生态环境学报 ›› 2022, Vol. 31 ›› Issue (4): 759-770.DOI: 10.16258/j.cnki.1674-5906.2022.04.014
张苗苗1,2(), 陈书涛1,2,*(
), 丁司丞2, 王瑾2, 章堃2
收稿日期:
2021-11-08
出版日期:
2022-04-18
发布日期:
2022-06-22
通讯作者:
*陈书涛,E-mail: chenstyf@aliyun.com作者简介:
张苗苗(1997年生),女,硕士研究生,主要研究方向为环境微生物学与气候变化。E-mail: 18753882194@163.com
基金资助:
ZHANG Miaomiao1,2(), CHEN Shutao1,2,*(
), DING Sicheng2, WANG Jin2, ZHANG Kun2
Received:
2021-11-08
Online:
2022-04-18
Published:
2022-06-22
摘要:
为研究增温及秸秆施用对农田土壤真菌群落组成及多样性的影响,设置随机区组田间试验,试验包括对照(CK)、增温(WA)、秸秆施用(SA)、增温及秸秆施用(WS)4个处理,采用高通量测序研究大豆 (Glycine max L.)-冬小麦 (Triticum aestivum L.) 轮作农田土壤真菌门、纲、目水平上的组成及α、β多样性。结果表明,在门水平上,大豆田相对丰度最高的土壤真菌门包括子囊菌门(Ascomycota)、担子菌门(Basidiomycota)、接合菌门(Zygomycota)等,WA处理子囊菌门相对丰度显著低于CK(P=0.023)及SA(P=0.007)处理,且与WS处理存在边缘显著差异(P=0.063)。在纲水平上,增温减少了相对丰度最高的粪壳菌纲(Sordariomycetes)相对丰度,但秸秆施用抵消了增温的这种效应。在目水平上,大豆田相对丰度最高的土壤真菌目为肉座菌目(Hypocreales)。冬小麦田相对丰度最高的真菌门、纲与大豆田相同。冬小麦田CK与WS处理子囊菌门相对丰度之间存在显著差异(P=0.047),各处理粪壳菌纲、肉座菌目相对丰度之间无显著差异(P>0.10)。大豆田WA处理的真菌物种数显著(P=0.012)小于WS处理,大豆田WA处理Shannon指数和Simpson指数均最小。冬小麦田CK与SA处理物种数(P=0.087)、Chao1指数(P=0.088)均存在边缘显著差异。秸秆施用增加了冬小麦田真菌物种数并使α多样性增大。大豆田土壤真菌门、纲、目水平上存在差异的类群明显比冬小麦田多,说明大豆田某些真菌类群受增温及秸秆施用处理的影响相对更大。大豆田土壤真菌比冬小麦田具有更大的α多样性,其物种数和Chao1指数远大于冬小麦田,且具有更大的Shannon指数和Simpson指数;大豆田土壤真菌β多样性(加权单比例距离)总体上大于冬小麦田,前者不同处理之间的物种差异性相对更大。大豆田的自然固氮能力为真菌类群的多样性提供了条件,其中的某些类群更易受增温及秸秆施用影响。
中图分类号:
张苗苗, 陈书涛, 丁司丞, 王瑾, 章堃. 增温及秸秆施用对大豆-冬小麦轮作农田土壤真菌群落组成及多样性的影响[J]. 生态环境学报, 2022, 31(4): 759-770.
ZHANG Miaomiao, CHEN Shutao, DING Sicheng, WANG Jin, ZHANG Kun. Effects of Warming and Straw Application on the Composition and Diversity of Soil Fungal Community in A Soybean-winter Wheat Rotation Crop Field[J]. Ecology and Environment, 2022, 31(4): 759-770.
图1 增温及秸秆施用对大豆田土壤真菌门、纲、目相对丰度的影响
Figure 1 Effects of warming and straw application on the relative abundance of soil fungi at the phylum, class and order levels in the soybean crop field
分类水平 Classification levels | 真菌类群 Fungal groups | CK | WA | SA | WS |
---|---|---|---|---|---|
门 Phylum | 子囊菌门 Ascomycota | 52.0±11.1 (a) | 27.2±1.3 (bM) | 58.7±1.0 (a) | 46.2±5.3 (abM) |
接合菌门 Zygomycota | 4.4±1.5 (b) | 4.0±0.9 (b) | 7.5±1.2 (ab) | 9.0±1.9 (a) | |
壶菌门 Chytridiomycota | 0.8±0.3 (a) | 0.5±0.1 a(M) | 0.7±0.3 (a) | 1.3±0.2 (aM) | |
球囊菌门 Glomeromycota | 1.0±0.3 (a) | 0.4±0.1 (b) | 0.9±0.2 (a) | 0.5±0.1 (ab) | |
绿藻门 Chlorophyta | 0.8±0.1 (a) | 0.3±0.1 (b) | 0.2±0.0 (b) | 0.2±0.0 (b) | |
丝足虫门 Cercozoa | 0.4±0.1 (abM) | 0.2±0.1 (bM) | 0.6±0.0 (a) | 0.5±0.1 (a) | |
其他 Others | 19.0±2.8 (b) | 50.2±8.6 (a) | 19.0±1.4 (b) | 25.7±3.4 (b) | |
纲 Class | 粪壳菌纲 Sordariomycetes | 30.4±8.2 (a) | 14.0±0.7 (b) | 21.5±0.6 (ab) | 22.1±2.7 (ab) |
散囊菌纲 Eurotiomycetes | 4.4±1.3 (c) | 5.0±0.9 (c) | 20.8±2.8 (a) | 14.0±2.6 (b) | |
座囊菌纲 Dothideomycetes | 10.0±4.0 (aMN) | 3.3±0.5 (aM) | 4.4±1.1 (a) | 3.2±1.2 (aN) | |
毛霉菌亚门未定名纲 Mucoromycotina_cls_Incertae_sedis | 0.6±0.2 (b) | 1.3±0.5 (ab) | 1.9±1.1 (ab) | 3.5±1.2 (a) | |
其他 Others | 32.2±5.8 (b) | 57.9±7.7 (a) | 34.3±3.6 (b) | 36.9±3.2 (b) | |
目 Order | 散囊菌目 Eurotiales | 1.4±0.4 (b) | 1.7±0.4 (b) | 17.8±3.7 (aM) | 11.8±2.5 (aM) |
格孢腔菌目 Pleosporales | 5.3±1.9 (aMN) | 1.8±0.2 (aM) | 3.0±1.0 (a) | 1.8±0.3 (aN) | |
煤炱目 Capnodiales | 4.3±2.0 (a) | 0.9±0.2 (b) | 1.0±0.6 (b) | 1.0±0.2 (b) | |
其他 Others | 45.1±10.9 (b) | 74.3±2.0 (aM) | 46.8±5.7 (b) | 55.5±4.8 (abM) |
表1 大豆田存在显著差异的真菌门、纲、目相对丰度
Table 1 Relative abundance of soil fungi at the phylum, class and order levels in the soybean crop field %
分类水平 Classification levels | 真菌类群 Fungal groups | CK | WA | SA | WS |
---|---|---|---|---|---|
门 Phylum | 子囊菌门 Ascomycota | 52.0±11.1 (a) | 27.2±1.3 (bM) | 58.7±1.0 (a) | 46.2±5.3 (abM) |
接合菌门 Zygomycota | 4.4±1.5 (b) | 4.0±0.9 (b) | 7.5±1.2 (ab) | 9.0±1.9 (a) | |
壶菌门 Chytridiomycota | 0.8±0.3 (a) | 0.5±0.1 a(M) | 0.7±0.3 (a) | 1.3±0.2 (aM) | |
球囊菌门 Glomeromycota | 1.0±0.3 (a) | 0.4±0.1 (b) | 0.9±0.2 (a) | 0.5±0.1 (ab) | |
绿藻门 Chlorophyta | 0.8±0.1 (a) | 0.3±0.1 (b) | 0.2±0.0 (b) | 0.2±0.0 (b) | |
丝足虫门 Cercozoa | 0.4±0.1 (abM) | 0.2±0.1 (bM) | 0.6±0.0 (a) | 0.5±0.1 (a) | |
其他 Others | 19.0±2.8 (b) | 50.2±8.6 (a) | 19.0±1.4 (b) | 25.7±3.4 (b) | |
纲 Class | 粪壳菌纲 Sordariomycetes | 30.4±8.2 (a) | 14.0±0.7 (b) | 21.5±0.6 (ab) | 22.1±2.7 (ab) |
散囊菌纲 Eurotiomycetes | 4.4±1.3 (c) | 5.0±0.9 (c) | 20.8±2.8 (a) | 14.0±2.6 (b) | |
座囊菌纲 Dothideomycetes | 10.0±4.0 (aMN) | 3.3±0.5 (aM) | 4.4±1.1 (a) | 3.2±1.2 (aN) | |
毛霉菌亚门未定名纲 Mucoromycotina_cls_Incertae_sedis | 0.6±0.2 (b) | 1.3±0.5 (ab) | 1.9±1.1 (ab) | 3.5±1.2 (a) | |
其他 Others | 32.2±5.8 (b) | 57.9±7.7 (a) | 34.3±3.6 (b) | 36.9±3.2 (b) | |
目 Order | 散囊菌目 Eurotiales | 1.4±0.4 (b) | 1.7±0.4 (b) | 17.8±3.7 (aM) | 11.8±2.5 (aM) |
格孢腔菌目 Pleosporales | 5.3±1.9 (aMN) | 1.8±0.2 (aM) | 3.0±1.0 (a) | 1.8±0.3 (aN) | |
煤炱目 Capnodiales | 4.3±2.0 (a) | 0.9±0.2 (b) | 1.0±0.6 (b) | 1.0±0.2 (b) | |
其他 Others | 45.1±10.9 (b) | 74.3±2.0 (aM) | 46.8±5.7 (b) | 55.5±4.8 (abM) |
图2 增温及秸秆施用对冬小麦田土壤真菌门、纲、目相对丰度的影响
Figure 2 Effects of warming and straw application on the relative abundance of soil fungi at the phylum, class and order levels in the winter wheat crop field
分类水平 Classification levels | 真菌类群 Fungal groups | CK | WA | SA | WS |
---|---|---|---|---|---|
门 Phylum | 油壶菌门 Olpidiomycota | 0.7±0.2 (aM) | 0.3±0.2 (abM) | 0.2±0.1 (b) | 0.2±0.1 (b) |
球囊菌门 Glomeromycota | 0.0±0.0 (b) | 0.10±0.0 (a) | 0.0±0.0 (b) | 0.0±0.0 (b) | |
其他 Others | 19.2±2.8 (b) | 22.3±2.2 (ab) | 23.0±2.1 (ab) | 30.5±5.1 (a) | |
纲 Class | 油壶菌纲 Olpidiomycetes | 0.7±0.1 (a) | 0.3±0.2 (ab) | 0.2±0.1 (b) | 0.2±0.1 (b) |
其他 Others | 33.0±3.3 (aM) | 44.3±3.9 (a) | 37.4±3.3 (a) | 46.7±6.7 (aM) | |
目 Order | 炭角菌目 Xylariales | 10.4±2.1 (aM) | 4.9±2.9 (abM) | 5.4±1.6 (ab) | 1.9±0.7 (b) |
粪壳菌目 Sordariales | 1.4±0.4 (b) | 2.2±0.6 (ab) | 3.4±0.4 (a) | 2.5±0.7 (ab) |
表2 冬小麦田存在显著差异的真菌门、纲、目相对丰度
Table 2 Relative abundance of soil fungi at the phylum, class and order levels in the winter wheat crop field %
分类水平 Classification levels | 真菌类群 Fungal groups | CK | WA | SA | WS |
---|---|---|---|---|---|
门 Phylum | 油壶菌门 Olpidiomycota | 0.7±0.2 (aM) | 0.3±0.2 (abM) | 0.2±0.1 (b) | 0.2±0.1 (b) |
球囊菌门 Glomeromycota | 0.0±0.0 (b) | 0.10±0.0 (a) | 0.0±0.0 (b) | 0.0±0.0 (b) | |
其他 Others | 19.2±2.8 (b) | 22.3±2.2 (ab) | 23.0±2.1 (ab) | 30.5±5.1 (a) | |
纲 Class | 油壶菌纲 Olpidiomycetes | 0.7±0.1 (a) | 0.3±0.2 (ab) | 0.2±0.1 (b) | 0.2±0.1 (b) |
其他 Others | 33.0±3.3 (aM) | 44.3±3.9 (a) | 37.4±3.3 (a) | 46.7±6.7 (aM) | |
目 Order | 炭角菌目 Xylariales | 10.4±2.1 (aM) | 4.9±2.9 (abM) | 5.4±1.6 (ab) | 1.9±0.7 (b) |
粪壳菌目 Sordariales | 1.4±0.4 (b) | 2.2±0.6 (ab) | 3.4±0.4 (a) | 2.5±0.7 (ab) |
图3 不同增温及秸秆施用处理下大豆田土壤真菌α多样性箱线图 不同字母代表处理间存在显著(P<0.05)差异,包含字母M或N代表处理间存在边缘显著(0.50<P<0.10)差异,每个处理样本个数为3。下同
Figure 3 Box and whisker plot of the α diversity of soil fungi under the different warming and straw application treatments in the soybean crop field The different letters represent significant (P<0.05) differences between the treatments. The letter M or N represents marginally significant (0.50<P<0.10) differences between the treatments. The number of samples for a treatment was three. The same below
图4 不同增温及秸秆施用处理下冬小麦田土壤真菌α多样性箱线图
Figure 4 Box and whisker plot of the α diversity of soil fungi under the different warming and straw application treatments in the winter wheat crop field
[1] |
BAKHT J, SHAFI M, JAN M T, et al., 2009. Influence of crop residue management, cropping system and N fertilizer on soil N and C dynamics and sustainable wheat (Triticum aestivum L.) production[J]. Soil and Tillage Research, 104(2): 233-240.
DOI URL |
[2] |
BRIDGHAM SD, PASTOR J, UPDEGRAFF K, et al., 1999. Ecosystem control over temperature and energy flux in northern peatlands[J]. Ecological Applications, 9(4): 1345-1358.
DOI URL |
[3] |
CAO Y, CHAI Y F, JIAO S, et al., 2022. Bacterial and fungal community assembly in relation to soil nutrients and plant growth across different ecoregions of shrubland in Shaanxi, northwestern China[J]. Applied Soil Ecology, DOI: 10.1016/j.apsoil.2022.104385.
DOI |
[4] |
CASTRO H F, CLASSEN A T, AUSTIN E E, et al., 2010. Soil microbial community responses to multiple experimental climate change drivers[J]. Applied and Environmental Microbiology, 76(4): 999-1007.
DOI URL |
[5] |
CHAHAL I, VAN EERD L L, 2018. Evaluation of commercial soil health tests using a medium-term cover crop experiment in a humid, temperate climate[J]. Plant and Soil, 427(1-2): 351-367.
DOI URL |
[6] |
DEANGELIS K M, POLD G, TOPÇUOGLU B D, 2015. Long-term forest soil warming alters microbial communities in temperate forest soils[J]. Frontiers in Microbiology, DOI: 10.3389/fmicb.2015.00104.
DOI |
[7] |
EDGAR R C, 2013. UPARSE, highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 10(10): 996-999.
DOI URL |
[8] |
FENG J, WANG C, LEI J, et al., 2020. Warming-induced permafrost thaw exacerbates tundra soil carbon decomposition mediated by microbial community[J]. Microbiome, 8(1): 3.
DOI URL |
[9] |
FENG X J, SIMPSON M J, 2009. Temperature and substrate controls on microbial phospholipid fatty acid composition during incubation of grassland soils contrasting in organic matter quality[J]. Soil Biology and Biochemistry, 41(4): 804-812.
DOI URL |
[10] |
GOVAERTS B, FUENTES M, MEZZALAMA M, et al., 2007. Infiltration, soil moisture, root rot and nematode populations after 12 years of different tillage, residue and crop rotation managements[J]. Soil and Tillage Research, 94(1): 209-219.
DOI URL |
[11] |
GUO N, LI L, CUI J Q, et al., 2021. Effects of Funneliformis mosseae on the fungal community in and soil properties of a continuously cropped soybean system[J]. Applied Soil Ecology, DOI: 10.1016/j.apsoil.2021. 103930.
DOI |
[12] |
HABTEWOLD J Z, HELGASON B L, YANNI S F, et al., 2021. Warming effects on the structure of bacterial and fungal communities in diverse soils[J]. Applied Soil Ecology, DOI: 10.1016/j.apsoil.2021.103973.
DOI |
[13] |
HUANG F Y, LIU Z H, MOU H Y, et al., 2019. Effects of different long-term farmland mulching practices on the loessial soil fungal community in a semiarid region of China[J]. Applied Soil Ecology, 137: 111-119.
DOI URL |
[14] |
JI L, SHEN F Y, LIU Y, et al., 2022. Contrasting altitudinal patterns and co-occurrence networks of soil bacterial and fungal communities along soil depths in the cold-temperate montane forests of China[J]. Catena, DOI: 10.1016/j.catena.2021.105844.
DOI |
[15] |
JIANG S J, PAN J B, SHI G X, et al., 2017. Identification of root-colonizing AM fungal communities and their responses to short-term climate change and grazing on Tibetan Plateau[J]. Symbiosis, 74: 159-166.
DOI URL |
[16] | JOHNSTON E R, HATT J K, HE Z, et al., 2019. Responses of tundra soil microbial communities to half a decade of experimental warming at two critical depths[J]. Proceedings of the National Academy of Sciences of the United States of America, 116(30): 15096-15105. |
[17] |
LOZUPONE C, LLADSER M E, KNIGHTS D, et al., 2011. UniFrac: An effective distance metric for microbial community comparison[J]. ISME Journal, 5(2): 169-172.
DOI URL |
[18] |
LUO Y Q, WAN S Q, HUI D F, et al., 2001. Acclimatization of soil respiration to warming in a tall grass prairie[J]. Nature, 413(6856): 622-625.
DOI URL |
[19] |
MORRISON E W, PRINGLE A, VAN DIEPEN L T A, et al., 2019. Warming alters fungal communities and litter chemistry with implications for soil carbon stocks[J]. Soil Biology and Biochemistry, 132(4): 120-130.
DOI URL |
[20] | OSTBERG S, LUCHT W, SCHAPHOFF S, et al., 2013. Critical impacts of global warming on land ecosystems[J]. Earth System Dynamics Discussions, 4(2): 541-565. |
[21] |
QIN Z C, HUANG Y, ZHUANG Q L, 2013. Soil organic carbon sequestration potential of cropland in China[J]. Global Biogeochemical Cycles, 27(3): 711-722.
DOI URL |
[22] |
RINKE C, SCHWIENTEK P, SCZYRBA A, et al., 2013. Insights into the phylogeny and coding potential of microbial dark matter[J]. Nature, 499(7459): 431-437.
DOI URL |
[23] | RINNAN R, MICHELSEN A, BÅÅTH E, et al., 2007. Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem[J]. Global Change Biology 13( 1): 28-39. |
[24] |
RINNAN R, MICHELSEN A, JONASSON S, 2008. Effects of litter addition and warming on soil carbon, nutrient pools and microbial communities in a subarctic heath ecosystem[J]. Applied Soil Ecology, 39(3): 271-281.
DOI URL |
[25] |
RINNAN R, STARK S, TOLVANEN A, 2009. Responses of vegetation and soil microbial communities to warming and simulated herbivory in a subarctic heath[J]. Journal of Ecology, 97(4): 788-800.
DOI URL |
[26] |
SCHINDLBACHER A, RODLER A, KUFFNER M, et al., 2011. Experimental warming effects on the microbial community of a temperate mountain forest soil[J]. Soil Biology and Biochemistry, 43(7): 1417-1425.
DOI URL |
[27] |
STREIT K, HAGEDORN F, HILTBRUNNER D, et al., 2014. Soil warming alters microbial substrate use in alpine soils[J]. Global Change Biology, 20(4): 1327-1338.
DOI URL |
[28] |
STROM N, HU W, HAARITH D, et al., 2020. Interactions between soil properties, fungal communities, the soybean cyst nematode, and crop yield under continuous corn and soybean monoculture[J]. Applied Soil Ecology, DOI: 10.1016/j.apsoil.2019.103388.
DOI |
[29] |
SUN C X, WANG D, SHEN X B, et al., 2020. Effects of biochar, compost and straw input on root exudation of maize (Zea mays L.): From function to morphology[J]. Agriculture, Ecosystems & Environment, DOI: 10.1016/j.agee.2020.106952.
DOI |
[30] |
THANGARAJAN R, BOLAN NS, TIAN G, et al., 2013. Role of organic amendment application on greenhouse gas emission from soil[J]. Science of the Total Environment, 465: 72-96.
DOI URL |
[31] |
TU C, LI F D, QIAO Y F, et al., 2017. Effect of experimental warming on soil respiration under conventional tillage and no-tillage farmland in the North China Plain[J]. Journal of Integrative Agriculture, 16(4): 967-979.
DOI URL |
[32] |
WALL G W, KIMBALL B A, WHITE J W, et al., 2011. Gas exchange and water relations of spring wheat under full-season infrared warming[J]. Global Change Biology, 17(6): 2113-2133.
DOI URL |
[33] |
WANG H, LI J Q, CHEN H Y, et al., 2022. Enzymic moderations of bacterial and fungal communities on short- and long-term warming impacts on soil organic carbon[J]. Science of the Total Environment, DOI: 10.1016/j.scitotenv.2021.150197.
DOI |
[34] |
WANG L W, WANG C, FENG F Y, et al., 2021. Effect of straw application time on soil properties and microbial community in the Northeast China Plain[J]. Journal of Soils and Sediments, 21(9): 3137-3149.
DOI URL |
[35] |
WEI X T, SHI Y, QIN F W, et al., 2021. Effects of experimental warming, precipitation increase and their interaction on AM fungal community in an alpine grassland of the Qinghai-Tibetan Plateau[J]. European Journal of Soil Biology, DOI: 10.1016/j.ejsobi.2020.103272.
DOI |
[36] |
YANG H S, LI Y F, ZHAI S L, et al., 2020. Long term ditch-buried straw return affects soil fungal community structure and carbon-degrading enzymatic activities in a rice-wheat rotation system[J]. Applied Soil Ecology, DOI: 10.1016/j.apsoil.2020.103660.
DOI |
[37] |
YUAN H Z, GE T D, ZHOU P, et al., 2013. Soil microbial biomass and bacterial and fungal community structures responses to long-term fertilization in paddy soils[J]. Journal of Soils and Sediments, 13(5): 877-886.
DOI URL |
[38] |
ZHANG M M, ZHAO G X, LI Y Z, et al., 2021. Straw incorporation with ridge-furrow plastic film mulch alters soil fungal community and increases maize yield in a semiarid region of China[J]. Applied Soil Ecology, DOI: 10.1016/j.apsoil.2021.104038.
DOI |
[39] |
ZHEN W C, WANG S T, ZHANG C Y, et al., 2009. Influence of maize straw amendment on soil-borne diseases of winter wheat[J]. Frontiers of Agriculture in China, 3(1): 7-12.
DOI URL |
[40] |
ZHOU Y J, JIA X, HAN L, et al., 2021. Fungal community diversity in soils along an elevation gradient in a Quercus aliena var. acuteserrata forest in Qinling Mountains, China[J]. Applied Soil Ecology, DOI: 10.1016/j.apsoil.2021.104104.
DOI |
[41] | 陈书涛, 桑琳, 张旭, 等, 2016. 增温及秸秆施用对冬小麦田土壤呼吸和酶活性的影响[J]. 环境科学, 37(2): 703-709. |
CHEN S T, SANG L, ZHANG X, et al., 2016. Effects of warming and straw application on soil respiration and enzyme activity in a winter wheat cropland[J]. Environmental Science, 37(2): 703-709. | |
[42] | 李欣, 李峰科, 芦光新, 等, 2017. 模拟增温对高寒草甸土壤三大类微生物数量的影响[J]. 青海畜牧兽医杂志, 47(2): 6-11. |
LI X, LI F K, LU G X, et al., 2017. Effects of simulated warming on the quantity of three types of microorganisms in alpine meadow soil[J]. Qinghai Journal of Animal Husbandry and Veterinary Medicine, 47(2): 6-11. | |
[43] |
王军, 王冠钦, 李飞, 等, 2018. 短期增温对紫花针茅草原土壤微生物群落的影响[J]. 植物生态学报, 42(1): 116-125.
DOI |
WANG J, WANG G, LI F, et al., 2018. Effects of short-term experimental warming on soil microbes in a typical alpine steppe[J]. Chinese Journal of Plant Ecology, 42(1): 116-125.
DOI |
|
[44] | 姚世庭, 芦光新, 邓晔, 等, 2021. 模拟增温对土壤真菌群落组成及多样性的影响[J]. 生态环境学报, 30(7): 1404-1411. |
YAO S T, LU G X, DENG Y, et al., 2021. Effects of simulated warming on soil fungal community composition and diversity[J]. Ecology and Environmental Sciences, 30(7): 1404-1411. |
[1] | 侯晖, 颜培轩, 谢沁宓, 赵宏亮, 庞丹波, 陈林, 李学斌, 胡杨, 梁咏亮, 倪细炉. 贺兰山蒙古扁桃灌丛根际土壤AM真菌群落多样性特征研究[J]. 生态环境学报, 2023, 32(5): 857-865. |
[2] | 周世强, Vanessa HULL, 张晋东, 刘巅, 谢浩, 黄金燕, 张和民. 野生大熊猫与放牧家畜利用生境的特征比较[J]. 生态环境学报, 2023, 32(2): 309-319. |
[3] | 刘宁, 刘洋, 续京平, 宋慧平, 冯政君, 程芳琴. 丛枝菌根真菌对人工湿地植物生长及水质净化的影响研究[J]. 生态环境学报, 2022, 31(7): 1434-1441. |
[4] | 朱奕豪, 李青梅, 刘晓丽, 李娜, 宋凤玲, 陈为峰. 不同土地整治类型新增耕地土壤微生物群落特征研究[J]. 生态环境学报, 2022, 31(5): 909-917. |
[5] | 杨虎, 王佩瑶, 李小伟, 王继飞, 杨君珑. 贺兰山东坡不同植被类型的土壤真菌多样性及其群落结构[J]. 生态环境学报, 2022, 31(2): 239-247. |
[6] | 杨世福, 马玲玲, 陈芸芝, 唐旭利. 鼎湖山季风常绿阔叶林演替系列土壤细菌群落的变化特征[J]. 生态环境学报, 2022, 31(12): 2275-2282. |
[7] | 薛文凯, 朱攀, 德吉, 郭小芳. 纳木措水体可培养丝状真菌优势种的时空特征研究[J]. 生态环境学报, 2022, 31(12): 2331-2340. |
[8] | 姚世庭, 芦光新, 邓晔, 党宁, 王英成, 张海娟, 颜珲璘. 模拟增温对土壤真菌群落组成及多样性的影响[J]. 生态环境学报, 2021, 30(7): 1404-1411. |
[9] | 韩芳, 包媛媛, 刘项宇, 张新永, 韦灯会, 张浩然, 田清龙. 不同轮作方式对马铃薯根际土壤真菌群落结构的影响[J]. 生态环境学报, 2021, 30(7): 1412-1419. |
[10] | 张洋洋, 周清慧, 许骄阳, 魏鸣, 陈继豪, 何伟, 王鹏程, 晏召贵. 林龄对马尾松人工林林下植物与土壤种子库多样性的影响[J]. 生态环境学报, 2021, 30(11): 2121-2129. |
[11] | 王琪, 张峰, 赵萌莉, 张新宇, 张军. 放牧强度对短花针茅荒漠草原植物群落组成及种间关系的影响[J]. 生态环境学报, 2021, 30(10): 1961-1967. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||