[1] |
CAMPILLO-CORA C, RODRÍGUEZ-GONZÁLEZ L, ARIAS-ESTÉVEZ M, et al., 2021. Influence of physicochemical properties and parent material on chromium fractionation in soils[J]. Processes, 9(6): 1073.
|
[2] |
CHEN L H, LAI J, TAN K, et al., 2022. Development of a soil heavy metal estimation method based on a spectral index: Combining fractional-order derivative pretreatment and the absorption mechanism[J]. Science of The Total Environment, 813: 151882.
|
[3] |
CHOE E, VAN DER MEER F, VAN RUITENBEEK F, et al., 2008. Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote sensing: A case study of the Rodalquilar mining area, SE Spain[J]. Remote Sensing of Environment, 112(7): 3222-3233.
|
[4] |
DING Y, CHEN Z Q, LU W F, et al., 2021. A CatBoost approach with wavelet decomposition to improve satellite-derived high-resolution PM2.5 estimates in Beijing-Tianjin-Hebei[J]. Atmospheric Environment, 249: 118212.
|
[5] |
GE X Y, DING J L, TENG D X, et al., 2022. Exploring the capability of Gaofen-5 hyperspectral data for assessing soil salinity risks[J]. International Journal of Applied Earth Observation and Geoinformation, 112: 102969.
|
[6] |
HONG Y S, CHEN S C, LIU Y L, et al., 2019. Combination of fractional order derivative and memory-based learning algorithm to improve the estimation accuracy of soil organic matter by visible and near-infrared spectroscopy[J]. CATENA, 174: 104-116.
|
[7] |
LEE S H, VO T P, THAI H T, et al., 2021. Strength prediction of concrete-filled steel tubular columns using categorical gradient boosting algorithm[J]. Engineering Structures, 238: 112109.
|
[8] |
LI Z Y, MA Z W, VAN DER KUIJP T J, et al., 2014. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment[J]. Science of The Total Environment, 468-469: 843-853.
|
[9] |
LIU P, LIU Z H, HU Y M, et al., 2019. Integrating a hybrid back propagation neural network and particle swarm optimization for estimating soil heavy metal contents using hyperspectral data[J]. Sustainability, 11(2): 419.
|
[10] |
MENG X T, BAO Y L, YE Q, et al., 2021. Soil organic matter prediction model with satellite hyperspectral image based on optimized denoising method[J]. Remote Sensing, 13(12): 2273.
|
[11] |
PARK J, LEE W H, KIM K T, et al., 2022. Interpretation of ensemble learning to predict water quality using explainable artificial intelligence[J]. Science of The Total Environment, 832: 155070.
|
[12] |
PROKHORENKOVA L, GUSEV G, VOROBEV A, et al., 2018. CatBoost: Unbiased boosting with categorical features[EB/OL]. arXiv, [2018-10-24]. https://arxiv.org/abs/1810.11363.
|
[13] |
ZHANG B, GUO B, ZOU B, et al., 2022. Retrieving soil heavy metals concentrations based on GaoFen-5 hyperspectral satellite image at an opencast coal mine, Inner Mongolia, China[J]. Environmental Pollution, 300: 118981.
|
[14] |
ZHANG M, YUAN L Y, 2023. High-precision estimation of hourly PM2.5 concentration based on a grid scale of satellite-derived products[J]. Atmospheric Pollution Research, 14(4): 101724.
|
[15] |
ZHANG S W, SHEN Q, NIE C J, et al., 2019. Hyperspectral inversion of heavy metal content in reclaimed soil from a mining wasteland based on different spectral transformation and modeling methods[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 211: 393-400.
|
[16] |
ZHAO S H, WANG Q, LI Y, et al., 2017. An overview of satellite remote sensing technology used in China’s environmental protection[J]. Earth Science Informatics, 10(2): 137-148.
|
[17] |
柏晗, 杨耘, 崔琴芳, 等, 2022. 基于GA-XGBoost模型的GF-5卫星影像土壤重金属含量反演研究[J]. 激光与光电子学进展, 59(12): 515-524.
|
|
BAI H, YANG Y, CUI Q F, et al., 2022. Retrieval of heavy metal content in soil using GF-5 satellite images based on GA-XGBoost model[J]. Laser & Optoelectronics Progress, 59(12): 515-524.
|
[18] |
陈点点, 陈芸芝, 冯险峰, 等, 2022. 基于超参数优化CatBoost算法的河流悬浮物浓度遥感反演[J]. 地球信息科学学报, 24(4): 780-791.
DOI
|
|
CHEN D D, CHEN Z Y, FENG X F, et al., 2022. Retrieving suspended matter concentration in rivers based on hyperparameter optimized catboost algorithm[J]. Journal of Geo-Information Science, 24(4): 780-791.
|
[19] |
陈宇波, 薛云, 邹滨, 等, 2020. 有色金属矿区土壤铬污染遥感反演研究[J]. 中南大学学报(自然科学版), 51(10): 2876-2884.
|
|
CHEN Y B, XUE Y, ZOU B, et al., 2020. Research on remote sensing retrieval of soil chromium pollution in nonferrous metal mining area[J]. Journal of Central South University (Science and Technology), 51(10): 2876-2884.
|
[20] |
龚绍琦, 王鑫, 沈润平, 等, 2010. 滨海盐土重金属含量高光谱遥感研究[J]. 遥感技术与应用, 25(2): 169-177.
DOI
|
|
GONG S Q, WANG X, SHEN R P, et al., 2010. Study on heavy metal element content in the coastal saline soil by hyperspectral remote sensing[J]. Remote Sensing Technology and Application, 25(2): 169-177.
|
[21] |
孔卓, 杨海涛, 郑逢杰, 等, 2022. 高光谱遥感图像大气校正研究进展[J]. 自然资源遥感, 34(4): 1-10.
|
|
KONG Z, YANG H T, ZHENG F J, et al., 2022. Research advances in atmospheric correction of hyperspectral remote sensing images[J]. Remote Sensing for Natural Resources, 34(4): 1-10.
|
[22] |
刘银年, 2021. 高光谱成像遥感载荷技术的现状与发展[J]. 遥感学报, 25(1): 439-459.
|
|
LIU Y N, 2021. Development of hyperspectral imaging remote sensing technology[J]. Journal of Remote Sensing, 25(1): 439-459.
|
[23] |
苏红军, 2022. 高光谱遥感影像降维: 进展、挑战与展望[J]. 遥感学报, 26(8): 1504-1529.
|
|
SU H J, 2022. Downscaling hyperspectral remote sensing images: progress, challenges and prospects[J]. Journal of Remote Sensing, 26(8): 1504-1529.
|
[24] |
孙丽丽, 方宏彬, 朱星星, 等, 2021. 基于网格搜索优化的XGBoost模型的股票预测[J]. 阜阳师范大学学报(自然科学版), 38(2): 97-101.
|
|
SUN L L, FANG H B, ZHU X X, et al., 2021. Stock prediction using XGBoost model based on grid search optimization[J]. Journal of Fuyang Normal University (Natural Science), 38(2): 97-101.
|
[25] |
唐洪钊, 肖晨超, 梁树能, 等, 2020. 资源一号02D卫星在轨辐射定标精度验证与分析[J]. 航天器工程, 29(6): 142-147.
|
|
TANG H Z, XIAO C C, LIANG S N, et al., 2020. On-orbit radiometric calibration and validation of ZY-1-02D satellite[J]. Spacecraft Engineering, 29(6): 142-147.
|
[26] |
田义超, 郑丹琳, 张强, 等, 2024. 基于国产资源一号02D卫星和机器学习算法的钦州湾滨海土壤盐分反演[J]. 中国环境科学, 44(1): 371-385.
|
|
TIAN Y C, ZHENG D L, ZHANG Q, et al., 2024. Inversion of coastal soil salinity in Qinzhouwan based on domestic ZY1-02D satellite and machine learning algorithm[J]. China Environmental Science, 44(1): 371-385.
|
[27] |
王雪梅, 玉米提·买明, 毛东雷, 等, 2021. 干旱区绿洲耕层土壤重金属铬含量的高光谱估测[J]. 生态环境学报, 30(10): 2076-2084.
DOI
|
|
WANG X M, YUMITI M, MAO D L, et al., 2021. Hyperspectral estimation of heavy metal chromium content in arable soil of arid area oasis[J]. Journal of Ecology and Environment, 30(10): 2076-2084.
|
[28] |
闫峰, 2010. 影响土壤中Cr(Ⅵ)吸持与Cr(Ⅲ)氧化的主要土壤理化性质分析[D]. 咸阳: 西北农林科技大学.
|
|
YAN F, 2010. Analysis of the main soil physicochemical properties affecting Cr(VI) adsorption and Cr(III) oxidation in soil[D]. Xianyang: Northwest A & F University.
|
[29] |
颜祥照, 姚艳敏, 张霄羽, 等, 2021. 星载高分五号高光谱耕地主要土壤类型土壤有机质含量估测——以黑龙江省建三江农垦区为例[J]. 中国土壤与肥料 (5): 10-20.
|
|
YAN X Z, YAO Y M, ZHANG X Y, et al., 2021. Estimation of soil organic matter content in major soil types of star-borne Gaofen-5 hyperspectral cultivated land: A case study of Jiansanjiang reclamation area in Heilongjiang province[J]. Soil and Fertilizer Sciences in China (5): 10-20.
|
[30] |
杨灵玉, 高小红, 张威, 等, 2016. 基于Hyperion影像植被光谱的土壤重金属含量空间分布反演——以青海省玉树县为例[J]. 应用生态学报, 27(6): 1775-1784.
DOI
|
|
YANG L Y, GAO X H, ZHANG W, et al., 2016. Inversion of spatial distribution of soil heavy metal content based on hyperion image vegetation spectra: A case study of Yushu County in Qinghai Province[J]. Chinese Journal of Applled Ecology, 27(6): 1775-1784.
|
[31] |
袁自然, 魏立飞, 张杨熙, 等, 2020. 优化CARS结合PSO-SVM算法农田土壤重金属砷含量高光谱反演分析[J]. 光谱学与光谱分析, 40(2): 567-573.
|
|
YUAN Z R, WEI L F, ZHANG Y X, et al., 2020. Optimization of CARS combined with PSO-SVM algorithm for hyperspectral inversion analysis of heavy metal arsenic in farmland soil[J]. Spectroscopy and Spectral Analysis, 40(2): 567-573.
|
[32] |
张明月, 张奇栎, 王璐, 等, 2019. 东北黑土区土壤铬含量高光谱反演研究[J]. 遥感技术与应用, 34(2): 313-322.
|
|
ZHANG M Y, ZHANG Q L, WANG L, et al., 2019. Research on chromium retrieval of black soil with hyperspectral imagery in northeast of China[J]. Remote Sensing Technology and Application, 34(2): 313-322.
|
[33] |
赵瑞, 崔希民, 刘超, 2020. GF-5高光谱遥感影像的土壤有机质含量反演估算研究[J]. 中国环境科学, 40(8): 3539-3545.
|
|
ZHAO R, CUI X M, LIU C, et al., 2020. Inverse estimation of soil organic matter content from GF-5 hyperspectral remote sensing images[J]. China Environmental Science, 40(8): 3539-3545.
|
[34] |
郑家桐, 王鹏, 石航源, 等, 2023. 基于CatBoost模型和SHAP解释方法的土壤重金属影响因素与程度定量分析[J]. 环境科学学报, 43(4): 448-456.
|
|
ZHENG J T, WANG P, SHI H Y, et al., 2023. Quantitative analysis of the influence factors and extent of soil heavy metals based on CatBoost model and SHAP interpretation method[J]. Acta Scientiae Circumstantiae, 43(4): 448-456.
|