA M, et al., 2023. Flavonoids promote Rhizophagus irregularis spore germination and tomato root colonization: A target for sustainable agriculture[J]. Frontiers in Plant Science, 13: 1094194.
DOI URL |
[58] | LIN H, ZHOU M Y, LI B, et al., 2023. Mechanisms, application advances and future perspectives of microbial-induced heavy metal precipitation: A review[J]. International Biodeterioration & Biodegradation, 178: 105544. |
[59] |
LIU C J, LI B, CHEN X, et al., 2022. Insight into soilless revegetation of oligotrophic and heavy metal contaminated gold tailing pond by metagenomic analysis[J]. Journal of Hazardous Materials, 435: 128881.
DOI URL |
[60] |
LIU J L, YAO J, ZHOU D L, et al., 2023. Mining-related multi-resistance genes in sulfate-reducing bacteria treatment of typical karst nonferrous metal(loid) mine tailings in China[J]. Environmental Science and Pollution Research, 30(47): 104753-104766.
DOI |
[61] |
LUO J P, GU S H, GUO X Y, et al., 2022. Core microbiota in the rhizosphere of heavy metal accumulators and its contribution to plant performance[J]. Environmental Science & Technology, 56(18): 12975-12987.
DOI URL |
[62] |
LUO Z H, LI Q, CHEN N, et al., 2023. Genome-resolved metagenomics reveals depth-related patterns of microbial community structure and functions in a highly stratified, AMD overlaying mine tailings[J]. Journal of Hazardous Materials, 447: 130774.
DOI URL |
[63] |
LÜ Y, TANG C Y, LIU X Y, et al., 2022. Stabilization and mechanism of uranium sequestration by a mixed culture consortia of sulfate-reducing and phosphate-solubilizing bacteria[J]. Science of The Total Environment, 827: 154216.
DOI URL |
[64] |
MA S Y, QIAO L K, LIU X X, et al., 2022. Microbial community succession in soils under long-term heavy metal stress from community diversity-structure to KEGG function pathways[J]. Environmental Research, 214(Part 2): 113822.
DOI URL |
[65] |
MALTSEV Y, MALTSEVA S, MALTSEVA I, 2022. Diversity of cyanobacteria and algae during primary succession in iron ore tailing dumps[J]. Microbial Ecology, 83(2): 408-423.
DOI |
[66] |
MUS F, COLMAN D R, PETERS J W, et al., 2019. Geobiological feedbacks, oxygen, and the evolution of nitrogenase[J]. Free Radical Biology and Medicine, 140: 250-259.
DOI PMID |
[67] |
NAVARRO-NOYA Y E, HERNÁNDEZ-MENDOZA E, MORALES-JIMÉNEZ J, et al., 2012. Isolation and characterization of nitrogen fixing heterotrophic bacteria from the rhizosphere of pioneer plants growing on mine tailings[J]. Applied Soil Ecology, 62: 52-60.
DOI URL |
[68] |
OLIVEIRA A, PAMPULHA M E, 2006. Effects of long-term heavy metal contamination on soil microbial characteristics[J]. Journal of Bioscience and Bioengineering, 102(3): 157-161.
PMID |
[69] |
PANCOST R D, PRESSLEY S, COLEMAN J M, et al., 2006. Composition and implications of diverse lipids in New Zealand Geothermal sinters[J]. Geobiology, 4(2): 71-92.
DOI URL |
[70] |
PEI H Y, WANG C F, WANG Y B, et al., 2019. Distribution of microbial lipids at an acid mine drainage site in China: Insights into microbial adaptation to extremely low pH conditions[J]. Organic Geochemistry, 134: 77-91.
DOI URL |
[71] |
PRIYA A K, GNANASEKARAN L, DUTTA K, et al., 2022. Biosorption of heavy metals by microorganisms: Evaluation of different underlying mechanisms[J]. Chemosphere, 307: 135957.
DOI URL |
[72] |
QIN L, LI Z R, LI B, et al., 2021. Organic acid excretion in root exudates as a mechanism of cadmium uptake in a Sonchus asper-Zea mays intercropping system[J]. Bulletin of Environmental Contamination and Toxicology, 107(6): 1059-1064.
DOI |
[73] |
RAAIJMAKERS J M, MAZZOLA M, 2016. Soil immune responses[J]. Science, 352(6292): 1392-1393.
DOI URL |
[74] | SHANG Y M, WU M, ZHANG J, et al., 2023. Nutrient enhanced reclamation promoted growth, diversity and activities of carbon fixing microbes in a coal-mining subsistence land[J]. Soil Science and Environment, 2: 2. |
[75] |
SHAO P S, LYNCH L, XIE H T, et al., 2021. Tradeoffs among microbial life history strategies influence the fate of microbial residues in subtropical forest soils[J]. Soil Biology and Biochemistry, 153: 108112.
DOI URL |
[76] |
SHE J Y, WANG J, WEI X D, et al., 2021. Survival strategies and dominant phylotypes of maize-rhizosphere microorganisms under metal(loid)s contamination[J]. Science of The Total Environment, 774: 145143.
DOI URL |
[77] |
SHEN C C, CHEN M X, XIAO T, et al., 2021. Global proteome response to Pb(II) toxicity in poplar using SWATH-MS-based quantitative proteomics investigation[J]. Ecotoxicology and Environmental Safety, 220: 112410.
DOI URL |
[78] |
SONG M Z, JU T Y, MENG Y, et al., 2022. A review on the applications of microbially induced calcium carbonate precipitation in solid waste treatment and soil remediation[J]. Chemosphere, 290: 133229.
DOI URL |
[79] |
SONG X, YANG A J, HU X, et al., 2023. Exploring the role of extracellular polymeric substances in the antimony leaching of tailings by Acidithiobacillus ferrooxidans[J]. Environmental Science and Pollution Research, 30(7): 17695-17708.
DOI |
[80] |
SU L T, LÜ A M, WEN W W, et al., 2022. MsMYB741 is involved in alfalfa resistance to aluminum stress by regulating flavonoid biosynthesis[J]. The Plant Journal, 112(3): 756-771.
DOI PMID |
[81] |
SUN W M, XIAO E Z, HÄGGBLOM M, et al., 2018b. Bacterial survival strategies in an alkaline tailing site and the physiological mechanisms of dominant phylotypes as revealed by metagenomic analyses[J]. Environmental Science & Technology, 52(22): 13370-13380.
DOI URL |
[82] |
SUN W, JI B, KHOSO S A, et al., 2018a. An extensive review on restoration technologies for mining tailings[J]. Environmental Science and Pollution Research, 25(34): 33911-33925.
DOI |
[83] |
SUN X X, QIU L, KOLTON M, et al., 2020. VV reduction by Polaromonas spp. in vanadium mine tailings[J]. Environmental Science & Technology, 54(22): 14442-14454.
DOI URL |
[84] |
TANG B, XU H P, SONG F M, et al., 2022. Effects of heavy metals on microorganisms and enzymes in soils of lead-zinc tailing ponds[J]. Environmental Research, 207: 112174.
DOI URL |
[85] |
TIAN B L, PEI Y C, HUANG W, et al., 2021. Increasing flavonoid concentrations in root exudates enhance associations between arbuscular mycorrhizal fungi and an invasive plant[J]. The ISME Journal, 15(7): 1919-1930.
DOI URL |
[86] |
WANG B R, AN S S, LIANG C, et al., 2021. Microbial necromass as the source of soil organic carbon in global ecosystems[J]. Soil Biology and Biochemistry, 162: 108422.
DOI URL |
[87] |
WANG G W, JIN Z X, GEORGE T S, et al., 2023. Arbuscular mycorrhizal fungi enhance plant phosphorus uptake through stimulating hyphosphere soil microbiome functional profiles for phosphorus turnover[J]. New Phytologist, 238(6): 2578-2593.
DOI URL |
[88] | WANG H, ZENG Y F, GUO C L, et al., 2018. Bacterial, archaeal, and fungal community responses to acid mine drainage-laden pollution in a rice paddy soil ecosystem[J]. Science of The Total Environment, 616-617: 107-116. |
[89] |
WANG R Z, HOU D D, CHEN J Z, et al., 2020. Distinct rhizobacterial functional assemblies assist two Sedum alfredii ecotypes to adopt different survival strategies under lead stress[J]. Environment International, 143: 105912.
DOI URL |
[90] |
WILLIAMS P, CÁMARA M, 2009. Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: A tale of regulatory networks and multifunctional signal molecules[J]. Current Opinion in Microbiology, 12(2): 182-191.
DOI PMID |
[91] |
XIAO Y R, LIU C L, HU N, et al., 2023. Contributions of ectomycorrhizal fungi in a reclaimed poplar forest (Populus yunnanensis) in an abandoned metal mine tailings pond, southwest China[J]. Journal of Hazardous Materials, 448: 130962.
DOI URL |
[92] |
YANG J Y, PAN X L, ZHAO C X, et al., 2016. Bioimmobilization of heavy metals in acidic copper mine tailings soil[J]. Geomicrobiology Journal, 33(3-4): 261-266.
DOI URL |
[93] |
YANG Y, DOU Y X, WANG B R, et al., 2023. Deciphering factors driving soil microbial life-history strategies in restored grasslands[J]. iMeta, 2(1): e66.
DOI URL |
[94] |
YI Q, WU S L, SOUTHAM G, et al., 2021. Acidophilic iron- and sulfur-oxidizing bacteria, acidithiobacillus ferrooxidans, drives alkaline pH neutralization and mineral weathering in Fe ore tailings[J]. Environmental Science & Technology, 55(12): 8020-8034.
DOI URL |
[95] |
YIN K, WANG Q N, LÜ M, et al., 2019. Microorganism remediation strategies towards heavy metals[J]. Chemical Engineering Journal, 360: 1553-1563.
DOI |
[96] |
YONEYAMA K, XIE X N, NOMURA T, et al., 2022. Supra-organismal regulation of strigolactone exudation and plant development in response to rhizospheric cues in rice[J]. Current Biology, 32(16): 3601-3608.
DOI URL |
[97] |
YU L N, YOU F, WU S L, et al., 2023. Nodule formation and nitrogen fixation in Acacia holosericea plants grown in soil admixed with iron ore tailings[J]. Journal of Soil Science and Plant Nutrition, 23(1): 1085-1095.
DOI |
[98] |
YU P, HE X M, BAER M, et al., 2021. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation[J]. Nature Plants, 7(4): 481-499.
DOI PMID |
[99] |
ZEHR J P, JENKINS B D, SHORT S M, et al., 2003. Nitrogenase gene diversity and microbial community structure: A cross-system comparison[J]. Environmental Microbiology, 5(7): 539-554.
PMID |
[100] |
ZHANG M J, WANG J L, LIU X Y, et al., 2022. Mine tailings remediation via sulfate-reducing bacteria and iron-reducing bacteria: Heavy metals immobilization and biological sealing[J]. Chemistry and Ecology, 38(8): 706-719.
DOI URL |
[101] |
ZHANG X X, ZHANG C J, LIU Y, et al., 2023. Non-negligible roles of archaea in coastal carbon biogeochemical cycling[J]. Trends in Microbiology, 31(6): 586-600.
DOI URL |
[102] |
ZHAO X Q, SUN Y, HUANG J, et al., 2020. Effects of soil heavy metal pollution on microbial activities and community diversity in different land use types in mining areas[J]. Environmental Science and Pollution Research, 27(16): 20215-20226.
DOI |
[103] |
ZHONG H T, LAMBERS H, WONG W S, et al., 2021. Initiating pedogenesis of magnetite tailings using Lupinus angustifolius (narrow-leaf lupin) as an ecological engineer to promote native plant establishment[J]. Science of The Total Environment, 788: 147622.
DOI URL |
[104] |
ZHONG J, HU X W, LIU X Y, et al., 2021. Isolation and identification of uranium tolerant phosphate-solubilizing Bacillus spp. and their synergistic strategies to U(VI) immobilization[J]. Frontiers in Microbiology, 12: 676391.
DOI URL |
[105] | 杜辉辉, 刘新, 陶洁, 等, 2020. 3种耐锑土壤细菌的筛选及对锑的吸附研究[J]. 环境科学学报, 40(6): 2205-2211. |
DU H H, LIU X, TAO J, et al., 2020. Screening of three antimony-resistant soil bacteria and their adsorption property for antimony[J]. Acta Scientiae Circumstantiae, 40(6): 2205-2211. | |
[106] | 黄珊珊, 马丽媛, 王红梅, 等, 2020. 极端酸性矿山环境微生物基于CRISPR系统的适应性免疫机制[J]. 微生物学报, 60(9): 1985-1999. |
HUANG S S, MA L Y, WANG H M, et al., 2020. Adaptive immunity mechanisms of microorganisms in extreme acid mine environment based on CRISPR system[J]. Acta Microbiologica Sinica, 60(9): 1985-1999. | |
[107] |
蒋永荣, 梁英, 张学洪, 等, 2019. 铅锌矿区不同程度尾矿砂重金属污染土壤的纵向微生物群落结构分析[J]. 生态环境学报, 28(10): 2079-2088.
DOI |
JIANG Y R, LIANG Y, ZHANG X H, et al., 2019. Vertical microbial community structure of heavy metal contaminated soils from mine tailings of different degrees in lead-zinc mining areas[J]. Ecology and Environmental Sciences, 28(10): 2079-2088. | |
[108] | 李春霞, 吴兴彪, 靳亚忠, 2022. 根系代谢物介导的植物-微生物互作的研究进展[J]. 微生物学报, 62(9): 3318-3328. |
LI C X, WU X B, JIN Y Z, 2022. Advances on plant-microbe interaction mediated by root metabolites[J]. Acta Microbiologica Sinica, 62(9): 3318-3328. | |
[109] | 李金天, 束文圣, 杨胜香, 2021. 有色金属矿山尾矿库生态修复[M]. 北京: 龙门书局. |
LI J T, SHU W S, YANG S X, 2021. Ecological restoration of Non-ferrous metal mine tailings[M]. Beijing: Longmen Book Office. | |
[110] | 李林, 艾雯妍, 文思颖, 等, 2022. 微生物吸附去除重金属效率与应用研究综述[J]. 生态毒理学报, 17(4): 503-522. |
LI L, AI W Y, WEN S Y, et al., 2022. Efficiency and application of microbial-sorption removal of heavy metals: A review[J]. Asian Journal of Ecotoxicology, 17(4): 503-522. | |
[111] | 刘淑鹏, 张小伟, 2020. 我国金属矿山尾矿综合利用现状及对策[J]. 中国资源综合利用, 38(3): 75-78. |
LIU S P, ZHANG X W, 2020. Comprehensive utilization status and countermeasures of metal mine tailings in China[J]. China Resources Comprehensive Utilization, 38(3): 75-78. | |
[112] | 王海涛, 田玮, 岳昌盛, 等, 2022. 金属尾矿土壤重金属污染及修复技术研究现状[J]. 中国资源综合利用, 40(5): 127-131. |
WANG H T, TIAN W, YUE C S, et al., 2022. Research status of heavy metal pollution and remediation technology in metal tailings soil[J]. China Resources Comprehensive Utilization, 40(5): 127-131. | |
[113] | 王泽煌, 王蒙, 蔡昆争, 等, 2016. 细菌对重金属吸附和解毒机制的研究进展[J]. 生物技术通报, 32(12): 13-18. |
WANG Z H, WANG M, CAI K Z, et al., 2016. Research advances on biosorption and detoxification mechanisms of heavy metals by bacteria[J]. Biotechnology Bulletin, 32(12): 13-18. | |
[114] |
杨宇, 邓仁健, 隆佩, 等, 2023. 砷氧化菌Pseudomonas sp. AO-1的分离鉴定及其对As(Ⅲ)的氧化性能研究[J]. 生态环境学报, 32(3): 619-626.
DOI |
YANG Y, DENG R J, LONG P, et al., 2023. Isolation and identification of arsenic-oxidizing bacterium Pseudomonas sp. AO-1 and its oxidation properties for As(Ⅲ)[J]. Ecology and Environmental Sciences, 32(3): 619-626. | |
[115] | 游震, 2020. 2020 年中国尾矿产量及综合利用量统计分析: 尾矿综合利用率不断提高[EB/OL]. (2021-06-02) [2023-04-08]. https://www.chyxx.com/industry/202106/954711.html. |
YOU Z, 2020. Statistics and analysis of China's tailings output and comprehensive utilization in 2020: the comprehensive utilization rate of tailings is increasing[EB/OL]. (2021-06-02) [2023-04-08]. https://www.chyxx.com/industry/202106/954711.html. |
[1] | 马媛, 田路露, 吕杰, 柳沛, 张旭, 李二阳, 张清航. 天山北坡雪岭云杉森林土壤微生物群落及影响因素研究[J]. 生态环境学报, 2024, 33(1): 1-11. |
[2] | 唐志伟, 翁颖, 朱夏童, 蔡洪梅, 代雯慈, 王捧娜, 郑宝强, 李金才, 陈翔. 秸秆还田下中国农田土壤微生物生物量碳变化及其影响因素的Meta分析[J]. 生态环境学报, 2023, 32(9): 1552-1562. |
[3] | 李航, 陈金平, 丁兆华, 舒洋, 魏江生, 赵鹏武, 周梅, 王宇轩, 梁驰昊, 张轶超. 火干扰对兴安落叶松林土壤氮组分及土壤中氮循环功能基因的影响[J]. 生态环境学报, 2023, 32(9): 1563-1573. |
[4] | 熊朝阳, 张青松, 李佳秀, 杜子银. 冻融作用下藏北高原牦牛和藏绵羊粪便降解及养分变化特征[J]. 生态环境学报, 2023, 32(9): 1606-1614. |
[5] | 刘晗, 王萍, 孙鲁沅, 秦文婧, 陈晓芬, 陈金, 周国朋, 梁婷, 刘佳, 李燕丽. 种植冬绿肥对红壤幼龄橘园土壤微生物量碳、氮和酶活的影响[J]. 生态环境学报, 2023, 32(9): 1623-1631. |
[6] | 石润, 李法云, 周纯亮, 王玮, 周艳秋. 凤仙花种子包衣载体固定化微生物修复石油烃污染土壤的效应[J]. 生态环境学报, 2023, 32(9): 1700-1708. |
[7] | 高熙梣, 孔涛, 李华孙, 李多美, 张加良. 古龙酸母液、木霉菌与活性污泥配施对矸石山黑麦草生理特性及土壤微生物性质的影响[J]. 生态环境学报, 2023, 32(9): 1709-1718. |
[8] | 姜懿珊, 孙迎韬, 张干, 罗春玲. 中国不同气候类型森林土壤微生物群落结构及其影响因素[J]. 生态环境学报, 2023, 32(8): 1355-1364. |
[9] | 王宁, 刘效东, 甘先华, 苏宇乔, 吴国章, 黄芳芳, 张卫强. 亚热带典型林分降水过程中的水质效应[J]. 生态环境学报, 2023, 32(8): 1365-1375. |
[10] | 李虎, 赵沙, 黄福义, 苏建强. 不同程度人为干扰土壤中病毒组成及分布差异[J]. 生态环境学报, 2023, 32(8): 1433-1439. |
[11] | 梁川, 杨艳芳, 俞姗姗, 周利, 张经纬, 张秀娟. 围网与围塘养鱼下沉积物微生物量和群落结构特征差异[J]. 生态环境学报, 2023, 32(8): 1487-1495. |
[12] | 张睿含, 智燕彩, 贾明昊, 李晓娜, 王震宇. 生物质废弃物类型和水热pH对人工腐殖酸性能影响[J]. 生态环境学报, 2023, 32(8): 1496-1506. |
[13] | 刘炳妤, 王一佩, 姚作芳, 杨钙仁, 徐晓楠, 邓羽松, 黄钰涵. 沼液还田下不同种植模式的重金属风险评价及安全消纳量分析[J]. 生态环境学报, 2023, 32(8): 1507-1515. |
[14] | 陈懂懂, 霍莉莉, 赵亮, 陈昕, 舒敏, 贺福全, 张煜坤, 张莉, 李奇. 青海高寒草地水热因子对土壤微生物生物量碳、氮空间变异的贡献——基于增强回归树模型[J]. 生态环境学报, 2023, 32(7): 1207-1217. |
[15] | 赵旭丽, 姚宇阗, 陈超, 黄新琦, 孟天竹. 土壤pH和SO42-含量对设施菜地土壤障碍强还原处理修复的响应[J]. 生态环境学报, 2023, 32(7): 1218-1225. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||