[1] |
AMIT K, SHARMA M, RAI S, 2017. A novel approach for river health assessment of Chambal using fuzzy modeling, India[J]. Desalination Water Treatment, 58: 72-79.
DOI
URL
|
[2] |
BEAULIEU J J, DELSONTRO T, DOWNING J A, 2019. Eutrophication will increase methane emissions from lakes and impoundments during the 21st century[J]. Nature Communications, 10(1): 1-5.
DOI
|
[3] |
CHEN X F, JIANG H Y, SUN X, et al., 2016. Nitrification and denitrification by algae-attached and free-living microorganisms during a cyanobacterial bloom in Lake Taihu, a shallow Eutrophic Lake in China[J]. Biogeochemistry, 131(1): 135-146.
DOI
URL
|
[4] |
DELSONTRO T, BEAULIEU J J, DOWNING J A, 2018. Greenhouse gas emissions from lakes and impoundments: Upscaling in the face of global change[J]. Limnology Oceanography Letters, 3(3): 64-75.
DOI
URL
|
[5] |
ENCINAS FERNÁNDEZ J, PEETERS F, HOFMANN H, 2014. Importance of the autumn overturn and anoxic conditions in the hypolimnion for the annual methane emissions from a temperate lake[J]. Environmental Science & Technology, 48(13): 7297-7304.
DOI
URL
|
[6] |
FRUMIN G, GILDEEVA I, 2014. Eutrophication of water bodies-A global environmental problem[J]. Russian Journal of General Chemistry, 84(13): 2483-2488.
DOI
URL
|
[7] |
GELESH L, MARSHALL K, BOICOURT W, et al., 2016. Methane concentrations increase in bottom waters during summertime anoxia in the highly eutrophic estuary, Chesapeake Bay, USA[J]. Limnology Oceanography, 61(S1): S253-S266.
DOI
URL
|
[8] |
LAHN B, 2021. Changing climate change: The carbon budget and the modifying-work of the IPCC[J]. Social studies of Science, 51(1): 3-27.
DOI
URL
|
[9] |
LAUERWALD R, REGNIER P, FIGUEIREDO V, et al., 2019. Natural lakes are a minor global source of N2O to the atmosphere[J]. Global Biogeochemical Cycles, 33(12): 1564-1581.
DOI
|
[10] |
LI Y, SHANG J, ZHANG C, et al., 2021. The role of freshwater eutrophication in greenhouse gas emissions: A review[J]. Science of The Total Environment, 768: 144582.
DOI
URL
|
[11] |
MORALES-WILLIAMS A M, WANAMAKER A D, WILLIAMS C J, et al., 2021. Eutrophication drives extreme seasonal CO2 flux in lake ecosystems[J]. Ecosystems, 24(2): 434-450.
DOI
|
[12] |
NGUYEN M-L, WESTERHOFF P, BAKER L, et al., 2005. Characteristics and reactivity of algae-produced dissolved organic carbon[J]. Journal of Environmental Engineering, 131(11): 1574-1582.
DOI
URL
|
[13] |
PADISÁK J, REYNOLDS C S, 1998. Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to the cyanoprokaryotes[J]. Hydrobiologia, 384(1): 41-53.
DOI
URL
|
[14] |
RINGUET S, SASSANO L, JOHNSON Z I, 2011. A suite of microplate reader-based colorimetric methods to quantify ammonium, nitrate, orthophosphate and silicate concentrations for aquatic nutrient monitoring[J]. Journal of Environmental Monitoring, 13(2): 370-376.
DOI
PMID
|
[15] |
SASAKI Y, KOBA K, YAMAMOTO M, et al., 2011. Biogeochemistry of nitrous oxide in Lake Kizaki, Japan, elucidated by nitrous oxide isotopomer analysis[J]. Journal of Geophysical Research: Biogeosciences, 116(G4): G04030.
|
[16] |
SHI W Q, PAN G, CHEN Q W, et al., 2018. Hypoxia remediation and methane emission manipulation using surface oxygen nanobubbles[J]. Environmental Science & Technology, 52(15): 8712-8717.
DOI
URL
|
[17] |
WANG H J, LU J W, WANG W D, et al., 2006. Methane fluxes from the littoral zone of hypereutrophic Taihu Lake, China[J]. Journal of Geophysical Research: Atmospheres, 111(D17): D17109.
DOI
URL
|
[18] |
WEST W E, CREAMER K P, JONES S E, 2016. Productivity and depth regulate lake contributions to atmospheric methane[J]. Limnology Oceanography, 61(S1): S51-S61.
DOI
URL
|
[19] |
YAN X C, XU X G, JI M, et al., 2019. Cyanobacteria blooms: a neglected facilitator of CH4 production in eutrophic lakes[J]. Science of the Total Environment, 651: 466-474.
DOI
URL
|
[20] |
YAN X C, XU X G, WANG M Y, et al., 2017. Climate warming and cyanobacteria blooms: Looks at their relationships from a new perspective[J]. Water Research, 125: 449-457.
DOI
PMID
|
[21] |
YIN H B, YUN Y, ZHANG Y L, et al., 2011. Phosphate removal from wastewaters by a naturally occurring, calcium-rich sepiolite[J]. Journal of Hazardous Materials, 198: 362-369.
DOI
PMID
|
[22] |
陈超, 钟继承, 范成新, 等, 2013. 湖泊疏浚方式对内源释放影响的模拟研究[J]. 环境科学, 34(10): 3872-3878.
|
|
CHEN C, ZHONG J C, FAN C X, et al., 2013. Simulation research on the release of internal nutrients affected by different dredging methods in lake[J]. Environmental Science, 34(10): 3872-3878.
|
[23] |
崔键, 杜易, 丁程成, 等, 2022. 中国湖泊水体磷的赋存形态及污染治理措施进展[J]. 生态环境学报, 31(3): 621-633.
DOI
|
|
CUI J, DU Y, DING C C, et al., 2022. Phosphorus fraction and abatement of lakes in China: A review[J]. Ecology and Environmental Sciences, 31(3): 621-633.
|
[24] |
国家环境保护总局《水和废水监测分析方法》编委会, 2002. 水和废水监测分析方法[M]. 第4版. 国家环境科学出版社: 243-255.
|
|
State environmental protection administration of the water and wastewater monitoring analysis method editorial committee, 2002. Water and wastewater monitoring analysis method[M]. 4th edition. The National Environmental Sciences Press: 243-255
|
[25] |
邵路路, 陆开宏, 2013. 原位应急处理水源地蓝藻水华的物理技术研究及展望[J]. 上海环境科学, 32(4): 160-165.
|
|
SHAO L L, LU K H, 2013. Research and outlook on physical methods in situ for emergencydisposal of cyanobacteria bloom in source water areas[J]. Shanghai Environmental Sciences, 32(4): 160-165.
|
[26] |
吴锋, 战金艳, 邓祥征, 等, 2012. 中国湖泊富营养化影响因素研究——基于中国22个湖泊实证分析[J]. 生态环境学报, 21(1): 94-100.
DOI
|
|
WU F, ZHAN J Y, DENG X Z, et al., 2012. Influencing factors of lake eutrophication in China: A case study in 22 lakes in China[J]. Ecology and Environment Sciences, 21(1): 94-100.
DOI
|
[27] |
杨柳燕, 杨欣妍, 任丽曼, 等, 2019. 太湖蓝藻水华暴发机制与控制对策[J]. 湖泊科学, 31(1): 18-27.
|
|
YANG L Y, YANG X Y, REN L M, et al., 2019. Mechanism and control strategy of cyanobacterial bloom in Lake Taihu[J]. Journal of Lake Sciences, 31(1): 18-27.
DOI
URL
|
[28] |
张迎颖, 严少华, 刘海琴, 等, 2017. 富营养化水体生态修复技术中凤眼莲与磷素的互作机制[J]. 生态环境学报, 26(4): 721-728.
|
|
ZHANG Y Y, YAN S H, LIU H Q, et al., 2017. Mechanism of interaction between Eichhornia crassipes and phosphorus in ecological-remediation technology of eutrophic water[J]. Ecology and Environment Sciences, 26(4): 721-728.
|
[29] |
周笑白, 张宁红, 张咏, 等, 2013. 太湖蓝藻的时空变化规律及治理方法[J]. 生态环境学报, 22(12): 1930-1935.
|
|
ZHOU X B, ZHANG N H, ZHANG Y, et al., 2013. The Temporal and spatial distribution pattern of cyanobacteria and its control method in Taihu Lake[J]. Ecology and Environment Sciences, 22(12): 1930-1935.
|
[30] |
朱俊羽, 彭凯, 李宇阳, 等, 2022. 南水北调东线枢纽湖泊表层水体甲烷释放特征及潜在影响因素[J]. 环境科学, 43(4): 1958-1965.
|
|
ZHU J Y, PENG K, LI Y Y, et al., 2022. Emission of methane from a key lake in the eastern route of the south-to-northwater transfer project and the corresponding driving factors[J]. Environmental Science, 43(4): 1958-1965.
|