生态环境学报 ›› 2023, Vol. 32 ›› Issue (7): 1333-1343.DOI: 10.16258/j.cnki.1674-5906.2023.07.016
收稿日期:
2023-06-21
出版日期:
2023-07-18
发布日期:
2023-09-27
通讯作者:
* 安太成。E-mail: antc99@gdut.edu.cn作者简介:
李桂英(1971年生),女,特聘教授,博士,主要从事光催化杀菌机理,病原微生物耐药性形成机制、健康效应与控制,有机污染物环境健康效应,毒害有机物的生物降解的应用基础与研发工作。E-mail: ligy1999@gdut.edu.cn
基金资助:
LI Guiying(), LIU Jianying, AN Taicheng*(
)
Received:
2023-06-21
Online:
2023-07-18
Published:
2023-09-27
摘要:
在传统水体消毒技术刺激下,细菌会进入活的不可培养(viable but nonculturable,VBNC)状态来提高自身存活率。在撤去外部压力时,未被消毒技术完全去除的VBNC细菌可在水储存和分配期间发生一定程度的复苏,而这些复苏的细菌很可能进入人体并导致严重疾病。然而,目前仍不清楚水体消毒过程中活的不可培养细菌的形成与复苏机制。该文通过检索了95篇相关文献并结合课题组在抗生素耐药菌方面的消毒控制和细菌休眠方面的研究进行了系统分析。首先,介绍了在不同水消毒技术下VBNC细菌的形成并阐述了其潜在的形成机制,其主要包括了严谨反应、能量代谢、一般应激反应系统和毒素-抗毒素系统。其次,介绍了VBNC致病菌复苏的风险和总结了13种复苏方法。该文还综述了自然复苏、复苏促进因子(Rpf)与自诱导剂复苏等3种复苏机制的不同。在修复了细胞损伤并恢复氧化还原平衡和代谢活性之后,VBNC细菌才能发生自然复苏。Rpf能够帮助VBNC细菌重塑细胞壁,这有助于VBNC细菌恢复可培养能力。自诱导剂-2能够促进微生物种群中的细胞间通讯并增加katG的表达来降低过氧化氢毒性,从而促进VBNC细菌的复苏。最后,对今后的研究方向进行了展望,介绍了微流控技术、稳定同位素示踪代谢活性分析方法、单细胞重水标记拉曼光谱方法和荧光能量共振转移技术等可以用于研究VBNC细菌复苏机制的前沿技术。该综述能为回答“多大剂量的消毒技术能够灭活VBNC细菌并避免其复苏”和“复苏的VBNC细菌生理特性是否都恢复到正常水平”等问题提供参考,为水处理过程中微生物安全性评估和制定更有效的消毒策略提供理论依据。
中图分类号:
李桂英, 刘建莹, 安太成. 水体消毒过程中活的不可培养细菌的形成与复苏机制研究进展[J]. 生态环境学报, 2023, 32(7): 1333-1343.
LI Guiying, LIU Jianying, AN Taicheng. The Formation and Resuscitation Mechanisms of Viable But Nonculturable Bacteria during Water Disinfection Processes[J]. Ecology and Environment, 2023, 32(7): 1333-1343.
复苏方法 | 复苏的细菌 | 复苏温度/℃ | 培养时间/h | 文献 |
---|---|---|---|---|
升高温度 | VBNC创伤弧菌 | 23 | 24 | Rao et al., |
LB肉汤 | VBNC大肠杆菌 | 37 | 32 | Chen et al., |
自诱导剂 | VBNC创伤弧菌 | 30 | 24 | Ayrapetyan et al., |
复苏促进因子 | VBNC对联苯食红球菌 | 30 | 24 | Ye et al., |
氨基酸 | VBNC大肠杆菌 | 4 | 24 | Pinto et al., |
蛋白酶 | VBNC霍乱弧菌 | 37 | 32 | Debnath et al., |
YeaZ蛋白 | VBNC哈维弧菌 | 28 | 8 | Li et al., |
丙酮酸钠 | VBNC大肠杆菌 | 37 | 5 | Vilhena et al., |
过氧化氢酶 | VBNC白喉棒状杆菌 | 室温 | 6 | Hamabata et al., |
与巨噬细胞共培养 | VBNC军团菌 | 37 | 72 | Dietersdorfer et al., |
与变形虫共培养 | VBNC幽门螺杆菌 | 37 | 2 | Dey et al., |
小鼠体内复苏 | VBNC创伤弧菌 | - | 48 | Oliver et al., |
基于扩散室的原位复苏 | VBNC创伤弧菌 | 21 | 24 | Oliver et al., |
表1 复苏的VBNC细菌的方法
Table 1 Resuscitation method of VBNC bacteria
复苏方法 | 复苏的细菌 | 复苏温度/℃ | 培养时间/h | 文献 |
---|---|---|---|---|
升高温度 | VBNC创伤弧菌 | 23 | 24 | Rao et al., |
LB肉汤 | VBNC大肠杆菌 | 37 | 32 | Chen et al., |
自诱导剂 | VBNC创伤弧菌 | 30 | 24 | Ayrapetyan et al., |
复苏促进因子 | VBNC对联苯食红球菌 | 30 | 24 | Ye et al., |
氨基酸 | VBNC大肠杆菌 | 4 | 24 | Pinto et al., |
蛋白酶 | VBNC霍乱弧菌 | 37 | 32 | Debnath et al., |
YeaZ蛋白 | VBNC哈维弧菌 | 28 | 8 | Li et al., |
丙酮酸钠 | VBNC大肠杆菌 | 37 | 5 | Vilhena et al., |
过氧化氢酶 | VBNC白喉棒状杆菌 | 室温 | 6 | Hamabata et al., |
与巨噬细胞共培养 | VBNC军团菌 | 37 | 72 | Dietersdorfer et al., |
与变形虫共培养 | VBNC幽门螺杆菌 | 37 | 2 | Dey et al., |
小鼠体内复苏 | VBNC创伤弧菌 | - | 48 | Oliver et al., |
基于扩散室的原位复苏 | VBNC创伤弧菌 | 21 | 24 | Oliver et al., |
[1] |
AHMED Y, ZHONG J X, YUAN Z G, et al., 2021. Simultaneous removal of antibiotic resistant bacteria, antibiotic resistance genes, and micropollutants by a modified photo-Fenton process[J]. Water Research, 197: 117075.
DOI URL |
[2] |
ALVEAR-DAZA J J, GARCíA-BARCO A, OSORIO-VARGAS P, et al., 2021. Resistance and induction of viable but non culturable states (VBNC) during inactivation of E. coli and Klebsiella pneumoniae by addition of H2O2 to natural well water under simulated solar irradiation[J]. Water Research, 188: 116499.
DOI URL |
[3] | AYRAPETYAN M, WILLIAMS T, OLIVER JAMES D, 2018. Relationship between the viable but nonculturable state and antibiotic persister cells[J]. Journal of Bacteriology, 200(20): e00249-00218. |
[4] |
AYRAPETYAN M, WILLIAMS T C, OLIVER J D, 2015. Bridging the gap between viable but non-culturable and antibiotic persistent bacteria[J]. Trends in Microbiology, 23(1): 7-13.
DOI PMID |
[5] |
AYRAPETYAN M, WILLIAMS TIFFANY C, OLIVER JAMES D, 2014. Interspecific Quorum Sensing Mediates the Resuscitation of Viable but Nonculturable Vibrios[J]. Applied and Environmental Microbiology, 80(8): 2478-2483.
DOI PMID |
[6] |
BAO Q H, BO X Y, CHEN L, et al., 2023. Comparative Analysis Using Raman Spectroscopy of the Cellular Constituents of Lacticaseibacillus paracasei Zhang in a Normal and Viable but Nonculturable State[J]. Microorganisms, 11(5): 1266.
DOI URL |
[7] |
BARI S M N, ROKY M K, MOHIUDDIN M, et al., 2013. Quorum-sensing autoinducers resuscitate dormant Vibrio cholerae in environmental water samples[J]. Proceedings of the National Academy of Sciences, 110(24): 9926-9931.
DOI URL |
[8] |
BI S Y, KARGETI M, COLIN R, et al., 2023. Dynamic fluctuations in a bacterial metabolic network[J]. Nature Communications, 14(1): 2173.
DOI PMID |
[9] |
BOARETTI M, DEL MAR LLEò M, BONATO B, et al., 2003. Involvement of RpoS in the survival of Escherichia coli in the viable but non-culturable state[J]. Environmental Microbiology, 5(10): 986-996.
DOI URL |
[10] |
BODOR A, BOUNEDJOUM N, VINCZE G E, et al., 2020. Challenges of unculturable bacteria: Environmental perspectives[J]. Reviews in Environmental Science and Bio/Technology, 19(1): 1-22.
DOI |
[11] |
BOUDREAU M A, FISHER J F, MOBASHERY S, 2012. Messenger functions of the bacterial cell wall-derived muropeptides[J]. Biochemistry, 51(14): 2974-2990.
DOI PMID |
[12] |
CAI Y W, LIU J Y, LI G Y, et al., 2022. Formation mechanisms of viable but nonculturable bacteria through induction by light-based disinfection and their antibiotic resistance gene transfer risk: A review[J]. Critical Reviews in Environmental Science and Technology, 52(20): 3651-3688.
DOI URL |
[13] | CAI Y W, SUN T, LI G Y, et al., 2021. Traditional and Emerging Water Disinfection Technologies Challenging the Control of Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes[J]. ACS ES&T Engineering, 1(7): 1046-1064. |
[14] |
CHEN M, CAI Y W, LI G Y, et al., 2022. The stress response mechanisms of biofilm formation under sub-lethal photocatalysis[J]. Applied Catalysis B: Environmental, 307: 121200.
DOI URL |
[15] |
CHEN S, LI X, WANG Y H, et al., 2018. Induction of Escherichia coli into a VBNC state through chlorination/chloramination and differences in characteristics of the bacterium between states[J]. Water Research, 142: 279-288.
DOI URL |
[16] |
CHEN X F, YIN H L, LI G Y, et al., 2019. Antibiotic-resistance gene transfer in antibiotic-resistance bacteria under different light irradiation: Implications from oxidative stress and gene expression[J]. Water Research, 149: 282-291.
DOI PMID |
[17] |
COHEN-GONSAUD M, BARTHE P, BAGNERIS C, et al., 2005. The structure of a resuscitation-promoting factor domain from Mycobacterium tuberculosis shows homology to lysozymes[J]. Nature Structural & Molecular Biology, 12(3): 270-273.
DOI |
[18] |
DALEBROUX Z D, SVENSSON S L, GAYNOR E C, et al., 2010. ppGpp Conjures Bacterial Virulence[J]. Microbiology and Molecular Biology Reviews, 74(2): 171-199.
DOI PMID |
[19] |
DEBNATH A and MIYOSHI S I, 2021. The Impact of Protease during Recovery from Viable but Non-Culturable (VBNC) State in Vibrio cholerae[J]. Microorganisms, 9(12): 2618.
DOI URL |
[20] |
DEY R, RIEGER A, BANTING G, et al., 2020. Role of amoebae for survival and recovery of ‘non-culturable’ Helicobacter pylori cells in aquatic environments[J]. Fems Microbiology Ecology, 96(10): fiaa182.
DOI URL |
[21] |
DIETERSDORFER E, KIRSCHNER A, SCHRAMMEL B, et al., 2018. Starved viable but non-culturable (VBNC) Legionella strains can infect and replicate in amoebae and human macrophages[J]. Water Research, 141: 428-438.
DOI PMID |
[22] |
DONG K, PAN H X, YANG D, et al., 2020. Induction, detection, formation, and resuscitation of viable but non-culturable state microorganisms[J]. Comprehensive Reviews in Food Science and Food Safety, 19(1): 149-183.
DOI URL |
[23] |
DöRR T, LEWIS K, VULIĆ M, 2009. SOS response induces persistence to fluoroquinolones in Escherichia coli[J]. PLOS Genetics, 5(12): e1000760.
DOI URL |
[24] |
DWORKIN J, SHAH I M, 2010. Exit from dormancy in microbial organisms[J]. Nature Reviews Microbiology, 8(12): 890-896.
DOI PMID |
[25] |
EPSTEIN S S, 2009. Microbial awakenings[J]. Nature, 457(7233): 1083.
DOI |
[26] |
EZRATY B, GENNARIS A, BARRAS F, et al., 2017. Oxidative stress, protein damage and repair in bacteria[J]. Nature Reviews Microbiology, 15(7): 385-396.
DOI PMID |
[27] |
GUO L Z, WAN K, ZHU J W, et al., 2021. Detection and distribution of vbnc/viable pathogenic bacteria in full-scale drinking water treatment plants[J]. Journal of Hazardous Materials, 406: 124335.
DOI URL |
[28] |
GUO L Z, YE C S, CUI L, et al., 2019b. Population and single cell metabolic activity of UV-induced VBNC bacteria determined by CTC-FCM and D2O-labeled Raman spectroscopy[J]. Environment International, 130: 104883.
DOI URL |
[29] |
GUO M T, KONG C, 2019a. Antibiotic resistant bacteria survived from UV disinfection: Safety concerns on genes dissemination[J]. Chemosphere, 224: 827-832.
DOI URL |
[30] |
HAMABATA T, SENOH M, IWAKI M, et al., 2021. Induction and Resuscitation of Viable but Nonculturable Corynebacterium diphtheriae[J]. Microorganisms, 9(5): 927.
DOI URL |
[31] |
HARMS A, BRODERSEN D E, MITARAI N, et al., 2018. Toxins, targets, and triggers: An overview of toxin-antitoxin biology[J]. Molecular Cell, 70(5): 768-784.
DOI PMID |
[32] |
HWANG M G, KATAYAMA H, OHGAKI S, 2006. Effect of intracellular resuscitation of Legionella pneumophila in Acanthamoeba polyphage cells on the antimicrobial properties of silver and copper[J]. Environmental Science & Technology, 40(23): 7434-7439.
DOI URL |
[33] |
IRVING S E, CHOUDHURY N R, CORRIGAN R M, 2021. The stringent response and physiological roles of (pp)pGpp in bacteria[J]. Nature Reviews Microbiology, 19(4): 256-271.
DOI PMID |
[34] |
JäGER T, ALEXANDER J, KIRCHEN S, et al., 2018. Live-dead discrimination analysis, qPCR assessment for opportunistic pathogens, and population analysis at ozone wastewater treatment plants[J]. Environmental Pollution, 232: 571-579.
DOI PMID |
[35] |
JI H, CAI Y, WANG Z, et al., 2022. Sub-lethal photocatalysis promotes horizontal transfer of antibiotic resistance genes by conjugation and transformability[J]. Water Research, 221: 118808.
DOI URL |
[36] |
JIA Y Y, YU C G, FAN J H, et al., 2020. Alterations in the Cell Wall of Rhodococcus biphenylivorans under norfloxacin stress[J]. Frontiers in Microbiology, 11: 554957.
DOI URL |
[37] |
JOELSSON A, KAN B, ZHU J, 2007. Quorum sensing enhances the stress response in vibrio cholerae[J]. Applied and Environmental Microbiology, 73(11): 3742-3746.
PMID |
[38] |
JÕERS A, VIND K, HERNÁNDEZ S B, et al., 2019. Muropeptides Stimulate Growth Resumption from Stationary Phase in Escherichia coli[J]. Scientific Reports, 9(1): 18043.
DOI |
[39] |
KARAOLIA P, MICHAEL-KORDATOU I, HAPESHI E, et al., 2018. Removal of antibiotics, antibiotic-resistant bacteria and their associated genes by graphene-based TiO2 composite photocatalysts under solar radiation in urban wastewaters[J]. Applied Catalysis B: Environmental, 224: 810-824.
DOI URL |
[40] |
KASAHARA K, LEYGEBER M, SEIFFARTH J, et al., 2023. Enabling oxygen-controlled microfluidic cultures for spatiotemporal microbial single-cell analysis[J]. Frontiers in Microbiology, 14: 1198170.
DOI URL |
[41] |
KEEP N H, WARD J M, COHEN-GONSAUD M, et al., 2006. Wake up! Peptidoglycan lysis and bacterial non-growth states[J]. Trends in Microbiology, 14(6): 271-276.
DOI PMID |
[42] |
KONG I-S, BATES T C, HüLSMANN A, et al., 2004. Role of catalase and OxyR in the viable but nonculturable state of Vibrio vulnificus[J]. Fems Microbiology Ecology, 50(3): 133-142.
DOI URL |
[43] |
LEE T H, KANG T H, 2019. DNA oxidation and excision repair pathways[J]. International Journal of Molecular Sciences, 20(23): 6092.
DOI URL |
[44] |
LI G Y, CHEN X F, YIN H L, et al., 2020. Natural sphalerite nanoparticles can accelerate horizontal transfer of plasmid-mediated antibiotic-resistance genes[J]. Environment International, 136: 105497.
DOI URL |
[45] |
LI Y, CHEN J, ZHAO M, et al., 2017. Promoting resuscitation of viable but nonculturable cells of Vibrio harveyi by a resuscitation-promoting factor-like protein YeaZ[J]. Journal of Applied Microbiology, 122(2): 338-346.
DOI PMID |
[46] | LIAO X Y, LIU D H, DING T, 2020. Nonthermal plasma induces the viable-but-nonculturable state in staphylococcus aureus via metabolic suppression and the oxidative stress response[J]. Applied and Environmental Microbiology, 86(5): e02216-02219. |
[47] |
LIN H, YE C, CHEN S, et al., 2017. Viable but non-culturable E. coli induced by low level chlorination have higher persistence to antibiotics than their culturable counterparts[J]. Environmental Pollution, 230: 242-249.
DOI URL |
[48] |
LIU W, XU Y, SLAVEYKOVA V I, 2023. Oxidative stress induced by sub-lethal exposure to copper as a mediator in development of bacterial resistance to antibiotics[J]. Science of The Total Environment, 860: 160516.
DOI URL |
[49] |
LIU Y J, CAI Y W, LI G Y, et al., 2022. Response mechanisms of different antibiotic-resistant bacteria with different resistance action targets to the stress from photocatalytic oxidation[J]. Water Research, 218: 118407.
DOI URL |
[50] |
LIU Y M, WANG C A, TYRRELL G, et al., 2009. Induction of Escherichia coli O157:H 7 into the viable but non-culturable state by chloraminated water and river water, and subsequent resuscitation[J]. Environmental Microbiology Reports, 1(2): 155-161.
DOI URL |
[51] |
MASMOUDI S, DENIS M, MAALEJ S, 2010. Inactivation of the gene katA or sodA affects the transient entry into the viable but non-culturable response of Staphylococcus aureus in natural seawater at low temperature[J]. Marine Pollution Bulletin, 60(12): 2209-2214.
DOI PMID |
[52] |
MUKAMOLOVA G V, MURZIN A G, SALINA E G, et al., 2006. Muralytic activity of Micrococcus luteus Rpf and its relationship to physiological activity in promoting bacterial growth and resuscitation[J]. Molecular Microbiology, 59(1): 84-98.
DOI PMID |
[53] |
NICHOLS D, CAHOON N, TRAKHTENBERG E M, et al., 2010. Use of Ichip for high-throughput in situ cultivation of “uncultivable” microbial species[J]. Applied and Environmental Microbiology, 76(8): 2445-2450.
DOI URL |
[54] |
OLIVER J D, BOCKIAN R, 1995b. In vivo resuscitation, and virulence towards mice, of viable but nonculturable cells of Vibrio vulnificus[J]. Applied and Environmental Microbiology, 61(7): 2620-2623.
DOI URL |
[55] | OLIVER J D, 2005. The viable but nonculturable state in bacteria[J]. Journal of Microbiology, 43: 93-100. |
[56] |
OLIVER J D, HITE F, MCDOUGALD D, et al., 1995a. Entry into, and resuscitation from, the viable but nonculturable state by Vibrio vulnificus in an estuarine environment[J]. Applied and Environmental Microbiology, 61(7): 2624-2630.
DOI URL |
[57] |
PAN H X, REN Q, 2023. Wake Up! Resuscitation of Viable but Nonculturable Bacteria: Mechanism and Potential Application[J]. Foods, 12(1): 82.
DOI URL |
[58] |
PINTO D, ALMEIDA V, ALMEIDA SANTOS M, et al., 2011. Resuscitation of Escherichia coli VBNC cells depends on a variety of environmental or chemical stimuli[J]. Journal of Applied Microbiology, 110(6): 1601-1611.
DOI URL |
[59] |
PINTO D, SANTOS M A, CHAMBEL L, 2015. Thirty years of viable but nonculturable state research: Unsolved molecular mechanisms[J]. Critical Reviews In Microbiology, 41(1): 61-76.
DOI PMID |
[60] |
PU Y Y, LI Y X, JIN X, et al., 2019. ATP-Dependent Dynamic Protein Aggregation Regulates Bacterial Dormancy Depth Critical for Antibiotic Tolerance[J]. Molecular Cell, 73(1): 143-156.
DOI PMID |
[61] |
QI Z L, LI G Y, WANG M, et al., 2022. Photoelectrocatalytic inactivation mechanism of E. coli DH5α (TET) and synergistic degradation of corresponding antibiotics in water[J]. Water Research, 215: 118240.
DOI URL |
[62] |
RAMAMURTHY T, GHOSH A, PAZHANI G P, et al., 2014. Current perspectives on viable but non-culturable (VBNC) pathogenic bacteria[J]. Frontiers in Public Health, 2: 103.
DOI PMID |
[63] |
RAO N V, SHASHIDHAR R, BANDEKAR J R, 2014. Induction, resuscitation and quantitative real-time polymerase chain reaction analyses of viable but nonculturable Vibrio vulnificus in artificial sea water[J]. World Journal of Microbiology and Biotechnology, 30(8): 2205-2212.
DOI URL |
[64] | RITTERSHAUS E S C, BAEK S H, SASSETTI C M, 2013. The Normalcy of Dormancy: Common Themes in Microbial Quiescence[J]. Cell Host & Microbe, 13(6): 643-651. |
[65] |
SEXTON D L, ST-ONGE R J, HAISER H J, et al., 2015. Resuscitation-Promoting Factors Are Cell Wall-Lytic Enzymes with Important Roles in the germination and growth of streptomyces coelicolor[J]. Journal of Bacteriology, 197(5): 848-860.
DOI PMID |
[66] |
SOUSA J M, MACEDO G, PEDROSA M, et al., 2017. Ozonation and UV254nm radiation for the removal of microorganisms and antibiotic resistance genes from urban wastewater[J]. Journal of Hazardous Materials, 323(Part A): 434-441.
DOI URL |
[67] |
SU X M, SHEN H, YAO X Y, et al., 2013. A novel approach to stimulate the biphenyl-degrading potential of bacterial community from PCBs-contaminated soil of e-waste recycling sites[J]. Bioresource Technology, 146: 27-34.
DOI PMID |
[68] | SUN H W, LI G Y, AN T C, 2017. Advances in Photocatalytic Disinfection[M]. Berlin, Heidelberg: Springer Berlin Heidelberg: 259-272. |
[69] |
SUSS J, VOLZ S, OBST U, et al., 2009. Application of a molecular biology concept for the detection of DNA damage and repair during UV disinfection[J]. Water Research, 43(15): 3705-3716.
DOI PMID |
[70] |
TREFELY S, LIU J, HUBER K, et al., 2019. Subcellular metabolic pathway kinetics are revealed by correcting for artifactual post harvest metabolism[J]. Molecular Metabolism, 30: 61-71.
DOI PMID |
[71] | VALASTYAN JULIE S, KRAML CHRISTINA M, PELCZER I, et al., 2021. Saccharomyces cerevisiae Requires CFF1 To Produce 4-Hydroxy-5-Methylfuran-3(2H)-One, a Mimic of the Bacterial Quorum-Sensing Autoinducer AI-2[J]. mBio, 12(2): e03303-03320. |
[72] | VILHENA C, KAGANOVITCH E, GRUNBERGER A, et al., 2019. Importance of pyruvate sensing and transport for the resuscitation of viable but nonculturable Escherichia coli K-12 Claudia[J]. Journal of Bacteriology, 201(3): e00610-00618. |
[73] |
WANG B Y, DAI P, DING D, et al., 2019. Affinity-based capture and identification of protein effectors of the growth regulator ppGpp[J]. Nature Chemical Biology, 15(2): 141-150.
DOI PMID |
[74] |
WANG F Y, FU Y L, LIN Z H, et al., 2023a. Neglected Drivers of Antibiotic Resistance: Survival of Extended-Spectrum β-Lactamase-Producing Pathogenic Escherichia coli from Livestock Waste through Dormancy and Release of Transformable Extracellular Antibiotic Resistance Genes under Heat Treatment[J]. Environmental Science & Technology, 57(27): 9955-9964.
DOI URL |
[75] |
WANG R H, YIN Y D, LI J S, et al., 2022. Global stable-isotope tracing metabolomics reveals system-wide metabolic alternations in aging Drosophila[J]. Nature Communications, 13(1): 3518.
DOI PMID |
[76] |
WANG X, WANG J, LIU S Y, et al., 2023b. Mechanisms of survival mediated by the stringent response in Pseudomonas aeruginosa under environmental stress in drinking water systems: Nitrogen deficiency and bacterial competition[J]. Journal of Hazardous Materials, 448: 130941.
DOI URL |
[77] |
WANG Y, CHEN Z H, ZHAO F N, et al., 2023c. Metabolome shifts triggered by chlorine sanitisation induce Escherichia coli on fresh produce into the viable but nonculturable state[J]. Food Research International, 171: 113084.
DOI URL |
[78] |
WANG Y, CLAEYS L, VAN DER HA D, et al., 2010. Effects of chemically and electrochemically dosed chlorine on Escherichia coli and Legionella beliardensis assessed by flow cytometry[J]. Applied Microbiology and Biotechnology, 87(1): 331-341.
DOI URL |
[79] |
WEI C J, ZHAO X H, 2018. Induction of Viable but Nonculturable Escherichia coli O157:H7 by Low Temperature and Its Resuscitation[J]. Frontiers in Microbiology, 9: 2728.
DOI URL |
[80] | YANG D, ZHANG Y, ZHAO L, et al., 2021. Pressure-resistant acclimation of lactic acid bacteria from a natural fermentation product using high pressure[J]. Innovative Food Science & Emerging Technologies, 69: 102660. |
[81] |
YANG D, ZHAO L, RAO L, et al., 2023. Effect of preliminary stresses on the induction of viable but non-culturable Escherichia coli O157:H7 NCTC 12900 and Staphylococcus aureus ATCC 6538[J]. Food Research International, 167(5): 112710.
DOI URL |
[82] | YE Z, LI H X, JIA Y Y, et al., 2020. Supplementing resuscitation-promoting factor (Rpf) enhanced biodegradation of polychlorinated biphenyls (PCBs) by Rhodococcus biphenylivorans strain TG9T[J]. Environmental Pollution, 263(Par A): 114488. |
[83] |
YIN H L, CAI Y W, LI G Y, et al., 2022. Persistence and environmental geochemistry transformation of antibiotic-resistance bacteria/genes in water at the interface of natural minerals with light irradiation[J]. Critical Reviews in Environmental Science and Technology, 52(13): 2270-2301.
DOI URL |
[84] |
YIN H L, CHEN X F, LI G Y, et al., 2019. Sub-lethal photocatalysis bactericidal technology cause longer persistence of antibiotic-resistance mutant and plasmid through the mechanism of reduced fitness cost[J]. Applied Catalysis B: Environmental, 245: 698-705.
DOI URL |
[85] |
YIN H L, CHEN X F, LI G Y, et al., 2021. Can photocatalytic technology facilitate conjugative transfer of ARGs in bacteria at the interface of natural sphalerite under different light irradiation?[J]. Applied Catalysis B-Environmental, 287: 119977.
DOI URL |
[86] |
YIN H L, LI G Y, CHEN X F, et al., 2020. Accelerated evolution of bacterial antibiotic resistance through early emerged stress responses driven by photocatalytic oxidation[J]. Applied Catalysis B: Environmental, 269: 118829.
DOI URL |
[87] |
YOON H K, PARK S Y, KIM C G, 2021. Comparison of the bacterial viability assessments for the disinfected quarantined water along with an effect of total residual oxidants[J]. Environmental Monitoring and Assessment, 193(12): 782.
DOI PMID |
[88] |
ZHANG J F, WANG L, SHI L, et al., 2020. Survival strategy of Cronobacter sakazakii against ampicillin pressure: Induction of the viable but nonculturable state[J]. International Journal of Food Microbiology, 334: 108819.
DOI URL |
[89] |
ZHANG S H, GUO L Z, YANG K, et al., 2018. Induction of Escherichia coli into a vbnc state by continuous-flow UVC and subsequent changes in metabolic activity at the single-cell level[J]. Frontiers in Microbiology, 9: 2243.
DOI URL |
[90] |
ZHANG S H, YE C S, LIN H R, et al., 2015. UV Disinfection Induces a Vbnc State in Escherichia coli and Pseudomonas aeruginosa[J]. Environmental Science & Technology, 49(3): 1721-1728.
DOI URL |
[91] |
ZHAO X L, DRLICA K, 2014. Reactive oxygen species and the bacterial response to lethal stress[J]. Current Opinion in Microbiology, 21: 1-6.
DOI PMID |
[92] |
ZHONG D, ZHOU Z Y, MA W C, et al., 2022. Antibiotic enhances the spread of antibiotic resistance among chlorine-resistant bacteria in drinking water distribution system[J]. Environmental Research, 211: 113045.
DOI URL |
[93] | ZHU L, SHUAI X Y, XU L K, et al., 2022. Mechanisms underlying the effect of chlorination and UV disinfection on VBNC state Escherichia coli isolated from hospital wastewater[J]. Journal of Hazardous Materials, 423(Part B): 127228. |
[94] |
陈蕾, George (Zhi) ZHOU, 2018. 污水中抗生素抗性菌及抗性基因的去除技术[J]. 生态环境学报, 27(11): 2163-2169.
DOI |
CHEN L, George (Zhi) ZHOU, 2018. Removal techniques of antibiotic resistant bacteria and resistant genes in sewage[J]. Ecology and Environmental Sciences, 27(11): 2163-2169. | |
[95] |
阳海, 安太成, 李桂英, 等, 2010. 光催化技术降解水中环境药物的研究进展[J]. 生态环境学报, 19(4): 991-999.
DOI |
YANG H, AN T C, LI G Y, et al., 2010. Recent advances in photocatalytic degradation of aquatic environmental pharmaceuticals[J]. Ecology and Environmental Sciences, 19(4): 991-999. |
[1] | 赵海英, 刘致远, 袁梦仙, 张卿雯, 张琼, 曹际玲. 纳米银对玉米幼苗傅里叶红外光谱特性的影响[J]. 生态环境学报, 2023, 32(7): 1285-1292. |
[2] | 李振国, 郝星雨, 贺甜莲, 景蕊, 荣成, 顾承真, 郑新宇. 竹醋液对紫苏镉毒的缓解效应研究[J]. 生态环境学报, 2023, 32(7): 1313-1324. |
[3] | 王敬, 孟珂, 陈璇, 章家恩, 向慧敏, 钟嘉文, 石兆基. 酸雨对生菜和上海青的产量、品质及生理特性的影响[J]. 生态环境学报, 2023, 32(6): 1098-1107. |
[4] | 黄英梅, 钟松雄, 朱忆雯, 王向琴, 李芳柏. 单质硫抑制水稻植株甲基汞累积的效应与机制[J]. 生态环境学报, 2023, 32(6): 1115-1122. |
[5] | 姜永伟, 丁振军, 袁俊斌, 张峥, 李杨, 问青春, 王业耀, 金小伟. 辽宁省主要河流底栖动物群落结构及水质评价研究[J]. 生态环境学报, 2023, 32(5): 969-979. |
[6] | 杨凯, 杨靖睿, 曹培培, 吕春华, 孙文娟, 于凌飞, 邓希. CO2浓度升高下水稻株高、茎蘖与SPAD动态响应及其模拟[J]. 生态环境学报, 2023, 32(5): 933-942. |
[7] | 朱永乐, 汤家喜, 谭婷, 李玉, 向彪. 氟化工园区周边玉米中全氟/多氟化合物的污染特征[J]. 生态环境学报, 2023, 32(5): 1001-1006. |
[8] | 赵良侠, 高坤, 黄婷婷, 高也, 琚唐丹, 蒋秋阳, 金珩, 熊蕾, 汤在琳, 高灿红. 玉米籽粒高/低镉积累自交系不同生育期的镉累积特性研究[J]. 生态环境学报, 2023, 32(4): 766-775. |
[9] | 阳涅, 孙晓旭, 孔天乐, 孙蔚旻, 陈泉源, 高品. 微生物群落对河流底泥中锑含量变化的响应[J]. 生态环境学报, 2023, 32(3): 609-618. |
[10] | 崔远远, 张征云, 刘鹏, 张运春, 张桥英. 镉与聚乙烯微塑料胁迫对小白菜根系的形态特征和分形维数的影响[J]. 生态环境学报, 2023, 32(1): 158-165. |
[11] | 任珺, 潘佳璇, 陶玲, 仝云龙, 王若安, 孙新妮. 氢氧化钠改性坡缕石对Cd污染土壤的钝化修复效果[J]. 生态环境学报, 2022, 31(12): 2422-2430. |
[12] | 陈赋秋雪, 唐思琪, 袁昊, 马子轩, 陈坦, 杨婷, 张冰, 刘颖. 聚苯乙烯微塑料对典型农作物种子发芽和幼苗生长的影响[J]. 生态环境学报, 2022, 31(12): 2382-2392. |
[13] | 郭丽芳, 杨瑞, 孙蔚旻. 尾矿固氮菌的分离筛选及其植物促生效应研究[J]. 生态环境学报, 2022, 31(11): 2180-2188. |
[14] | 周椿富, 于锐, 王翔, 闯绍闯, 杨洪杏, 谢越. 抗生素对不同土壤中酶活性的影响[J]. 生态环境学报, 2022, 31(11): 2234-2241. |
[15] | 辛未冬, 杜一丹, 刘华煜, 杨轶萌, 赵浩志, 杨丹. 地表节肢动物多样性对煤矸石山不同植被恢复方式的响应及生物指示作用[J]. 生态环境学报, 2022, 31(10): 2079-2088. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||