生态环境学报 ›› 2024, Vol. 33 ›› Issue (6): 969-979.DOI: 10.16258/j.cnki.1674-5906.2024.06.014
王鹭莹1(), 李小马1,*(
), 甘德欣1, 刘鹏翱2,3,4, 郭胜2,3,4, 李毅5
收稿日期:
2024-02-28
出版日期:
2024-06-18
发布日期:
2024-07-30
通讯作者:
* 李小马。E-mail: lixiaoma@hunau.edu.cn作者简介:
王鹭莹(1999年生),女,硕士研究生,主要研究方向为生态系统服务与权衡。E-mail: wangluying1999@163.com
基金资助:
WANG Luying1(), LI Xiaoma1,*(
), GAN Dexin1, LIU Pengao2,3,4, GUO Sheng2,3,4, LI Yi5
Received:
2024-02-28
Online:
2024-06-18
Published:
2024-07-30
摘要:
生态系统服务间存在复杂的权衡或协同关系并表现出显著空间异质性,明确生态系统服务权衡与协同关系的空间分异特征并阐明其驱动因素,对生态系统可持续规划与管理具有重要意义。利用InVEST模型和城市生态智慧管理系统(IUEMS)量化2020年长株潭城市群6项关键生态系统服务物质量(水源涵养 (WC)、土壤保持 (SC)、碳固存 (CS)、生境质量 (HQ)、粮食供给 (FP) 和景观美学 (LA)),并运用相关系数法揭示1 km格网尺度的生态系统服务权衡与协同关系及其空间分异特征,最后通过逻辑斯蒂回归分析阐明其驱动因素。结果显示,1)2020年长株潭城市群SC、WC、CS、HQ和LA均呈现东南高西北低的空间分布特征,FP呈现西北高东南低的分布特征。2)长株潭城市群生态系统服务间权衡与协同关系空间差异明显。SC与CS、WC、HQ、LA间协同关系面积占比超过60%,协同关系主要分布在研究区东北部和南部的山区以及西部农田地区,而权衡关系主要位于建成区及其周边地区。FP与CS、WC、HQ、LA间权衡关系面积占比超过65%,权衡关系主要位于北部的平原区域和南部的山区,而协同关系主要位于城市区域及其周边非林地区域。3)自然、社会经济和政策管理因素共同影响生态系统服务间权衡与协同关系的空间异质性。陡坡会抑制生态系统服务之间的协同;温度、降水、NDVI的增加能够促进调节服务、支持服务和文化服务间的协同,但抑制FP与其他生态系统服务间的协同;社会经济发展会促使生态系统服务间趋向低-低协同或权衡关系;绿心保护政策促进SC与其他生态系统服务,以及CS与LA之间的协同。
中图分类号:
王鹭莹, 李小马, 甘德欣, 刘鹏翱, 郭胜, 李毅. 长株潭城市群生态系统服务权衡与协同关系的空间异质性及其驱动因素[J]. 生态环境学报, 2024, 33(6): 969-979.
WANG Luying, LI Xiaoma, GAN Dexin, LIU Pengao, GUO Sheng, LI Yi. Spatial Heterogeneity and Driving Factors of Ecosystem Service Trade-offs and Synergies in the Changsha-Zhuzhou-Xiangtan Urban Agglomeration[J]. Ecology and Environment, 2024, 33(6): 969-979.
数据类型 | 数据用途 | 数据格式 | 数据来源及处理方法 | 空间分辨率 |
---|---|---|---|---|
土地利用数据 | CS, SC, WC, HQ, LA, FP, PD | 栅格数据 | GLC_FCS30-2020数据集 (Zhang et al., | 30 m |
土壤数据 | SC | 栅格数据 | 世界土壤数据库 ( | 30 m |
降水数据 | SC, WC, PD | 文本 | 来源于中国气象局气象数据中心 ( | ‒ |
归一化植被指数 (NDVI) | SC, PD | 栅格数据 | NASA地球数据中心 ( | 1 km |
DEM数据 | SC, PD | 栅格数据 | 美国地质勘探局公开数据集 ( | 30 m |
蒸散量数据 | WC | 栅格数据 | 美国国家航空航天局公开数据集 ( | 1 km |
温度数据 | PD | 栅格数据 | 国家地球系统科学数据中心 ( | 1 km |
人口密度数据 | PD | 栅格数据 | LandScan人口数据集 (Rose et al., | 1 km |
GDP数据 | PD | 栅格数据 | GDP预测数据集 (Zhao et al., | 1 km |
道路数据 | HQ | 矢量图层 | 开放街道地图 ( | ‒ |
粮食供给 | FP | 文本 | 湖南省统计局 ( | ‒ |
森林公园名单 | LA | 文本 | 湖南省林业局 ( | ‒ |
森林公园经纬度 | LA | 矢量图层 | 高德地图API, 利用Python爬取森林公园位置 | ‒ |
景观保护区域 | PD | 矢量图层 | 湖南省自然资源厅 ( | ‒ |
表1 数据来源与描述
Table 1 Data description
数据类型 | 数据用途 | 数据格式 | 数据来源及处理方法 | 空间分辨率 |
---|---|---|---|---|
土地利用数据 | CS, SC, WC, HQ, LA, FP, PD | 栅格数据 | GLC_FCS30-2020数据集 (Zhang et al., | 30 m |
土壤数据 | SC | 栅格数据 | 世界土壤数据库 ( | 30 m |
降水数据 | SC, WC, PD | 文本 | 来源于中国气象局气象数据中心 ( | ‒ |
归一化植被指数 (NDVI) | SC, PD | 栅格数据 | NASA地球数据中心 ( | 1 km |
DEM数据 | SC, PD | 栅格数据 | 美国地质勘探局公开数据集 ( | 30 m |
蒸散量数据 | WC | 栅格数据 | 美国国家航空航天局公开数据集 ( | 1 km |
温度数据 | PD | 栅格数据 | 国家地球系统科学数据中心 ( | 1 km |
人口密度数据 | PD | 栅格数据 | LandScan人口数据集 (Rose et al., | 1 km |
GDP数据 | PD | 栅格数据 | GDP预测数据集 (Zhao et al., | 1 km |
道路数据 | HQ | 矢量图层 | 开放街道地图 ( | ‒ |
粮食供给 | FP | 文本 | 湖南省统计局 ( | ‒ |
森林公园名单 | LA | 文本 | 湖南省林业局 ( | ‒ |
森林公园经纬度 | LA | 矢量图层 | 高德地图API, 利用Python爬取森林公园位置 | ‒ |
景观保护区域 | PD | 矢量图层 | 湖南省自然资源厅 ( | ‒ |
类别 | 生态系统 服务类型 | 计算方法 | 计算公式 |
---|---|---|---|
调节服务 | 土壤保持 (SC) | IUEMS模型减少泥沙淤积模块 (韩宝龙等, | 该模块采用修正后的通用水土流失方程 (RUSLE) 来计算土壤保持量, 计算公式如下: Qsc=R×K×L×S×(1−C×P) 式中: Qsc——土壤保持量; R——降雨侵蚀力因子, 基于月降水量计算得到; K——土壤可蚀性因子, 通过土壤砂粒、粘粒、粉粒、有机质含量计算得到 (Renard et al., |
水源涵养 (WC) | IUEMS模型水源涵养模块 (韩宝龙等, | 本研究参考Ouyang et al. ( 式中: Qwc ——为涵养水源量; Pi ——降雨量; Ri ——地表径流量; Ei ——为蒸散发量; Ai ——i类土地利用类型。Ri ——降水量和径流系数的乘积,其中径流系数参考Ouyang et al. ( | |
碳固存 (CS) | IUEMS模型固碳释氧模块 (韩宝龙等, | 该模块将植被吸收二氧化碳的量作为碳固存的指标, 可通过NPP估算, 计算公式如下: Qt,CO2=MCO2/MC×CNEP CNEP=a*CNPP*MC6/MC6H10O5 式中: Qt,CO2——生态系统二氧化碳固定量; MCO2/MC——C转化为CO2的系数, 44/12; CNEP——净生态系统生产力; α——NEP和NPP的转换系数; CNPP——净初级生产力; MC6/MC6H10O5——干物质转化为C的系数, 72/162。NEP和NPP的转换系数参考《生态产品总值核算规范》(国家发展和改革委员会等, | |
支持服务 | 生境质量 (HQ) | InVEST模型生境质量模块 (Sharp et al., | 该模块通过计算威胁因子对生境的负面影响来获得生境退化程度, 并根据生境退化程度和生境适宜性计算生境质量 (Sharp et al., 式中: Qxj ——土地利用类型j中栅格x的生境质量; Hj ——土地利用类型j的生境适宜度 ( R——威胁因子; Yr——威胁因子r的栅格个数; wr——威胁因子权重 ( |
供给服务 | 粮食供给 (FP) | 基于农作物产量与NDVI线性关系的评估 (Groten et al., | 将各区县粮食产量根据NDVI占比分配至农田栅格 (Peng et al., 式中: Fij ——j县的栅格 |
文化服务 | 景观美学 (LA) | 基于景观指标的评估 (Xia et al., | 基于景观度的方法来评估景观美学服务 (Frank et al., 式中: QLAi——栅格i的景观美学量; QNTi——栅格i的自然度,利用hemeroby指数来表征 (Xia et al., |
表2 生态系统服务量化方法
Table 2 Methods for quantifying ecosystem services
类别 | 生态系统 服务类型 | 计算方法 | 计算公式 |
---|---|---|---|
调节服务 | 土壤保持 (SC) | IUEMS模型减少泥沙淤积模块 (韩宝龙等, | 该模块采用修正后的通用水土流失方程 (RUSLE) 来计算土壤保持量, 计算公式如下: Qsc=R×K×L×S×(1−C×P) 式中: Qsc——土壤保持量; R——降雨侵蚀力因子, 基于月降水量计算得到; K——土壤可蚀性因子, 通过土壤砂粒、粘粒、粉粒、有机质含量计算得到 (Renard et al., |
水源涵养 (WC) | IUEMS模型水源涵养模块 (韩宝龙等, | 本研究参考Ouyang et al. ( 式中: Qwc ——为涵养水源量; Pi ——降雨量; Ri ——地表径流量; Ei ——为蒸散发量; Ai ——i类土地利用类型。Ri ——降水量和径流系数的乘积,其中径流系数参考Ouyang et al. ( | |
碳固存 (CS) | IUEMS模型固碳释氧模块 (韩宝龙等, | 该模块将植被吸收二氧化碳的量作为碳固存的指标, 可通过NPP估算, 计算公式如下: Qt,CO2=MCO2/MC×CNEP CNEP=a*CNPP*MC6/MC6H10O5 式中: Qt,CO2——生态系统二氧化碳固定量; MCO2/MC——C转化为CO2的系数, 44/12; CNEP——净生态系统生产力; α——NEP和NPP的转换系数; CNPP——净初级生产力; MC6/MC6H10O5——干物质转化为C的系数, 72/162。NEP和NPP的转换系数参考《生态产品总值核算规范》(国家发展和改革委员会等, | |
支持服务 | 生境质量 (HQ) | InVEST模型生境质量模块 (Sharp et al., | 该模块通过计算威胁因子对生境的负面影响来获得生境退化程度, 并根据生境退化程度和生境适宜性计算生境质量 (Sharp et al., 式中: Qxj ——土地利用类型j中栅格x的生境质量; Hj ——土地利用类型j的生境适宜度 ( R——威胁因子; Yr——威胁因子r的栅格个数; wr——威胁因子权重 ( |
供给服务 | 粮食供给 (FP) | 基于农作物产量与NDVI线性关系的评估 (Groten et al., | 将各区县粮食产量根据NDVI占比分配至农田栅格 (Peng et al., 式中: Fij ——j县的栅格 |
文化服务 | 景观美学 (LA) | 基于景观指标的评估 (Xia et al., | 基于景观度的方法来评估景观美学服务 (Frank et al., 式中: QLAi——栅格i的景观美学量; QNTi——栅格i的自然度,利用hemeroby指数来表征 (Xia et al., |
威胁因子 | 最大影响距离/km | 权重 | 衰减类型 |
---|---|---|---|
耕地 | 8 | 0.7 | 指数型 |
建设用地 | 12 | 1 | 指数型 |
铁路 | 10 | 1 | 线性 |
一级公路 | 5 | 0.3 | 线性 |
表3 长株潭城市群生境质量威胁因子的最大影响距离和权重
Table 3 Influence distance and weight of threat factors of habitat quality in Changsha-Zhuzhou-Xiangtan urban agglomeration
威胁因子 | 最大影响距离/km | 权重 | 衰减类型 |
---|---|---|---|
耕地 | 8 | 0.7 | 指数型 |
建设用地 | 12 | 1 | 指数型 |
铁路 | 10 | 1 | 线性 |
一级公路 | 5 | 0.3 | 线性 |
序号 | 土地利用 类型 | 生境适宜度 | 敏感度 | |||
---|---|---|---|---|---|---|
耕地 | 建设用地 | 铁路 | 一级公路 | |||
1 | 耕地 | 0.4 | 0.3 | 0.5 | 0.1 | 0.15 |
2 | 林地 | 1 | 0.8 | 0.9 | 0.55 | 0.65 |
3 | 草地 | 0.8 | 0.45 | 0.8 | 0.25 | 0.3 |
4 | 水体 | 1 | 0.7 | 0.7 | 0.9 | 0.4 |
5 | 建设用地 | 0 | 0 | 0 | 0 | 0 |
6 | 灌丛 | 0.9 | 0.4 | 0.4 | 0.2 | 0.25 |
7 | 湿地 | 1 | 0.85 | 0.9 | 0.35 | 0.65 |
表4 长株潭城市群不同土地利用类型的生境适宜度及其对威胁因子的敏感度
Table 4 Habitat suitability and sensitivity of various land use types to threat factors in Changsha-Zhuzhou-Xiangtan urban agglomeration
序号 | 土地利用 类型 | 生境适宜度 | 敏感度 | |||
---|---|---|---|---|---|---|
耕地 | 建设用地 | 铁路 | 一级公路 | |||
1 | 耕地 | 0.4 | 0.3 | 0.5 | 0.1 | 0.15 |
2 | 林地 | 1 | 0.8 | 0.9 | 0.55 | 0.65 |
3 | 草地 | 0.8 | 0.45 | 0.8 | 0.25 | 0.3 |
4 | 水体 | 1 | 0.7 | 0.7 | 0.9 | 0.4 |
5 | 建设用地 | 0 | 0 | 0 | 0 | 0 |
6 | 灌丛 | 0.9 | 0.4 | 0.4 | 0.2 | 0.25 |
7 | 湿地 | 1 | 0.85 | 0.9 | 0.35 | 0.65 |
图3 长株潭城市群生态系统服务权衡与协同所占面积比例 SC:土壤保持Soil conservation;WC:水源涵养Water conservation;CS:碳固存Carbon sequestration;HQ:生境质量Habitat quality;FP:粮食供给Food production;LA:景观美学Landscape aesthetics
Figure 3 Area proportion of ecosystem services trade off and synergies in the Changsha-Zhuzhou-Xiangtan urban agglomeration
生态系统服务 | 指标 | 驱动因素 | |||||||
---|---|---|---|---|---|---|---|---|---|
SLO | PRE | TEM | NDVI | GDP | POP | CLP | EPP | ||
SC-HQ | 回归系数 | −0.120* 3) | −0.123*** | 0.616*** | 0.931*** | −0.00900 | 0.119*** | −0.678*** | 0.366* |
Wald统计值 | 4.820 | 13.761 | 352.932 | 262.312 | 0.227 | 21.530 | 350.358 | 5.317 | |
SC-CS | 回归系数 | −0.481*** 1) | −0.106*** | 0.329*** | 0.609*** | −0.0340 | 0.107*** | −0.816*** | 0.342** |
Wald统计值 | 147.872 | 20.750 | 162.913 | 171.843 | 2.193 | 15.247 | 498.439 | 6.951 | |
SC-WC | 回归系数 | −0.0890 | −0.183*** | 0.578*** | 0.974*** | 0.00800 | 0.0890*** | −0.632*** | 0.400** |
Wald统计值 | 3.257 | 38.410 | 362.366 | 321.619 | 0.141 | 11.358 | 311.639 | 6.831 | |
SC-LA | 回归系数 | −0.795*** | −0.117*** | 0.409*** | 0.640*** | 0.020 | 0.0990*** | −0.742*** | 0.363* |
Wald统计值 | 320.194 | 19.301 | 220.192 | 145.947 | 1.105 | 15.162 | 460.464 | 5.161 | |
SC-FP | 回归系数 | −0.389*** | 0.0260 | −0.356*** | −0.267* | −0.0330 | 0.0750* | 0.126* | 0.00500 |
Wald统计值 | 14.338 | 0.183 | 38.129 | 6.617 | 1.021 | 4.479 | 4.756 | 0.000 | |
CS-HQ | 回归系数 | −0.969*** | −0.0600 | 0.476*** | 1.640*** | 0.0390 | −0.187 | 2.535*** | 13.707 |
Wald统计值 | 118.281 | 1.186 | 101.138 | 192.042 | 0.0370 | 2.277 | 60.108 | 0.00300 | |
CS-WC | 回归系数 | −0.782*** | −0.0210 | 0.249*** | 0.615*** | 1.880 | 0.225 | 8.637*** | −0.428 |
Wald统计值 | 101.332 | 0.250 | 44.074 | 24.875 | 0.977 | 0.621 | 48.321 | 0.676 | |
CS-LA | 回归系数 | −0.932*** | −0.0650 | 0.314*** | 0.868*** | 0.011 | −0.176** | 1.076*** | 1.260* |
Wald统计值 | 212.495 | 3.091 | 86.596 | 94.205 | 0.023 | 7.681 | 53.695 | 4.670 | |
CS-FP | 回归系数 | −1.872*** | −0.0330 | −0.229** | −1.349*** | −0.194*** | −0.0600 | 3.564*** | 0.0150 |
Wald统计值 | 359.116 | 0.707 | 10.539 | 277.810 | 44.096 | 1.685 | 1154.520 | 0.00800 | |
FP-HQ | 回归系数 | −7.159*** | −0.357*** | −0.539*** | −0.461*** | −0.0980*** | −0.161*** | 3.188*** | −0.291 |
Wald统计值 | 972.797 | 38.800 | 24.332 | 23.413 | 10.998 | 11.863 | 1085.881 | 1.746 | |
FP-WC | 回归系数 | −6.105*** | −0.290*** | −0.393*** | −1.117*** | −0.432*** | −0.153* | 7.033*** | −0.172 |
Wald统计值 | 907.020 | 29.529 | 15.469 | 101.194 | 110.532 | 4.950 | 1428.355 | 0.605 | |
FP-LA | 回归系数 | −5.007*** | −0.169** 2) | −0.733*** | −0.544*** | −0.0750** | −0.060 | 2.379*** | −0.301 |
Wald统计值 | 703.614 | 9.942 | 52.164 | 40.258 | 6.953 | 1.763 | 959.568 | 2.169 | |
LA-HQ | 回归系数 | −1.445*** | 0.360*** | 0.544*** | −0.636* | −0.132 | 19.371*** | −2.262*** | 10.448 |
Wald统计值 | 126.688 | 25.227 | 111.804 | 5.391 | 0.0120 | 20.529 | 30.932 | 0.001 | |
LA-WC | 回归系数 | −1.350*** | 0.225*** | 0.373*** | −1.530*** | 0.158 | −0.419*** | −0.563 | 11.029 |
Wald统计值 | 158.104 | 15.756 | 70.232 | 47.915 | 2.435 | 11.075 | 2.231 | 0.00200 | |
HQ-WC | 回归系数 | −1.029*** | 0.100 | 0.437*** | −0.947 | 0.224 | 7.635 | −2.058*** | 11.203 |
Wald统计值 | 19.219 | 0.513 | 20.975 | 2.675 | 0.00500 | 2.420 | 17.301 | 0.000 |
表5 生态系统服务权衡与协同关系的驱动因素
Table 5 Driving factors of ecosystem services trade off and synergies
生态系统服务 | 指标 | 驱动因素 | |||||||
---|---|---|---|---|---|---|---|---|---|
SLO | PRE | TEM | NDVI | GDP | POP | CLP | EPP | ||
SC-HQ | 回归系数 | −0.120* 3) | −0.123*** | 0.616*** | 0.931*** | −0.00900 | 0.119*** | −0.678*** | 0.366* |
Wald统计值 | 4.820 | 13.761 | 352.932 | 262.312 | 0.227 | 21.530 | 350.358 | 5.317 | |
SC-CS | 回归系数 | −0.481*** 1) | −0.106*** | 0.329*** | 0.609*** | −0.0340 | 0.107*** | −0.816*** | 0.342** |
Wald统计值 | 147.872 | 20.750 | 162.913 | 171.843 | 2.193 | 15.247 | 498.439 | 6.951 | |
SC-WC | 回归系数 | −0.0890 | −0.183*** | 0.578*** | 0.974*** | 0.00800 | 0.0890*** | −0.632*** | 0.400** |
Wald统计值 | 3.257 | 38.410 | 362.366 | 321.619 | 0.141 | 11.358 | 311.639 | 6.831 | |
SC-LA | 回归系数 | −0.795*** | −0.117*** | 0.409*** | 0.640*** | 0.020 | 0.0990*** | −0.742*** | 0.363* |
Wald统计值 | 320.194 | 19.301 | 220.192 | 145.947 | 1.105 | 15.162 | 460.464 | 5.161 | |
SC-FP | 回归系数 | −0.389*** | 0.0260 | −0.356*** | −0.267* | −0.0330 | 0.0750* | 0.126* | 0.00500 |
Wald统计值 | 14.338 | 0.183 | 38.129 | 6.617 | 1.021 | 4.479 | 4.756 | 0.000 | |
CS-HQ | 回归系数 | −0.969*** | −0.0600 | 0.476*** | 1.640*** | 0.0390 | −0.187 | 2.535*** | 13.707 |
Wald统计值 | 118.281 | 1.186 | 101.138 | 192.042 | 0.0370 | 2.277 | 60.108 | 0.00300 | |
CS-WC | 回归系数 | −0.782*** | −0.0210 | 0.249*** | 0.615*** | 1.880 | 0.225 | 8.637*** | −0.428 |
Wald统计值 | 101.332 | 0.250 | 44.074 | 24.875 | 0.977 | 0.621 | 48.321 | 0.676 | |
CS-LA | 回归系数 | −0.932*** | −0.0650 | 0.314*** | 0.868*** | 0.011 | −0.176** | 1.076*** | 1.260* |
Wald统计值 | 212.495 | 3.091 | 86.596 | 94.205 | 0.023 | 7.681 | 53.695 | 4.670 | |
CS-FP | 回归系数 | −1.872*** | −0.0330 | −0.229** | −1.349*** | −0.194*** | −0.0600 | 3.564*** | 0.0150 |
Wald统计值 | 359.116 | 0.707 | 10.539 | 277.810 | 44.096 | 1.685 | 1154.520 | 0.00800 | |
FP-HQ | 回归系数 | −7.159*** | −0.357*** | −0.539*** | −0.461*** | −0.0980*** | −0.161*** | 3.188*** | −0.291 |
Wald统计值 | 972.797 | 38.800 | 24.332 | 23.413 | 10.998 | 11.863 | 1085.881 | 1.746 | |
FP-WC | 回归系数 | −6.105*** | −0.290*** | −0.393*** | −1.117*** | −0.432*** | −0.153* | 7.033*** | −0.172 |
Wald统计值 | 907.020 | 29.529 | 15.469 | 101.194 | 110.532 | 4.950 | 1428.355 | 0.605 | |
FP-LA | 回归系数 | −5.007*** | −0.169** 2) | −0.733*** | −0.544*** | −0.0750** | −0.060 | 2.379*** | −0.301 |
Wald统计值 | 703.614 | 9.942 | 52.164 | 40.258 | 6.953 | 1.763 | 959.568 | 2.169 | |
LA-HQ | 回归系数 | −1.445*** | 0.360*** | 0.544*** | −0.636* | −0.132 | 19.371*** | −2.262*** | 10.448 |
Wald统计值 | 126.688 | 25.227 | 111.804 | 5.391 | 0.0120 | 20.529 | 30.932 | 0.001 | |
LA-WC | 回归系数 | −1.350*** | 0.225*** | 0.373*** | −1.530*** | 0.158 | −0.419*** | −0.563 | 11.029 |
Wald统计值 | 158.104 | 15.756 | 70.232 | 47.915 | 2.435 | 11.075 | 2.231 | 0.00200 | |
HQ-WC | 回归系数 | −1.029*** | 0.100 | 0.437*** | −0.947 | 0.224 | 7.635 | −2.058*** | 11.203 |
Wald统计值 | 19.219 | 0.513 | 20.975 | 2.675 | 0.00500 | 2.420 | 17.301 | 0.000 |
[1] |
BENNETT E M, PETERSON G D, GORDON L J, 2009. Understanding relationships among multiple ecosystem services[J]. Ecology Letters, 12(12): 1394-1404.
DOI PMID |
[2] | BENTON T G, VICKERY J A, WILSON J D, 2003. Farmland biodiversity: is habitat heterogeneity the key?[J]. Trends in Ecology & Evolution, 18(4): 182-188. |
[3] | CAO Y N, KONG L Q, ZHANG L F, et al., 2021. The balance between economic development and ecosystem service value in the process of land urbanization: A case study of China’s land urbanization from 2000 to 2015[J]. Land Use Policy, 108(2): 105536. |
[4] | CAO Y C, ZHOU Z, LIAO Q L, et al., 2023. Effects of landscape conservation on the ecohydrological and water quality functions and services and their driving factors[J]. Science of the Total Environment, 861: 160695. |
[5] | CARPENTER S R, DEFRIES R, DIETZ T, et al., 2006. Millennium ecosystem assessment: research needs[J]. Science, 314(5797): 257-258. |
[6] | CHAN K M A, SHAW M R, CAMERON D R, et al., 2006. Conservation planning for ecosystem services[J]. PLoS biology, 4(11): e379. |
[7] | COSTANZA R, D' ARGE R, DE GROOT R, et al., 1997. The value of the world's ecosystem services and natural capital[J]. Nature, 387(6630): 253-260. |
[8] | DE VAL G D L F, ATAURI J A, DE LUCIO J V, 2006. Relationship between landscape visual attributes and spatial pattern indices: A test study in Mediterranean-climate landscapes[J]. Landscape and Urban Planning, 77(4): 393-407. |
[9] | DENG C X, LIU J Y, NIE X D, et al., 2021. How trade-offs between ecological construction and urbanization expansion affect ecosystem services[J]. Ecological Indicators, 122(8): 107253. |
[10] | DITTRICH A, SEPPELT R, VÁCLAVÍK T, et al., 2017. Integrating ecosystem service bundles and socio-environmental conditions: A national scale analysis from Germany[J]. Ecosystem Services, 28(Part C): 273-282. |
[11] | FENG Q, ZHAO W W, FU B J, et al., 2017. Ecosystem service trade-offs and their influencing factors: A case study in the Loess Plateau of China[J]. Science of the Total Environment, 607-608: 1250-1263. |
[12] | FENG Q, ZHAO W W, HU X P, et al., 2020. Trading-off ecosystem services for better ecological restoration: A case study in the Loess Plateau of China[J]. Journal of Cleaner Production, 257: 120469. |
[13] | FENG X M, FU B J, PIAO S L, et al., 2016. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits[J]. Nature Climate Change, 6(11): 1019-1022. |
[14] | FRANK S, FÜRST C, KOSCHKE L, et al., 2013. Assessment of landscape aesthetics—Validation of a landscape metrics-based assessment by visual estimation of the scenic beauty[J]. Ecological Indicators, 32: 222-231. |
[15] | GHOSH S, DINDA S, CHATTERJEE N D, et al., 2022. Spatial-explicit carbon emission-sequestration balance estimation and evaluation of emission susceptible zones in an Eastern Himalayan city using Pressure-Sensitivity-Resilience framework: An approach towards achieving low carbon cities[J]. Journal of Cleaner Production, 336: 130417. |
[16] | GROTEN S M E, 1993. NDVI-crop monitoring and early yield assessment of Burkina Faso[J]. TitleREMOTE SENSING, 14(8): 1495-1515. |
[17] | HU J Y, ZHANG J X, LI Y Q, 2022. Exploring the spatial and temporal driving mechanisms of landscape patterns on habitat quality in a city undergoing rapid urbanization based on GTWR and MGWR: The case of Nanjing, China[J]. Ecological Indicators, 143: 109333. |
[18] | HUI E C, BAO H, 2013. The logic behind conflicts in land acquisitions in contemporary China: A framework based upon game theory[J]. Land Use Policy, 30(1): 373-380. |
[19] | IOJĂ C I, NIŢĂ M R, VÂNĂU G O, et al., 2014. Using multi-criteria analysis for the identification of spatial land-use conflicts in the Bucharest Metropolitan Area[J]. Ecological Indicators, 42: 112-121. |
[20] | JIANG W G, DENG Y, TANG Z H, et al., 2017. Modelling the potential impacts of urban ecosystem changes on carbon storage under different scenarios by linking the CLUE-S and the InVEST models[J]. Ecological Modelling, 345: 30-40. |
[21] | LAUTENBACH S, KUGEL C, LAUSCH A, et al., 2011. Analysis of historic changes in regional ecosystem service provisioning using land use data[J]. Ecological Indicators, 11(2): 676-687. |
[22] | LI B J, CHEN D X, WU S H, et al., 2016. Spatio-temporal assessment of urbanization impacts on ecosystem services: Case study of Nanjing City, China[J]. Ecological Indicators, 71: 416-427. |
[23] | LI G Y, JIANG C H, GAO Y, et al., 2022. Natural driving mechanism and trade-off and synergy analysis of the spatiotemporal dynamics of multiple typical ecosystem services in Northeast Qinghai-Tibet Plateau[J]. Journal of Cleaner Production, 374: 134075. |
[24] | LI R N, ZHENG H, O’CONNOR P, et al., 2021. Time and space catch up with restoration programs that ignore ecosystem service trade-offs[J]. Science Advances, 7(14): eabf8650. |
[25] | LUO J, ZHOU X L, ZHANG Z H, et al., 2021. Evaluation of wetland ecosystem services in green core of Changzhutan urban agglomeration, Hunan[J]. IOP Conference Series Earth and Environmental Science, 859(1): 012111. |
[26] | MA, Millennium Ecosystem Assessment, 2005. Ecosystems and human well-being: Synthesis[M]. Washington, DC: Island Press. |
[27] |
OUYANG Z Y, ZHENG H, XIAO Y, et al., 2016. Improvements in ecosystem services from investments in natural capital[J]. Science, 352(6292): 1455-1459.
DOI PMID |
[28] | PENG J, SHEN H, WU W H, et al., 2016. Net primary productivity (NPP) dynamics and associated urbanization driving forces in metropolitan areas: A case study in Beijing City, China[J]. Landscape Ecology, 31(5): 1077-1092. |
[29] | PENG J, TIAN L, LIU Y X, et al., 2017. Ecosystem services response to urbanization in metropolitan areas: Thresholds identification[J]. Science of the Total Environment, 607-608: 706-714. |
[30] | PENG J, HU X X, QIU S J, et al., 2019. Multifunctional landscapes identification and associated development zoning in mountainous area[J]. Science of the Total Environment, 660: 765-775. |
[31] | PICKETT S R, SIRIWARDENA G M, 2011. The relationship between multi-scale habitat heterogeneity and farmland bird abundance[J]. Ecography, 34(6): 955-969. |
[32] | QIU J X, TURNER M G, 2013. Spatial interactions among ecosystem services in an urbanizing agricultural watershed[J]. Proceedings of the National Academy of Sciences, 110(29): 12149-12154. |
[33] | QIU S J, PENG J, DONG J Q, et al., 2021. Understanding the relationships between ecosystem services and associated social-ecological drivers in a karst region: A case study of Guizhou Province, China[J]. Progress in Physical Geography: Earth and Environment, 45(1): 98-114. |
[34] | RENARD K G, 1997. Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE)[M]. Washington, DC: United States Government Printing. |
[35] | ROSE A, MCKEE J, SIMS K, et al., 2021. LandScan Global 2020 [EB/OL]. Oak Ridge National Laboratory. https://doi.org/10.48690/1523378. |
[36] | SETO K C, GüNERALP B, HUTYRA L R, 2012. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools[J]. Proceedings of the National Academy of Sciences, 109(40): 16083-16088. |
[37] | SHARP R, TALLIS H T, RICKETTS T, et al., 2014. InVEST user’s guide[M/OL]. [s.l.]:The Natural Capital Project. ttps://naturalcapitalproject.stanford.edu/software/invest. |
[38] | TURNER K G, ODGAARD M V, BØCHER P K, et al., 2014. Bundling ecosystem services in Denmark: Trade-offs and synergies in a cultural landscape[J]. Landscape and Urban Planning, 125: 89-104. |
[39] | WANG P J, WANG J W, ZHANG J H, et al., 2022. Spatial-temporal changes in ecosystem services and social-ecological drivers in a typical coastal tourism city: A case study of Sanya, China[J]. Ecological Indicators, 145(3): 109607. |
[40] | XIA H, YUAN S F, PRISHCHEPOV A V, 2023. Spatial-temporal heterogeneity of ecosystem service interactions and their social-ecological drivers: Implications for spatial planning and management[J]. Resources, Conservation and Recycling, 189(1): 106767. |
[41] | XIE Y L, LEI X D, SHI J N, 2020. Impacts of climate change on biological rotation of Larix olgensis plantations for timber production and carbon storage in northeast China using the 3-PGmix model[J]. Ecological Modelling, 435: 109267. |
[42] | YANG M H, GAO X D, ZHAO X, et al., 2021. Scale effect and spatially explicit drivers of interactions between ecosystem services: A case study from the Loess Plateau[J]. Science of the Total Environment, 785: 147389. |
[43] | YUAN Y J, WU S H, YU Y N, et al., 2018. Spatiotemporal interaction between ecosystem services and urbanization: Case study of Nanjing City, China[J]. Ecological Indicators, 95(Part 1): 917-929. |
[44] | YUE W, XU J, TAN W, et al., 2007. The relationship between land surface temperature and NDVI with remote sensing: application to Shanghai Landsat 7 ETM+ data[J]. International Journal of Remote Sensing, 28(15): 3205-3226. |
[45] | ZHANG H, DENG W, ZHANG S Y, et al., 2022a. Impacts of urbanization on ecosystem services in the Chengdu-Chongqing Urban Agglomeration: Changes and trade-offs[J]. Ecological Indicators, 139(1): 108920. |
[46] | ZHANG X, LIU L Y, CHEN X D, et al., 2021a. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery[J]. Earth System Science Data, 13(6): 2753-2776. |
[47] | ZHANG Y S, LU X, LIU B Y, et al., 2021b. Spatial relationships between ecosystem services and socioecological drivers across a large-scale region: A case study in the Yellow River Basin[J]. Science of the Total Environment, 766(47): 142480. |
[48] | ZHANG Y, SHE J Y, LONG X R, et al., 2022b. Spatio-temporal evolution and driving factors of eco-environmental quality based on RSEI in Chang-Zhu-Tan metropolitan circle, central China[J]. Ecological Indicators, 144: 109436. |
[49] | ZHANG Y, LI J, LIU X F, et al., 2023. Do carbon sequestration and food security in urban and rural landscapes differ in patterns, relationships, and responses?[J]. Applied Geography, 160(9): 103100. |
[50] | ZHANG Z Y, LIU Y F, WANG Y H, et al., 2020. What factors affect the synergy and tradeoff between ecosystem services, and how, from a geospatial perspective?[J]. Journal of Cleaner Production, 257(1): 120454. |
[51] | ZHAO J L, WANG Z G, DONG Y F, et al., 2022. How soil erosion and runoff are related to land use, topography and annual precipitation: Insights from a meta-analysis of erosion plots in China[J]. Science of the Total Environment, 802: 149665. |
[52] | ZHAO N Z, LIU Y, CAO G F, et al., 2017. Forecasting China’s GDP at the pixel level using nighttime lights time series and population images[J]. GIScience & Remote Sensing, 54(3): 407-425. |
[53] | 国家发展和改革委员会, 国家统计局, 2022. 生态产品总值核算规范[M]. 北京: 人民出版社. |
National Development and Reform Commissionof the People’s Republic of China, National Bureau of Statistics of the People’s Republic of China, 2022. The Technical Guideline on Gross Ecosystem Product[M]. Beijing: People’s Publishing House. | |
[54] | 韩宝龙, 欧阳志云, 2021. 城市生态智慧管理系统的生态系统服务评估功能与应用[J]. 生态学报, 41(22): 8697-8708. |
HAN B L, OUYANG Z Y, 2021. The comparing and applying Intelligent Urban Ecosystem Management System (IUEMS) on ecosystem services assessment[J]. Acta Ecologica Sinica, 41(22): 8697-8708. | |
[55] | 李成, 赵洁, 庄智程, 等, 2022. 长三角城市群生态系统服务权衡强度时空演变及影响因素研究[J]. 生态学报, 14(42): 5708-5720. |
LI C, ZHAO J, ZHUANG Z C, et al., 2022. Spatiotemporal dynamics and influencing factors of ecosystem service trade-offs in the Yangtze River Delta urban agglomeration[J]. Acta Ecologica Sinica, 42(14): 5708-5720. | |
[56] | 黎佳君, 廖秋林, 沈守云, 等, 2022. 长株潭城市群绿心地区生态系统服务价值时空变化研究[J]. 中国园林, 38(1): 100-105. |
LI J J, LIAO Q L, SHEN S Y, et al., 2022. Study on the spatiotemporal changes of land use and ecosystem services value (ESV) of the green heart area in the Changsha-Zhuzhou-Xiangtan (CZT) city group[J]. Chinese Landscape Architecture, 38(1): 100-105. | |
[57] | 刘洋, 毕军, 吕建树, 2019. 生态系统服务权衡与协同关系及驱动力——以江苏省太湖流域为例[J]. 生态学报, 39(19): 7067-7078. |
LIU Y, BI J, LÜ J S, 2019. Trade-off and synergy relationships of ecosystem services and the driving forces: A case study of the Taihu Basin,Jiangsu Province[J]. Acta Ecologica Sinica, 39(19): 7067-7078. | |
[58] | 刘园, 周勇, 杜越天, 2019. 基于InVEST模型的长江中游经济带生境质量的时空分异特征及其地形梯度效应[J]. 长江流域资源与环境, 28(10): 2429-2440. |
LIU Y, ZHOU Y, DU Y T, 2009. Study on the Spatio-Temporal Patterns of Habitat Quality and Its Terrain Gradient Effects of the Middle of the Yangtze River Economic Belt Based on InVEST Model[J]. Resources and Environment in the Yangtze Basin, 28(10): 2429-2440. | |
[59] | 梅予健, 贺清云, 欧阳晓, 等, 2023. 长株潭城市群城镇化水平与生态质量的冲突与交互作用研究[J]. 生态学报, 43(11): 4527-4538. |
MEI Y J, HE Q Y, OUYANG X, et al., 2023. Conflict and interaction between urbanization level and ecological quality in Changsha- Zhuzhou-Xiangtan urban agglomeration[J]. Acta Ecologica Sinica, 43(11): 4527-4538. | |
[60] | 欧阳晓, 朱翔, 贺清云, 2019. 城市化与生态系统服务的空间交互关系研究——以长株潭城市群为例[J]. 生态学报, 39(20): 7502-7513. |
OUYANG X, ZHU X, HE Q Y, 2019. Spatial interaction between urbanisation and ecosystem services: A case study in Changsha-Zhuzhou-Xiangtan urban agglomeration, China[J]. Acta Ecologica Sinica, 39(20): 7502-7513. | |
[61] |
张自正, 张蕾, 孙桂英, 等, 2023. 清江流域生态系统服务权衡时空效应及驱动因素[J]. 应用生态学报, 34(4): 1051-1062.
DOI |
ZHANG Z Z, ZHANG L, SUN G Y, et al., 2023. Spatial and temporal effect and driving factors of ecosystem service trade-off in the Qingjiang River Basin, China[J]. Chinese Journal of Applied Ecology, 34(4): 1051-1062.
DOI |
[1] | 向男, 王明旭, 张宏锋, 廖宝淦. 生态保护重要性分区及其长时间序列生境状况时空分异研究——以广东省为例[J]. 生态环境学报, 2024, 33(6): 958-968. |
[2] | 杨非凡, 何浩. 基于“EVI-ESV”伊犁河谷生态环境评估及生态分区构建[J]. 生态环境学报, 2024, 33(4): 655-664. |
[3] | 李荣杰, 李惠梅, 武非非, 赵明德, 王诗涵, 孙雪颖. 青海湖流域生态系统服务空间分异规律及驱动力研究[J]. 生态环境学报, 2024, 33(2): 301-309. |
[4] | 李惠梅, 李荣杰, 晏旭昇, 武非非, 高泽兵, 谭永忠. 青海湖流域生态风险评价及生态功能分区研究[J]. 生态环境学报, 2023, 32(7): 1185-1195. |
[5] | 徐梓津, 张雪松, 陈明曼. 山地岩溶区生态系统服务时空演变特征分析——以贵州省为例[J]. 生态环境学报, 2023, 32(7): 1196-1206. |
[6] | 方云皓, 赵丽元, 窦碧莹, 王书贤. 基于MSPA-CIRCUIT的长江中游城市群热环境网络识别与评价研究[J]. 生态环境学报, 2023, 32(7): 1237-1248. |
[7] | 王琳, 卫伟. 黄土高原典型县域生态系统服务变化特征及驱动因素[J]. 生态环境学报, 2023, 32(6): 1140-1148. |
[8] | 张钧韦, 夏圣洁, 陈慧儒, 刘艳红. 山西中部城市群景观格局演变对其热环境的影响研究[J]. 生态环境学报, 2023, 32(5): 943-955. |
[9] | 许静, 廖星凯, 甘崎旭, 周茅先. 基于MSPA与电路理论的黄河流域甘肃段生态安全格局构建[J]. 生态环境学报, 2023, 32(4): 805-813. |
[10] | 夏美君, 李健, 闫永蚕. 京津冀城市群生态福利绩效时空格局及演进特征[J]. 生态环境学报, 2023, 32(4): 814-824. |
[11] | 张平江, 党国锋. 基于MCR模型与蚁群算法的洮河流域生态安全格局构建[J]. 生态环境学报, 2023, 32(3): 481-491. |
[12] | 朱锦维, 柯新利, 何利杰, 周婷, 王青, 任妍钰. 基于价值链理论的生态产品价值实现机制理论解析[J]. 生态环境学报, 2023, 32(2): 421-428. |
[13] | 丁诗雨, 贾夏, 赵永华, 钱会, 王欢元, 康宏亮, 孙婴婴. 秦巴山生态功能区生态系统服务供需关系时空演变研究[J]. 生态环境学报, 2023, 32(12): 2236-2248. |
[14] | 叶深, 王鹏, 黄祎, 折远洋, 丁明军. 长三角城市群城市空间形态对PM2.5与O3污染空间异质性特征的影响研究[J]. 生态环境学报, 2023, 32(10): 1771-1784. |
[15] | 郑晓豪, 陈颖彪, 郑子豪, 郭城, 黄卓男, 周泳诗. 湖北省生态系统服务价值动态变化及其影响因素演变[J]. 生态环境学报, 2023, 32(1): 195-206. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||