生态环境学报 ›› 2022, Vol. 31 ›› Issue (7): 1434-1441.DOI: 10.16258/j.cnki.1674-5906.2022.07.016
刘宁1(), 刘洋4, 续京平5, 宋慧平1, 冯政君2,3,*(
), 程芳琴1
收稿日期:
2022-03-04
出版日期:
2022-07-18
发布日期:
2022-08-31
通讯作者:
*冯政君(1989年生),男,副教授,博士,主要从事土壤修复研究。E-mail: fzj@sxu.edu.cn作者简介:
刘宁(1995年生),女,硕士研究生,主要从事生态修复研究。E-mail: 201924001015@email.sxu.edu.cn
基金资助:
LIU Ning1(), LIU Yang4, XU Jingping5, SONG Huiping1, FENG Zhengjun2,3,*(
), CHENG Fangqin1
Received:
2022-03-04
Online:
2022-07-18
Published:
2022-08-31
摘要:
丛枝菌根真菌(AM真菌)是湿地植物的主要共生菌,可以强化植物对养分的吸收、促进植物的生长,是一种潜在的提高人工湿地污染物去除效率的微生物,然而目前关于AM真菌在实际人工湿地中应用及其效果评价的研究较少。鉴于此,在北京某人工湿地进行了现场实验,以水葱、黄菖蒲两种湿地植物为对象并分别施加AM真菌菌剂,考察了植物菌根侵染状况,植物株高、根长、鲜物质量等植物生长指标以及COD、氨氮、TP浓度等水质指标;基于AM真菌接种与未接种区域的各指标差异,探讨了接种AM真菌对人工湿地植物生长和水质净化的影响。结果表明:2种湿地植物(水葱、黄菖蒲)均能与AM真菌建立良好的共生关系,接种AM真菌后,植物根系中的菌根侵染率和菌根侵染强度均得到了显著提高(P>0.05),水葱和黄菖蒲的菌根侵染率分别达到了37.67%和23.91%;接种AM真菌显著提高了植物的株高、根长、鲜物质量(P>0.05),分别提高了17.79%—31.35%、18.79%—29.14%、54.56%—116.43%;与未接种组相比,接种AM真菌提高了人工湿地对COD、氨氮、TP的去除,污染物去除分别提高了12.32%—24.19%、5.45%—45.31%、5.30%—57.06%;污水原水质状况属于劣V类,经人工湿地处理6个月后,实验区域水体的COD浓度、氨氮浓度以及TP浓度均达到了地表水Ⅲ类水质标准。研究表明:接种AM真菌促进了人工湿地植物的生长,且对水质净化起到了积极作用。该研究结果揭示了在实际运行人工湿地中丛枝菌根真菌对湿地植物生长和水质净化的影响,可为中国人工湿地的高效运行提供理论依据和技术支持。
中图分类号:
刘宁, 刘洋, 续京平, 宋慧平, 冯政君, 程芳琴. 丛枝菌根真菌对人工湿地植物生长及水质净化的影响研究[J]. 生态环境学报, 2022, 31(7): 1434-1441.
LIU Ning, LIU Yang, XU Jingping, SONG Huiping, FENG Zhengjun, CHENG Fangqin. Effects of Arbuscular Mycorrhizal Fungi on Plant Growth and Water Purification in Constructed Wetlands[J]. Ecology and Environment, 2022, 31(7): 1434-1441.
植物种类 Plant species | 种植面积 Planting area/m2 | 种植密度 Planting density/ (pcs∙m-2) | 总株数 Total number of plants/pcs |
---|---|---|---|
水葱 Scirpus tabernaemontani | 400 | 10 | 4000 |
黄菖蒲 Iris pseudacorus | 400 | 25 | 10000 |
表1 试验区域植物种植面积及密度
Table 1 Plant planting area and density in the test area
植物种类 Plant species | 种植面积 Planting area/m2 | 种植密度 Planting density/ (pcs∙m-2) | 总株数 Total number of plants/pcs |
---|---|---|---|
水葱 Scirpus tabernaemontani | 400 | 10 | 4000 |
黄菖蒲 Iris pseudacorus | 400 | 25 | 10000 |
监测指标 Monitoring index | 分析方法 Analysis method | 方法来源 Methods the source |
---|---|---|
COD | 重铬酸盐滴定法 | HJ 828—2017 (环境保护部, |
氨氮NH3-N ammonia nitrogen | 纳氏试剂光度法 | HJ 535—2009 (环境保护部, |
TP | 钼酸铵分光光度法 | GB 11893-89 (国家环境保护局, |
表2 水样监测指标与分析方法
Table 2 Water sample monitoring index and analysis method
监测指标 Monitoring index | 分析方法 Analysis method | 方法来源 Methods the source |
---|---|---|
COD | 重铬酸盐滴定法 | HJ 828—2017 (环境保护部, |
氨氮NH3-N ammonia nitrogen | 纳氏试剂光度法 | HJ 535—2009 (环境保护部, |
TP | 钼酸铵分光光度法 | GB 11893-89 (国家环境保护局, |
图2 AM真菌对不同植物菌根侵染率的影响 图中数据为3次重复的平均值(n=3),不同字母表示组间差异显著(P<0.05)
Figure 2 Effects of AM fungi on mycorrhizal infection rate of different plants Data in the figure are the mean values of three repetitives (n=3), different letters indicated significant difference between groups (P<0.05)
植物种类 Plant species | 处理 Treament | 株高 Plant height/cm | 根长 Root length/cm | 鲜重 Fresh weight/g |
---|---|---|---|---|
水葱 Scirpus tabernaemontani | NM | 156.49±9.49b | 16.30±0.92b | 179.77±11.61b |
AM | 205.55±9.08a | 19.60±1.52a | 389.07±25.30a | |
黄菖蒲 Iris pseudacorus | NM | 81.58±6.00b | 28.59±3.84b | 100.02±9.70b |
AM | 96.09±3.83a | 36.92±2.11a | 154.59±8.19a |
表3 AM真菌对不同植物生长的影响
Table 3 Effects of AM fungi on the growth of different plants
植物种类 Plant species | 处理 Treament | 株高 Plant height/cm | 根长 Root length/cm | 鲜重 Fresh weight/g |
---|---|---|---|---|
水葱 Scirpus tabernaemontani | NM | 156.49±9.49b | 16.30±0.92b | 179.77±11.61b |
AM | 205.55±9.08a | 19.60±1.52a | 389.07±25.30a | |
黄菖蒲 Iris pseudacorus | NM | 81.58±6.00b | 28.59±3.84b | 100.02±9.70b |
AM | 96.09±3.83a | 36.92±2.11a | 154.59±8.19a |
监测指标 Monitoring index | 初始进水质量浓度 Initial inlet concentration/ (mg∙L-1) | 水质标准 Water standard | NM区最终出水质量浓度 Final outlet concentration in NM area/(mg∙L-1) | 水质标准 Water standard | AM区最终出水质量浓度 Final outlet concentration in AM area/(mg∙L-1) | 水质标准 Water standard |
---|---|---|---|---|---|---|
COD | 36.32±1.21 | V类 | 15.07±0.20 | III类 | 13.97±0.38 | II类 |
氨氮NH3-N Ammonia nitrogen | 4.12±0.33 | 劣V类 | 0.17±0.01 | II类 | 0.14±0.02 | I类 |
TP | 0.49±0.04 | 劣V类 | 0.14±0.01 | III类 | 0.11±0.01 | III类 |
表4 人工湿地进出水质量浓度及其所属水质标准
Table 4 The concentration of inlet and outlet water and its quality standard of constructed wetland
监测指标 Monitoring index | 初始进水质量浓度 Initial inlet concentration/ (mg∙L-1) | 水质标准 Water standard | NM区最终出水质量浓度 Final outlet concentration in NM area/(mg∙L-1) | 水质标准 Water standard | AM区最终出水质量浓度 Final outlet concentration in AM area/(mg∙L-1) | 水质标准 Water standard |
---|---|---|---|---|---|---|
COD | 36.32±1.21 | V类 | 15.07±0.20 | III类 | 13.97±0.38 | II类 |
氨氮NH3-N Ammonia nitrogen | 4.12±0.33 | 劣V类 | 0.17±0.01 | II类 | 0.14±0.02 | I类 |
TP | 0.49±0.04 | 劣V类 | 0.14±0.01 | III类 | 0.11±0.01 | III类 |
图5 人工湿地进出水COD质量浓度变化及去除率提高比例 图中数据为3次重复的平均值(n=3)。柱状图表示污染物浓度变化,不同字母表示组间差异性显著(P<0.05),相同字母表示差异不显著(P>0.05);点线图表示污染物去除率的提高比例,下同
Figure 5 Change and removal improvement ratio of COD mass concentration in inlet and outlet water of constructed wetland Data in the figure are the mean values of three repetitives (n=3). The bar chart shows the change in pollutant concentration, different letters indicate significant difference between groups (P<0.05), and the same letter indicates no significant difference (P>0.05). The point plot represents the improvement ratio of pollutants removal rate, the same below
[1] |
ANSARI M W, TRIVEDI D K, SAHOO R K, et al., 2013. A critical review on fungi mediated plant responses with special emphasis to Piriformospora indica on improved production and protection of crops[J]. Plant Physiology and Biochemistry, 70(1): 403-410.
DOI URL |
[2] | JIANG F Y, ZHANG L, ZHOU J C, et al., 2020. Arbuscular mycorrhizal fungi enhance mineralization of organic phosphorus (P) by carrying bacteria along their extraradical hyphae[J]. New Phytologist, 78: 1088-1094. |
[3] |
MOHAMMAD A, MITTRA B, 2011. Effects of inoculation with stress-adapted arbuscular mycorrhizal fungus Glomus deserticola on growth of Solanum melogena L. and Sorghum sudanese Staph. seedlings under salinity and heavy metal stress conditions[J]. Archives of Agronomy and Soil Science, 59(2): 173-183.
DOI URL |
[4] |
PHILLIPS J M, HAYMAN D S, 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection[J]. Transactions of the British Mycological Society, 55(1): 158-161.
DOI URL |
[5] |
RAMÍREZ-VIGA T K, AGUILAR R, CASTILLO-ARGUERO S, et al., 2018. Wetland plant species improve performance when inoculated with arbuscular mycorrhizal fungi: A meta-analysis of experimental pot studies[J]. Mycorrhiza, 28(5-6): 477-493.
DOI URL |
[6] |
WANG S G, DAI D W, SHUANG S, et al., 2018. Arbuscular mycorrhizal (AM) status in urban wetland plants and its impact factors[J]. Aquatic Botany, 150: 33-45.
DOI URL |
[7] |
XU Z Y, BAN Y H, JIANG Y H, et al., 2016. Arbuscular mycorrhizal fungi in wetland habitats and their application in constructed wetland: A review[J]. Pedosphere, 26(5): 592-617.
DOI URL |
[8] |
XU Z Y, WU Y, JIANG Y H, et al., 2018. Arbuscular mycorrhizal fungi in two vertical-flow wetlands constructed for heavy metal-contaminated wastewater bioremediation[J]. Environmental Science and Pollution Research, 25(2): 12830-12840.
DOI URL |
[9] |
ZHENG C C, CHAI M M, JIANG S S, et al., 2015. Foraging capability of extraradical mycelium of arbuscular mycorrhizal fungi to soil phosphorus patches and evidence of carry-over effect on new host plant[J]. Plant and Soil, 387(1-2): 201-217.
DOI URL |
[10] | 陈明利, 吴晓芙, 胡曰利, 2006. 人工湿地去污机理研究进展[J]. 中南林业科技大学学报, 26(3): 123-127. |
CHEN M L, WU X F, HU Y L, 2006. The research review of constructed wetland systems for wastewater treatment[J]. Journal of Central South University of Forestry and Technology, 26(3): 123-127. | |
[11] | 陈媛, 2015. AMF-鸢尾-聚氨酯载体生物净化体系对水中氮磷的去除效能研究[D]. 哈尔滨: 哈尔滨工业大学: 34-62. |
CHEN Y, 2015. AMF-iris wilsonii C. H. Wright-polyurethane carrier biological removal efficiency of nitrogen and phosphorus in water purification system research[D]. Harbin: Harbin Institute of Technology: 34-62. | |
[12] | 丁怡, 王玮, 宋新山, 等, 2017. 人工湿地在水质净化中的应用及研究进展[J]. 工业水处理, 37(3): 6-10. |
DING Y, WANG W, SONG X S, et al., 2017. Application of constructed wetland to water purification and its research progress[J]. Industrial Water Treatment, 37(3): 6-10. | |
[13] | 高文礼, 再努尔∙吐尔逊, 桑钰, 等, 2021. 丛枝菌根真菌对植物氮素吸收作用的研究进展[J]. 中国农学通报, 37(27): 53-58. |
GAO W L, ZAI N T, SANG Y, et al., 2021. Effects of arbuscular mycorrhizal fungi on nitrogen absorption of plant: A review[J]. Chinese Agricultural Science Bulletin, 37(27): 53-58. | |
[14] | 国家环境保护局, 1989. 水质总磷的测定钼酸铵分光光度法: GB 11893-89 [S]. 北京: 国家环境保护局: 188-191. |
State Environmental Protection Administration, 1989. Water quality-Determination of total phosphorus-Ammonium molybdate spectrophotometric method: GB 11893-89 [S]. Beijing: State Environmental Protection Administration: 188-191. | |
[15] | 郭佳, 王丹, 黄炜, 等, 2014. 不同丛枝菌根对白三叶草生长的影响[J]. 北方园艺 (2): 66-70. |
GUO J, WANG D, HUANG W, et al., 2014. Influence of different arbuscular mycorrhizal fungi on growth and physiological and biochemical indicators of Triolium repens[J]. Northern Horticulture (2): 66-70. | |
[16] | 黄锦楼, 陈琴, 许连煌, 2013. 人工湿地在应用中存在的问题及解决措施[J]. 环境科学, 34(1): 401-408. |
HUANG J L, CHEN Q, XU L H, 2013. Problems and countermeasures in the application of constructed wetlands[J]. Environmental Science, 34(1): 401-408. | |
[17] | 吉云秀, 丁永生, 丁德文, 2005. 滨海湿地的生物修复[J]. 大连海事大学学报, 31(3): 47-52. |
JI Y X, DING Y S, DING D W, 2005. Bioremediation in coastal wetland[J]. Journal of Dalian Maritime University, 31(3): 47-52. | |
[18] | 李世阳, 2010. 芦苇菌根真菌依赖性及其联合环境修复功能研究[D]. 哈尔滨: 哈尔滨工业大学: 46-62. |
LI S Y, 2010. The reed mycorrhizal fungi dependence and the studies of combinational environmental remediation[D]. Harbin: Harbin Institute of Technology: 46-62. | |
[19] | 李信茹, 2021. 汞胁迫下丛枝菌根真菌对水稻生长生理特性和吸收积累汞的影响[D]. 北京: 中国环境科学研究院:20. |
LI X R, 2021. Effects of arbuscular mycorrhizal fungi on growth physiological characteristics and mercury uptake and accumulation in rice under mercury stress[D]. Beijing: Chinese Research Academy of Environmental Sciences:20. | |
[20] | 梁威, 吴振斌, 周巧红, 等, 2002. 构建湿地基质微生物与净化效果及相关分析[J]. 中国环境科学, 22(3): 282-285. |
LIANG W, WU Z B, ZHOU Q H, et al., 2002. Analysis of substrate microorganisms in the construction wetland and their correlation with wastewater purification effects[J]. China Environmental Science, 22(3): 282-285. | |
[21] | 罗鹏程, 2016. 丛枝菌根 (AM) 真菌对生态浮床功能影响的研究[D]. 北京: 北京化工大学:7. |
LUO P C, 2016. Study on effect of arbuscular mycorrhizal fungi on the function of ecological floating bed[D]. Beijing: Beijing University of Chemical Technology:7. | |
[22] | 马学淼, 刘晓, 解新宇, 等, 2020. 真菌Glomus mosseae对2个玉米品种产量的影响及生长性状相关分析[J]. 中国农学通报, 36(19): 8-12. |
MA X M, LIU X, XIE X Y, et al., 2020. Effects of Glomus mosseae on yield of two maize cultivars and correlation analysis of growth traits[J]. Chinese Agricultural Science Bulletin, 36(19): 8-12. | |
[23] | 莫惠芝, 曾宪军, 何新杰, 等, 2019. 不同AMF接种两种湿地植物的生长效应研究[J]. 江西农业学报, 31(1): 8-13. |
MO H Z, ZENG X J, HE X J, et al., 2019. Study on growth effect of two wetland plants spiecies infected with different AMFs[J]. Acta Agriculturae Jiangxi, 31(1): 8-13. | |
[24] | 彭麟, 刘子芳, 肖文雄, 等, 2012. 丛枝菌根真菌 (AMF) 提高人工湿地去污能力及运行稳定性的潜力分析[J]. 农业环境科学学报, 31(10): 1869-1878. |
PENG L, LIU Z F, XIAO W X, et al., 2012. The potential of arbuscular mycorrhizal fungi (AMF) to improve decontamination capability and operational stability of constructed wetland[J]. Journal of Agro-Environment Science, 31(10): 1869-1878. | |
[25] | 屈明华, 俞元春, 李生, 等, 2019. 丛枝菌根真菌对矿质养分活化作用研究进展[J]. 浙江农林大学学报, 36(2): 394-405. |
QU M H, YU Y C, LI S, et al., 2019. Advances in research on activation of mineral nutrients by arbuscular mycorrhizal fungi[J]. Journal of Zhejiang A&F University, 36(2): 394-405. | |
[26] | 孙秀秀, 贺超兴, 李衍素, 等, 2017. AM真菌对黄瓜根围土壤微生物群落功能的影响[J]. 菌物学报, 36(7): 892-903. |
SUN X X, HE C X, LI Y S, et al., 2017. Effects of arbuscular mycorrhizal fungi on microbial community and function in the rhizosphere soil of cucumber plants[J]. Mycosystema, 36(7): 892-903. | |
[27] | 王立, 贾文奇, 马放, 等, 2010. 菌根技术在环境修复领域中的应用及展望[J]. 生态环境学报, 19(2): 487-493. |
WANG L, JIA W Q, MA F, et al., 2010. Perspective of mycorrhizal technology application for environmental remediation[J]. Ecology and Environmental Sciences, 19(2): 487-493. | |
[28] | 王宁, 秦艳, 2012. AM真菌对宿主植物三叶鬼针草根系形态的影响[J]. 安徽农业科学, 40(1): 13-14, 26. |
WANG N, QIN Y, 2012. Effects of AM fungus on root morphology of Host plant Bidens pilosa L.[J]. Journal of Anhui Agricultural Sciences, 40(1): 13-14, 26. | |
[29] | 叶振坤, 陈晓林, 赵培爵, 等, 2020. 复合型人工湿地系统设计及其处理技术开发[J]. 山西建筑, 46(1): 151-153. |
YE Z K, CHEN X L, ZHAO P J, et al., 2020. Design and treatment technology of compound constructed wetland system[J]. Shanxi Architecture, 46(1): 151-153. | |
[30] | 鄢金灼, 武发思, 冯虎元, 2008. 湿地植物与丛枝菌根真菌 (AMF) 相互关系的研究进展[J]. 西北植物学报, 28(4): 4836-4842. |
YAN J Z, WU F S, FENG H Y, 2008. Review on the relationship between wetland plants and arbuscular mycorrhizal fungi (AMF)[J]. Acta Botanica Boreali-Occidentalia Sinica, 28(4): 4836-4842. | |
[31] |
袁丽环, 闫桂琴, 2010. 丛枝菌根化翅果油树幼苗根际土壤微环境[J]. 植物生态学报, 34(6): 678-686.
DOI |
YUAN L H, YAN G Q, 2010. Rhizosphere soil of seedlings of Elaeagnus mollis colonized by arbuscular mycorrhizal fungi[J]. Chinese Journal of Plant Ecology, 34(6): 678-686. | |
[32] | 赵敏, 刘红玲, 邓錡璋, 等, 2021. AM真菌对油樟幼苗生长及土壤养分的影响[J]. 湖北农业科学, 60(17): 74-77. |
ZHAO M, LIU H L, DENG Q Z, et al., 2021. Effects of AM fungus on camphor seedling growth and soil nutrients[J]. Hubei Agricultural Sciences, 60(17): 74-77. | |
[33] | 中华人民共和国环境保护部, 2009. 水质氨氮的测定纳氏试剂分光光度法: HJ 535-2009 [S]. 北京: 中华人民共和国环境保护部: 1-4. |
Ministry of Environmental Protection of the People's Republic of China, 2009. Water quality-Determination of ammonia nitrogen-Nessler’s reagent spectrophotometry: HJ 535-2009 [S]. Beijing: Ministry of Environmental Protection of the People’s Republic of China: 1-4. | |
[34] | 中华人民共和国环境保护部, 2017. 水质化学需氧量的测定重铬酸盐法: HJ 828-2017 [S]. 北京: 中华人民共和国环境保护部: 1-8. |
Ministry of Environmental Protection of the People’s Republic of China, 2017. Water quality-Determination of the chemical oxygen demand-Dichromate method: HJ 828-2017 [S]. Beijing: Ministry of Environmental Protection of the People’s Republic of China: 1-8. | |
[35] | 周霞, 崔明, 秦永胜, 等, 2012. 扩繁条件对3种丛枝菌根真菌 (AMF) 的影响[J]. 中国农学通报, 28(12): 83-87. |
ZHOU X, CUI M, QIN Y S, et al., 2012. The effects of the propagation condition on the three kinds of arbuscular mycorrhizal fungi[J]. Chinese Agricultural Science Bulletin, 28(12): 83-87. |
[1] | 侯晖, 颜培轩, 谢沁宓, 赵宏亮, 庞丹波, 陈林, 李学斌, 胡杨, 梁咏亮, 倪细炉. 贺兰山蒙古扁桃灌丛根际土壤AM真菌群落多样性特征研究[J]. 生态环境学报, 2023, 32(5): 857-865. |
[2] | 陈小弯, 田华川, 常军军, 陈礼强, 舒兴权, 冯秀祥. 杞麓湖中河河口表流湿地净化河道污染水的效果及其微生物群落特征[J]. 生态环境学报, 2022, 31(9): 1865-1875. |
[3] | 王晨茜, 张琼锐, 张若琪, 孙学超, 徐颂军. 广东省珠江流域景观格局对水质净化服务的影响[J]. 生态环境学报, 2022, 31(7): 1425-1433. |
[4] | 潘国营, 林凤莲, 袁锋, 罗倩, 高倩倩, 李键, 吴承祯, 陈灿. 10株高效菌株对人工污水净化能力研究[J]. 生态环境学报, 2021, 30(8): 1695-1705. |
[5] | 李锋民, 陈琳, 姜晓华, 李晨光, 赵莎莎, 种云霄, 胡洪营, 高帅强. 水质净化与生态修复的水生植物优选指标体系构建[J]. 生态环境学报, 2021, 30(12): 2411-2422. |
[6] | 郝丽虹, 刘桂青, 张世晨, 苗宇萍. 城市加油站场地典型有机污染物空间分布特征[J]. 生态环境学报, 2021, 30(11): 2175-2184. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||