生态环境学报 ›› 2024, Vol. 33 ›› Issue (1): 62-71.DOI: 10.16258/j.cnki.1674-5906.2024.01.007
苗敬杰1(), 张开2, 孟钰博1, 王乃加1, 李海楠3, 郭康军4, 张君5, 高西宁1, 王立为1,*(
)
收稿日期:
2023-09-18
出版日期:
2024-01-18
发布日期:
2024-03-19
通讯作者:
*王立为。E-mail: wlw@syau.edu.cn作者简介:
苗敬杰(1998年生),男,硕士研究生,从事农业温室气体排放研究。E-mail: 1607996784@qq.com
基金资助:
MIAO Jingjie1(), ZHANG Kai2, MENG Yubo1, WANG Naijia1, LI Hainan3, GUO Kangjun4, ZHANG Jun5, GAO Xining1, WANG Liwei1,*(
)
Received:
2023-09-18
Online:
2024-01-18
Published:
2024-03-19
摘要:
旱地雨养马铃薯(Solanum tuberosum)田是一个重要的氧化亚氮(N2O)排放源,是当前农业温室气体排放的研究热点之一。在马铃薯主粮化战略的推动下,马铃薯种植面积不断扩大,覆膜和垄作栽培是其中两种重要的种植方式,但其栽培下的马铃薯田N2O排放规律尚不十分明确。选择内蒙古自治区武川县自然降水条件下的马铃薯田为试验对象,设置平作覆膜、垄作覆膜、平作不覆膜和垄作不覆膜4种处理,采用静态箱(暗箱)-气相色谱法监测N2O的排放通量并分析其排放特征,运用实时荧光定量PCR技术(Real-time quantitative PCR,q-PCR)检测不同时期与N2O排放相关的硝化菌和反硝化菌丰度,并测定相关的土壤要素,进而探究在覆膜和垄作条件下,影响雨养马铃薯田N2O排放特性和规律的微生物机理。结果表明,雨养马铃薯田是N2O排放源,其全生育期内平均N2O累积排放量为N (0.47±0.08) kg∙hm−2。N2O排放通量与土壤温度、水分含量之间具有显著的正相关关系(P<0.05)。在整个马铃薯生育期,氨氧化古菌(Ammonia-oxidizing Archaea,AOA)基本起到了控制N2O排放的作用(P<0.05),而不是氨氧化细菌和反硝化菌。覆膜和垄作都可以直接或间接改变土壤物理性质使根际生态微环境发生变化,进而影响硝化菌和反硝化菌的活性,最终使N2O排放发生变化。其中,覆膜垄作处理的N2O累积排放量及排放强度最高,且垄作不覆膜处理的排放最少(P<0.05),累积量达到了0.401-0.515 kg∙hm−2。因此,从减排和不减产的角度来看,采用垄作不覆膜的种植方式效果最显著,旨在为旱地农业生产的可持续发展提供理论依据。
中图分类号:
苗敬杰, 张开, 孟钰博, 王乃加, 李海楠, 郭康军, 张君, 高西宁, 王立为. 覆膜垄作对旱地雨养马铃薯田N2O排放的影响[J]. 生态环境学报, 2024, 33(1): 62-71.
MIAO Jingjie, ZHANG Kai, MENG Yubo, WANG Naijia, LI Hainan, GUO Kangjun, ZHANG Jun, GAO Xining, WANG Liwei. Effects of Plastic Film Mulching and Ridge Tillage on N2O Emission from Rain-Fed Potato Fields in Dryland[J]. Ecology and Environment, 2024, 33(1): 62-71.
目的基因 | 引物 | 序列 (5’−3’) | |
---|---|---|---|
硝化 基因 | amoA | amoA-1F | GGGGTTTCTACTGGTGGT |
amoA-2R | CCCCTCKGSAAAGCCTTCTTC | ||
Archaeal- amoA | Arch-amoAF | STAATGGTCTGGCTTAGACG | |
Arch-amoAR | GCGGCCATCCATCTGTATGT | ||
反硝化基因 | nirS | nirS-cd3AF | GTSAACGTSAAGGARACSGG |
nirS-R3cd | GASTTCGGRTGSGTCTTGA | ||
nirK | nirKF | TTYGTSTAYCAYTGYGCVCC | |
nirKR | SCYTCGATVAGRTTRTGRTT |
表1 PCR扩增引物
Table 1 Primers used for PCR amplification
目的基因 | 引物 | 序列 (5’−3’) | |
---|---|---|---|
硝化 基因 | amoA | amoA-1F | GGGGTTTCTACTGGTGGT |
amoA-2R | CCCCTCKGSAAAGCCTTCTTC | ||
Archaeal- amoA | Arch-amoAF | STAATGGTCTGGCTTAGACG | |
Arch-amoAR | GCGGCCATCCATCTGTATGT | ||
反硝化基因 | nirS | nirS-cd3AF | GTSAACGTSAAGGARACSGG |
nirS-R3cd | GASTTCGGRTGSGTCTTGA | ||
nirK | nirKF | TTYGTSTAYCAYTGYGCVCC | |
nirKR | SCYTCGATVAGRTTRTGRTT |
图3 生育期内N2O累积排放量(a)与排放强度(b)的比较 不同小写字母代表处理间差异达到5%显著水平。下同
Figure 3 Comparison of cumulative N2O emissions (a) and emission intensity (b) over the growth period
降水前后 | 5月14日降水10.4 mm | 6月16日降水14.9 mm | 6月23日降水5.7 mm | 7月25日降水8.3 mm | 8月18日降水19.5 mm | |
---|---|---|---|---|---|---|
雨前 | S1 | 14.30±0.72a | 22.60±0.87a | 20.27±0.31a | 23.07±0.15a | 21.40±0.17a |
S2 | 13.90±0.17ab | 21.70±0.44ab | 19.77±0.40ab | 22.93±0.60a | 21.57±0.25a | |
S3 | 13.50±0.46b | 21.07±0.76b | 19.67±0.25b | 22.63±0.81a | 21.10±0.44a | |
S4 | 13.63±0.40ab | 22.27±0.64ab | 19.53±0.42b | 22.80±0.36a | 21.13±0.12a | |
降水结束 | S1 | 10.33±0.06c | 15.00±1.60c | 17.73±0.15cd | 19.47±0.51b | 19.47±0.12b |
S2 | 10.37±0.40c | 14.77±1.63c | 17.87±0.29c | 19.77±0.12b | 19.47±0.40b | |
S3 | 9.60±0.00d | 14.67±0.91c | 17.27±0.23de | 19.40±0.46b | 19.03±0.31b | |
S4 | 9.40±0.26d | 13.70±1.65c | 16.97±0.15e | 19.13±0.68b | 18.47±0.21c |
表2 雨前雨后土壤温度对比
Table 2 Comparison of soil temperature before and after the rain ℃
降水前后 | 5月14日降水10.4 mm | 6月16日降水14.9 mm | 6月23日降水5.7 mm | 7月25日降水8.3 mm | 8月18日降水19.5 mm | |
---|---|---|---|---|---|---|
雨前 | S1 | 14.30±0.72a | 22.60±0.87a | 20.27±0.31a | 23.07±0.15a | 21.40±0.17a |
S2 | 13.90±0.17ab | 21.70±0.44ab | 19.77±0.40ab | 22.93±0.60a | 21.57±0.25a | |
S3 | 13.50±0.46b | 21.07±0.76b | 19.67±0.25b | 22.63±0.81a | 21.10±0.44a | |
S4 | 13.63±0.40ab | 22.27±0.64ab | 19.53±0.42b | 22.80±0.36a | 21.13±0.12a | |
降水结束 | S1 | 10.33±0.06c | 15.00±1.60c | 17.73±0.15cd | 19.47±0.51b | 19.47±0.12b |
S2 | 10.37±0.40c | 14.77±1.63c | 17.87±0.29c | 19.77±0.12b | 19.47±0.40b | |
S3 | 9.60±0.00d | 14.67±0.91c | 17.27±0.23de | 19.40±0.46b | 19.03±0.31b | |
S4 | 9.40±0.26d | 13.70±1.65c | 16.97±0.15e | 19.13±0.68b | 18.47±0.21c |
降水前后 | 5月14日降水10.4 mm | 6月16日降水14.9 mm | 6月23日降水5.7 mm | 7月25日降水8.3 mm | 8月18日降水19.5 mm | |
---|---|---|---|---|---|---|
雨前 | S1 | 7.33±2.04bc | 14.97±3.24c | 18.37±3.81b | 7.17±1.01c | 6.40±1.47c |
S2 | 7.97±1.96bc | 15.70±3.18c | 14.83±1.50b | 6.00±0.92c | 7.23±1.40c | |
S3 | 7.83±1.82bc | 18.00±4.28bc | 19.47±3.32b | 6.97±0.93c | 7.63±1.81c | |
S4 | 5.47±1.01c | 17.03±3.27c | 16.83±1.97b | 7.50±0.85c | 8.97±1.51c | |
降水结束 | S1 | 10.43±2.55b | 23.30±3.35ab | 33.67±2.54a | 19.50±1.13b | 26.70±3.30ab |
S2 | 16.77±4.74a | 23.90±2.61ab | 32.57±4.15a | 19.70±1.18b | 23.73±4.09b | |
S3 | 16.73±1.25a | 24.93±0.85a | 36.40±4.27a | 19.37±0.74b | 29.90±2.26a | |
S4 | 11.03±2.26b | 25.50±4.09a | 31.33±1.67a | 23.07±0.42a | 28.07±3.27ab |
表3 雨前雨后土壤水分体积分数对比
Table 3 Comparison of volumetric water content of soil before and after the rain %
降水前后 | 5月14日降水10.4 mm | 6月16日降水14.9 mm | 6月23日降水5.7 mm | 7月25日降水8.3 mm | 8月18日降水19.5 mm | |
---|---|---|---|---|---|---|
雨前 | S1 | 7.33±2.04bc | 14.97±3.24c | 18.37±3.81b | 7.17±1.01c | 6.40±1.47c |
S2 | 7.97±1.96bc | 15.70±3.18c | 14.83±1.50b | 6.00±0.92c | 7.23±1.40c | |
S3 | 7.83±1.82bc | 18.00±4.28bc | 19.47±3.32b | 6.97±0.93c | 7.63±1.81c | |
S4 | 5.47±1.01c | 17.03±3.27c | 16.83±1.97b | 7.50±0.85c | 8.97±1.51c | |
降水结束 | S1 | 10.43±2.55b | 23.30±3.35ab | 33.67±2.54a | 19.50±1.13b | 26.70±3.30ab |
S2 | 16.77±4.74a | 23.90±2.61ab | 32.57±4.15a | 19.70±1.18b | 23.73±4.09b | |
S3 | 16.73±1.25a | 24.93±0.85a | 36.40±4.27a | 19.37±0.74b | 29.90±2.26a | |
S4 | 11.03±2.26b | 25.50±4.09a | 31.33±1.67a | 23.07±0.42a | 28.07±3.27ab |
理化性质 | S1 | S2 | S3 | S4 |
---|---|---|---|---|
土壤温度 | 0.504** 1) | 0.415* 2) | 0.407* | 0.170 |
水分体积分数 | 0.673** | 0.454* | 0.684** | 0.612** |
表4 不同处理的N2O排放通量与土壤温度、水分体积分数的相关性分析
Table 4 Correlation analysis between N2O emission flux of different treatments and soil temperature and volumetric water content
理化性质 | S1 | S2 | S3 | S4 |
---|---|---|---|---|
土壤温度 | 0.504** 1) | 0.415* 2) | 0.407* | 0.170 |
水分体积分数 | 0.673** | 0.454* | 0.684** | 0.612** |
功能基因 | 播种后 | 干旱时 (雨前) | 降水结束后 | 收获后 |
---|---|---|---|---|
AOB | 0.383 | −0.653* | −0.162 | 0.447 |
AOA | −0.121 | 0.634* | −0.114 | −0.281 |
nirS | 0.539 | −0.360 | −0.206 | −0.144 |
nirK | 0.152 | −0.060 | −0.183 | −0.494 |
表5 不同阶段的N2O排放通量与相关功能基因拷贝数的相关性分析
Table 5 Correlation analysis between N2O emission flux at different stages and copy number of related functional genes
功能基因 | 播种后 | 干旱时 (雨前) | 降水结束后 | 收获后 |
---|---|---|---|---|
AOB | 0.383 | −0.653* | −0.162 | 0.447 |
AOA | −0.121 | 0.634* | −0.114 | −0.281 |
nirS | 0.539 | −0.360 | −0.206 | −0.144 |
nirK | 0.152 | −0.060 | −0.183 | −0.494 |
[1] |
BERGER S, KIM Y, KETTERING J, et al., 2013. Plastic mulching in agriculture—friend or foe of N2O emissions?[J]. Agriculture, ecosystems and environment, 167: 43-51.
DOI URL |
[2] |
BUSTIN S A, BENES V, GARSON J A, et al., 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments[J]. Clinical Chemistry, 55(4): 611-622.
DOI PMID |
[3] |
CASTELLANO-HINOJOSA A, GONZÁLEZ-LÓPEZ J, BEDMAR E J, 2018. Distinct effect of nitrogen fertilisation and soil depth on nitrous oxide emissions and nitrifiers and denitrifiers abundance[J]. Biology and Fertility of Soils, 54: 829-840.
DOI |
[4] |
CHEN X, ZHANG L M, SHEN J P, et al., 2011. Abundance and community structure of ammonia-oxidizing archaea and bacteria in an acid paddy soil[J]. Biology and Fertility of Soils, 47(3): 323-331.
DOI URL |
[5] |
CHEN M M, PAN H, SUN M J, et al., 2021. Nitrosospira cluster 3 lineage of AOB and nirK of rhizobiales respectively dominated N2O emissions from nitrification and denitrification in organic and chemical N fertilizer treated soils[J]. Ecological Indicators, 127: 107722.
DOI URL |
[6] |
CUI Q, SONG C C, WANG X W, et al., 2018. Effects of warming on N2O fluxes in a boreal peatland of permafrost region, Northeast China[J]. Science of The Total Environment, 616-617: 427-434.
DOI URL |
[7] |
HALLIN S, PHILIPPOT L, LÖFFLER F E, et al., 2018. Genomics and ecology of novel N2O-reducing microorganisms[J]. Trends in Microbiology, 26(1): 43-55.
DOI URL |
[8] |
HE G, WANG Z H, LI F C, et al., 2016. Soil nitrate-N residue, loss and accumulation affected by soil surface management and precipitation in a winter wheat-summer fallow system on dryland[J]. Nutrient Cycling in Agroecosystems, 106(1): 31-46.
DOI URL |
[9] | IPCC, 2021. Climate change 2021:the physical science basis. Contribution of Working Group I to the sixth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Cambridge and New York: Cambridge University Press. |
[10] |
KIM G W, DAS S, HWANG H Y, et al., 2017. Nitrous oxide emissions from soils amended by cover-crops and under plastic film mulching: fluxes, emission factors and yield-scaled emissions[J]. Atmospheric Environment, 152(1): 377-388.
DOI URL |
[11] |
LI Z, ZHANG R, WANG X, et al., 2014. Effects of plastic film mulching with drip irrigation on N2O and CH4 emissions from cotton fields in arid land[J]. The Journal of Agricultural Science, 152(4): 534-542.
DOI URL |
[12] |
LI H T, WANG L, PENG Y, et al., 2021. Film mulching, residue retention and N fertilization affect ammonia volatilization through soil labile N and C pools[J]. Agriculture Ecosystems and Environment, 308: 107272.
DOI URL |
[13] |
LI Y, CHEN J, DONG Q G, et al., 2022. Plastic mulching significantly improves soil enzyme and microbial activities without mitigating gaseous N emissions in winter wheat-summer maize rotations[J]. Field Crops Research, 286(4): 108630.
DOI URL |
[14] |
LIN J T, XU Z Y, XUE Y H, et al., 2023. N2O emissions from soils under short-term straw return in a wheat-corn rotation system are associated with changes in the abundance of functional microbes[J]. Agriculture, Ecosystems and Environment, 341: 108217.
DOI URL |
[15] |
ROWLINGS D W, GRACE P R, SCHEER C, et al., 2015. Rainfall variability drives interannual variation in N2O emissions from a humid, subtropical pasture[J]. Science of the Total Environment, 512-513: 8-18.
DOI URL |
[16] | UNGER P W, 1975. Role of mulches in dryland agriculture[C]// Gupta U S. Crop Physiology. New Delhi: Oxford and IBH: 237-260. |
[17] |
WANG H T, SU J Q, ZHENG T L, et al., 2015. Insights into the role of plant on ammonia-oxidizing bacteria and archaea in the mangrove ecosystem[J]. Journal of Soils and Sediments, 15(5): 1212-1223.
DOI URL |
[18] |
WANG L W, WANG C, PAN Z H, et al., 2017. N2O emission characteristics and its affecting factors in rain-fed potato fields in Wuchuan County, China[J]. International Journal of Biometeorology, 61(5): 911-919.
DOI URL |
[19] |
XIA L L, LAM S K, CHEN D L, et al., 2017. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis[J]. Global Change Biology, 23(5): 1917-1925.
DOI PMID |
[20] |
YOU L C, ROS G H, CHEN Y L, et al., 2022. Global meta-analysis of terrestrial nitrous oxide emissions and associated functional genes under nitrogen addition[J]. Soil Biology and Biochemistry, 165: 108523.
DOI URL |
[21] |
YU Y X, ZHANG Y X, XIAO M, et al., 2021. A meta-analysis of film mulching cultivation effects on soil organic carbon and soil greenhouse gas fluxes[J]. Catena, 206(2): 105483.
DOI URL |
[22] |
ZHANG X D, YANG L C, XUE X K, et al., 2019. Plastic film mulching stimulates soil wet-dry alternation and stomatal behavior to improve maize yield and resource use efficiency in a semi-arid region[J]. Field Crops Research, 233: 101-113.
DOI URL |
[23] |
ZHAO M L, JIANG C S, LI X X, et al., 2020. Variations in nitrous oxide emissions as manipulated by plastic film mulching and fertilization over three successive years in a hot pepper-radish rotated vegetable production system[J]. Agriculture, Ecosystems and Environment 304: 107127.
DOI URL |
[24] | 陈熙, 张明, 郭怡雯, 2009. 氨氧化古细菌 (AOA) 的研究进展[J]. 上海化工, 34(2): 1-6. |
CHEN X, ZHANG M, GUO Y W, 2009. Advances on ecological research of ammonia-oxidizing archaea[J]. Shanghai Chemical Industry, 34(2): 1-6. | |
[25] | 付东升, 任晓萌, 王燕玲, 等, 2022. 农牧交错带不同利用方式土壤粒径分布特征——以呼和浩特市武川县为例[J]. 干旱区研究, 39(4): 1322-1332. |
FU D S, REN X M, WANG Y L, et al., 2022. Distribution characteristics of soil particle size in farming-pastoral ecotone: a case study of Wuchuan County in Inner Mongolia[J]. Arid Zone Research, 39(4): 1322-1332. | |
[26] | 高琳, 潘志华, 杨书运, 等, 2017. 覆膜对旱地马铃薯田土壤温湿度及温室气体排放的影响[J]. 干旱区资源与环境, 31(6): 136-141. |
GAO L, PAN Z H, YANG S Y, et al., 2017. Effect of different plastic film mulching methods on soil temperature-humidity and greenhouse gases emission in the rainfed potato field[J]. Journal of Arid Land Resources and Environment, 31(6): 136-141. | |
[27] | 李江辉, 贾峥嵘, 王凌云, 等, 2016. 甘薯垄作覆膜的增温保墒效果及其对产量的影响[J]. 山西农业科学, 44(4): 494-497. |
LI J H, JIA Z R, WANG L Y, et al., 2016. Effect of ridge tillage with plastic film mulching on temperature increase and preservation of soil moisture and yield of sweet potato[J]. Journal of Shanxi Agricultural Sciences, 44(4): 494-497. | |
[28] | 梁玉刚, 胡文彬, 刘烨, 等, 2022. 中国垄作栽培模式的研究进展[J]. 生态学杂志, 41(7): 1414-1422. |
LIANG Y G, HU W B, LIU Y, et al., 2022. The research progress of ridge cultivation mode in China[J]. Chinese Journal of Ecology, 41(7): 1414-1422.
DOI |
|
[29] | 刘海涛, 林超文, 朱波, 等, 2016. 耕作和覆盖方式对紫色土坡耕地N2O排放的影响[J]. 西南农业学报, 29(7): 1579-1583. |
LIU H T, LIN C W, ZHU B, et al., 2016. Effects of different cultivation and mulching methods on nitrous oxide emission in slope purple soil[J]. Southwest China Journal of Agricultural Sciences, 29(7): 1579-1583. | |
[30] | 刘胜尧, 张立峰, 贾建明, 等, 2014. 华北旱地覆膜春玉米田水温效应及增产限制因子[J]. 应用生态学报, 25(11): 3197-3206. |
LIU S Y, ZHANG L F, JIA J M, et al., 2014. Effects of plastic mulch on soil moisture and temperature and limiting factors to yield increase for dryland spring maize in the North China[J]. Chinese Journal of Applied Ecology, 25(11): 3197-3206. | |
[31] | 吕晓东, 王婷, 2018. 旱地农田氧化亚氮排放研究进展[J]. 甘肃农业科技 (10): 67-73. |
LÜ X D, WANG T, 2018. Research progress on nitrous oxide emission in dry lands[J]. Gansu Agricultural Science and Technology (10): 67-73. | |
[32] | 马丽, 2013. 垄作栽培对夏玉米土壤理化性状的影响[J]. 广东农业科学, 40(14): 67-69, 74. |
MA L, 2013. The influence of soil physical and chemical properties and development of summer maize by ridge planting[J]. Guangdong Agricultural Sciences, 40(14): 67-69, 74. | |
[33] | 夏自强, 蒋洪庚, 李琼芳, 等, 1997. 地膜覆盖对土壤温度、水分的影响及节水效益[J]. 河海大学学报, 25(2): 39-45. |
XIA Z Q, JIANG H G, LI Q F, et al., 1997. Effect of mulch on soil temperature and moisture and analysis of water saving benefit[J]. Journal of Hohai University, 25(2): 39-45. | |
[34] | 谢军飞, 李玉娥, 2002. 农田土壤温室气体排放机理与影响因素研究进展[J]. 中国农业气象, 23(4): 47-52. |
XIE J F, LI Y E, 2002. A review of studies on mechanism of greenhouse gas (GHG) emission and its affecting factors in arable soils[J]. Chinese Journal of Agrometeorology, 23(4): 47-52. | |
[35] | 杨赛, 朱琳, 魏巍, 2018. 土壤生态系统硝化微生物研究进展[J]. 中国土壤与肥料 (6): 1-10. |
YANG S, ZHU L, WEI W, 2018. Research progress on nitrifying microorganisms of soil ecosystem[J]. Soil and Fertilizer Sciences in China (6): 1-10. | |
[36] | 赵苗苗, 张文忠, 裴瑶, 等, 2013. 农田温室气体N2O排放研究进展[J]. 作物杂志 (4): 25-31. |
ZHAO M M, ZHANG W Z, PEI Y, et al., 2013. Research advances on N2O emission in agricultural soil[J]. Crop Journal (4): 25-31. |
[1] | 袁茜, 傅开道, 陶雨晨, 张年, 杨丽莎. 澜沧江(云南段)水-气界面氧化亚氮释放通量时空分布特征及其影响因素研究[J]. 生态环境学报, 2024, 33(1): 54-61. |
[2] | 宫亮, 金丹丹, 牛世伟, 王娜, 邹晓锦, 张鑫, 隋世江, 解占军, 韩瑛祚. 辽宁省水稻田固碳减排潜力分析[J]. 生态环境学报, 2023, 32(7): 1226-1236. |
[3] | 翁升恒, 张玉琴, 姜冬昕, 潘卫华, 李丽纯, 张方敏. 福建省森林植被NEP时空变化及影响因子分析[J]. 生态环境学报, 2023, 32(5): 845-856. |
[4] | 贺晓佳, 冯书华, 蒋明, 李明锐, 湛方栋, 李元, 何永美. UV-B辐射对水稻根际土壤活性有机碳转化和产甲烷潜力的影响[J]. 生态环境学报, 2022, 31(3): 556-564. |
[5] | 李亮亮, 代良羽, 高维常, 张淑怡, 刘涛泽. 贵州省典型覆膜耕地残膜赋存特征及影响因素[J]. 生态环境学报, 2022, 31(11): 2189-2197. |
[6] | 张开, 王立为, 高西宁, 贺明慧. 基于DNDC模型不同降水年型下氮肥管理对马铃薯田N2O减排及增产潜力影响研究[J]. 生态环境学报, 2021, 30(8): 1672-1682. |
[7] | 韩芳, 包媛媛, 刘项宇, 张新永, 韦灯会, 张浩然, 田清龙. 不同轮作方式对马铃薯根际土壤真菌群落结构的影响[J]. 生态环境学报, 2021, 30(7): 1412-1419. |
[8] | 孙文泰, 马明, 董铁, 牛军强, 尹晓宁, 刘兴禄. 西北旱地苹果细根分布及水力特征对长期覆膜的响应[J]. 生态环境学报, 2021, 30(7): 1375-1385. |
[9] | 白建辉. 亚热带森林BVOCs排放和其影响因子之间的相互关系[J]. 生态环境学报, 2021, 30(5): 889-897. |
[10] | 舒洋, 周梅, 赵鹏武, 张恒, 郭娇宇, 管立娟. 大兴安岭根河雷击火干扰后地表死可燃物负荷及影响因子[J]. 生态环境学报, 2021, 30(12): 2317-2323. |
[11] | 武岩, 靳拓, 王跃飞, 贺鹏程, 罗军, 刘宏金, 张雷, 郭晓宇, 陈瑞英. 内蒙古阴山北麓马铃薯应用PBAT/PLA全生物降解地膜可行性分析[J]. 生态环境学报, 2021, 30(10): 2100-2108. |
[12] | 葛应兰, 孙廷. 马铃薯根际与非根际土壤微生物群落结构及多样性特征[J]. 生态环境学报, 2020, 29(1): 141-148. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||