生态环境学报 ›› 2021, Vol. 30 ›› Issue (6): 1260-1268.DOI: 10.16258/j.cnki.1674-5906.2021.06.017
陈思(), 王灿, 李想, 李明锐, 湛方栋, 李元, 祖艳群, 何永美(
)
收稿日期:
2021-01-28
出版日期:
2021-06-18
发布日期:
2021-09-10
通讯作者:
* 何永美,E-mail: heyongmei06@126.com作者简介:
陈思(1996年生),女,硕士研究生,主要研究方向为紫外辐射生态学。E-mail: 1204035029@qq.com
基金资助:
CHEN Si(), WANG Can, LI Xiang, Li Mingrui, ZHAN Fangdong, LI Yuan, ZU Yanquan, HE Yongmei(
)
Received:
2021-01-28
Online:
2021-06-18
Published:
2021-09-10
摘要:
UV-B辐射增强对整个农业生态系统产生不同程度的影响,为探讨不同UV-B辐射增幅对稻田土壤碳转化和温室气体排放的影响,在元阳梯田稻田原位种植农家水稻品种白脚老粳,通过人工模拟不同UV-B辐射增幅(0、2.5、5.0、7.5 kJ∙m-2),研究不同UV-B辐射增幅对水稻生长期稻田土壤碳转化酶活性、活性有机碳含量和CH4、CO2、N2O排放的影响。结果表明,5.0 kJ∙m-2 UV-B辐射处理导致稻田土壤纤维素酶活性显著增加,增幅范围为15.4%—37.7%;而7.5 kJ∙m-2 UV-B辐射导致土壤碳转化酶(纤维素酶、β-葡萄糖苷酶、多酚氧化酶和蔗糖酶)活性显著降低。UV-B辐射增强导致土壤溶解性有机碳含量显著增加,而易氧化有机碳和微生物量碳含量减少。3个强度的UV-B辐射增幅处理均使稻田CH4排放量显著减少,降幅范围为7.5%—30.6%;5.0 kJ∙m-2 UV-B辐射处理显著增加稻田CO2、N2O排放量,而7.5 kJ∙m-2 UV-B辐射导致稻田CO2、N2O排放降低;综合而言,UV-B辐射增强导致稻田3种温室气体的全球增温潜能降低。此外,土壤中多酚氧化酶活性与微生物量碳、易氧化有机碳含量呈显著正相关(P<0.05),CH4排放通量与微生物量碳含量呈极显著正相关(P<0.01)。可见,随UV-B辐射增强稻田土壤多酚氧化酶活性降低,进而减少易氧化有机碳和微生物量碳含量,最终导致稻田CH4排放减少、CO2和N2O排放增加。
中图分类号:
陈思, 王灿, 李想, 李明锐, 湛方栋, 李元, 祖艳群, 何永美. 不同UV-B辐射增幅对稻田土壤酶活性、活性有机碳含量及温室气体排放的影响[J]. 生态环境学报, 2021, 30(6): 1260-1268.
CHEN Si, WANG Can, LI Xiang, Li Mingrui, ZHAN Fangdong, LI Yuan, ZU Yanquan, HE Yongmei. Effects of Different UV-B Radiation Levels on Soil Enzyme Activities, Active Organic Carbon Content and Greenhouse Gas Emissions in Paddy Fields[J]. Ecology and Environment, 2021, 30(6): 1260-1268.
图1 不同UV-B辐射增幅对稻田土壤碳转化酶活性的影响 不同小写字母表示同一时期不同处理间差异显著(P<0.05)。下同
Fig. 1 Effects of different UV-B radiation levels on the activity of soil carbon invertase in the rice paddy Different lowercase letters indicate significant differences between different treatments during the same period (P<0.05). The same below
图4 不同UV-B辐射增幅对稻田3种温室气体增温潜能的影响
Fig. 4 Effects of different UV-B radiation levels on the global warming potential of three greenhouse gases in the rice paddy
多酚氧化酶 Polyphenol oxidase activity | β-葡萄糖苷酶 Beta-glucosidase activity | 蔗糖酶 Sucrose enzyme activity | 纤维素酶 Cellulose enzyme activity | |
---|---|---|---|---|
溶解性有机碳Dissolved organic carbon | -0.681* | -0.439 | -0.139 | -0.179 |
微生物量碳Microbial biomass carbon | 0.769* | -0.470 | 0.288 | -0.059 |
易氧化有机碳Labile organic carbon | 0.633* | -0.549 | -0.196 | -0.162 |
表1 水稻生育期稻田土壤碳转化酶活性与活性有机碳含量的相关性
Table 1 Correlation coefficients between carbon invertase activities and active organic carbon contents in the rice paddy
多酚氧化酶 Polyphenol oxidase activity | β-葡萄糖苷酶 Beta-glucosidase activity | 蔗糖酶 Sucrose enzyme activity | 纤维素酶 Cellulose enzyme activity | |
---|---|---|---|---|
溶解性有机碳Dissolved organic carbon | -0.681* | -0.439 | -0.139 | -0.179 |
微生物量碳Microbial biomass carbon | 0.769* | -0.470 | 0.288 | -0.059 |
易氧化有机碳Labile organic carbon | 0.633* | -0.549 | -0.196 | -0.162 |
溶解性有机碳 Dissolved organic carbon | 微生物量碳 Microbial biomass carbon | 易氧化有机碳 Labile organic carbon | CH4 | CO2 | N2O | |
---|---|---|---|---|---|---|
溶解性有机碳Dissolved organic carbon | 1 | |||||
微生物量碳Microbial biomass carbon | -0.366 | 1 | ||||
易氧化有机碳Labile organic carbon | -0.136 | 0.752* | 1 | |||
CH4 | -0.681* | 0.881** | 0.538 | 1 | ||
CO2 | -0.128 | -0.212 | -0.129 | -0.125 | 1 | |
N2O | 0.022 | -0.566 | -0.602 | -0.229 | 0.071 | 1 |
表2 水稻生育期土壤活性有机碳含量与碳排放通量的相关性
Table 2 Correlation coefficients between soil active organic carbon contents with carbon gas emissions in the rice paddy
溶解性有机碳 Dissolved organic carbon | 微生物量碳 Microbial biomass carbon | 易氧化有机碳 Labile organic carbon | CH4 | CO2 | N2O | |
---|---|---|---|---|---|---|
溶解性有机碳Dissolved organic carbon | 1 | |||||
微生物量碳Microbial biomass carbon | -0.366 | 1 | ||||
易氧化有机碳Labile organic carbon | -0.136 | 0.752* | 1 | |||
CH4 | -0.681* | 0.881** | 0.538 | 1 | ||
CO2 | -0.128 | -0.212 | -0.129 | -0.125 | 1 | |
N2O | 0.022 | -0.566 | -0.602 | -0.229 | 0.071 | 1 |
[1] |
BALL W T, ALSING J, MORTLOVCK D J, et al., 2018. Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery[J]. Atmospheric Chemistry and Physics, 18(2): 1379-1394.
DOI URL |
[2] | BAO T, ZHU R, WANG P, et al., 2018. Potential effects of ultraviolet radiation reduction on tundra nitrous oxide and methane fluxes in maritime Antarctica[J]. Scientific Reports, 8(1): 1-11. |
[3] |
BERND M, KARSTEN K, 2003. Controls of bioavailability and biodegradability of dissolved organic matter in soils[J]. Geoderma, 113(3): 211-235.
DOI URL |
[4] |
BHATTACHARYYA P, DASH P K, SWAIN C K, et al., 2019. Mechanism of plant mediated methane emission in tropical lowland rice[J]. Science of the Total Environment, 651(Part 1): 84-92
DOI URL |
[5] |
BLAIR G J, LEFROY R D B, LISLE L, 1995. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research, 46(7): 1459-1466.
DOI URL |
[6] |
BURNS R G, DEFOREST J L, MARXSEN J, et al., 2013. Soil enzymes in a changing environment: current knowledge and future directions[J]. Soil Biology and Biochemistry, 58: 216-234.
DOI URL |
[7] |
BURNS R G, DEFOREST J L, MARXSEN J, et al., 2013. Soil enzymes in a changing environment: current knowledge and future directions[J]. Soil Biology and Biochemistry, 58: 216-234.
DOI URL |
[8] |
CHEN Z D, ZHANG H, XUE J, et al., 2021. A nine-year study on the effects of tillage on net annual global warming potential in double rice-cropping systems in Southern China[J]. Soil and Tillage Research, 206: 104797.
DOI URL |
[9] |
ERICKSON D J, SULZBERGER B, ZEPP R G, et al., 2015. Effects of stratospheric ozone depletion, solar UV radiation, and climate change on biogeochemical cycling: interactions and feedbacks[J]. Photochemical and Photobiological Sciences, 14(1): 127-148.
DOI URL |
[10] |
GAO L, LIU Y, WANG X, et al., 2019. Lower levels of UV-B light trigger the adaptive responses by inducing plant antioxidant metabolism and flavonoid biosynthesis in Medicago sativa seedlings[J]. Functional Plant Biology, 46(10): 896-906.
DOI URL |
[11] |
GU Y, WANG P, KONG C H, 2009. Urease, invertase, dehydrogenase and polyphenoloxidase activities in paddy soil influenced by allelopathic rice variety[J]. European Journal of Soil Biology, 45(5-6): 436-441.
DOI URL |
[12] |
HE Y M, ZHAN F D, LI Y, et al., 2016. Effect of enhanced UV-B radiation on methane emission in a paddy field and rice root exudation of low-molecular-weight organic acids[J]. Photochemical and Photobiological Sciences, 15(6): 735-743.
DOI URL |
[13] |
HENNING N, BECKER J N, GUILLAUME T, et al., 2021. Riparian wetland properties counter the effect of land-use change on soil carbon stocks after rainforest conversion to plantations[J]. Catena, 196: 104941.
DOI URL |
[14] |
HOU P F, LI G H, WANG S H, et al., 2013. Methane emissions from rice fields under continuous straw return in the middle-lower reaches of the Yangtze River[J]. Journal of Environmental Sciences, 25(9): 1874-1881.
DOI URL |
[15] |
HU Z H, JIANG J Y, CHEN S T, et al., 2010. Enhanced UV-B radiation reduced soil-soybean ecosystem respiration and nitrous oxide emissions[J]. Nutrient Cycling in Agroecosystems, 87(1): 71-79.
DOI URL |
[16] |
KIMBERLY M. GERBER J S, MUELLER N D, et al., 2017. Greenhouse gas emissions intensity of global croplands[J]. Nature Climate Change, 7(1): 63-68.
DOI URL |
[17] |
KIRSCHKE S, BOUSQUET P, CIAIS P, et al., 2013. Three decades of global methane sources and sinks[J]. Nature Geoscience, 6(10): 813-823.
DOI URL |
[18] |
KÖGEL-KNABNER I, AMELUNG W, CAO Z H, et al., 2010. Biogeochemistry of paddy soils[J]. Geoderma, 157(1-2): 1-14.
DOI URL |
[19] |
KOU T J, CHENG X H, ZHU J G, et al., 2015. The influence of ozone pollution on CO2, CH4, and N2O emissions from a Chinese subtropical rice-wheat rotation system under free-air O3 exposure[J]. Agriculture, Ecosystems and Environment, 204: 72-81.
DOI URL |
[20] |
LI T G, LI X, LIANG Y, et al., 2020. Effects of UV-B radiation on soil carbon conversion and greenhouse gas emission in paddy soil[J]. Greenhouse Gases: Science and Technology, 10(5): 965-979.
DOI URL |
[21] |
LOU Y S, MENG Y, REN L X, et al., 2016. Silicate application decreased methane emission from paddy soil under elevated UV-B radiation[J]. Greenhouse Gases: Science and Technology, 6(5): 662-669.
DOI URL |
[22] |
LOU Y S, ZHOU W L, REN L X, et al., 2012. Elevated UV-B radiation increased CH4 emission in transgenic rice from a paddy soil[J]. Agriculture, Ecosystems and Environment, 151: 16-20.
DOI URL |
[23] |
MAHMOOD K, KHAN M B, SONG Y Y, et al., 2013. UV-irradiation enhances rice allelopathic potential in rhizosphere soil[J]. Plant Growth Regulation, 71(1): 21-29.
DOI URL |
[24] |
NIEMI R, MARTIKAINEN P J, SILVOLA J, et al., 2010. Elevated UV-B radiation alters fluxes of methane and carbon dioxide in peatland microcosms[J]. Global Change Biology, 8(4): 361-371.
DOI URL |
[25] |
ROBSON T M, KLEM K, URBAN O, et al., 2015. Re-interpreting plant morphological responses to UV-B radiation[J]. Plant, Cell and Environment, 38(5): 856-866.
DOI URL |
[26] |
ROBSON T M, PANCOTTO V A, BALLARE C L, et al., 2004. Reduction of solar UV-B mediates changes in the Sphagnum capitulum microenvironment and the peatland microfungal community[J]. Oecologia, 140(3): 480-490.
DOI URL |
[27] |
SATO T, OKU N, IIDA E, et al., 1996. Differential effect of UV-B and UV-C on DNA damage in L-132 cells[J]. Biological and Pharmaceutical Bulletin, 19(5): 721-725.
DOI URL |
[28] |
SINSABAUGH R L, 2010. Phenol oxidase, peroxidase and organic matter dynamics of soil[J]. Soil Biology and Biochemistry, 42(3): 391-404.
DOI URL |
[29] |
SONG Y Y, SONG C C, YANG G S, et al., 2012. Changes in labile organic carbon fractions and soil enzyme activities after marshland reclamation and restoration in the Sanjiang Plain in Northeast China[J]. Environmental Management, 50(3): 418-426.
DOI URL |
[30] |
STRAHAN S E, DOUGLASS A R, 2018. Decline in antarctic ozone depletion and lower stratospheric chlorine determined from Aura Microwave Limb Sounder observations[J]. Geophysical Research Letters, 45(1): 382-290.
DOI URL |
[31] | WAGH Y S, NANDINI K, 2019. Changes in Morpho-physiological and yield parameters of rice (Oryza sativa L.) in response to ultraviolet-B (UV-B) radiation[J]. International Journal of Environment and Climate Change, 9(12): 862-877. |
[32] |
WANG X W, SONG C C, SUN X X, et al., 2013. Soil carbon and nitrogen across wetland types in discontinuous permafrost zone of the Xiao Xing'an Mountains, northeastern China[J]. Catena, 101: 31-37.
DOI URL |
[33] |
WARGENT J J, JOEDAN B R, 2013. From ozone depletion to agriculture: understanding the role of UV radiation in sustainable crop production[J]. New Phytologist, 197(4): 1058-1076.
DOI URL |
[34] |
WICKINGS K, GRANDY A S, REED S C, et al., 2012. The origin of litter chemical complexity during decomposition[J]. Ecology Letters, 15(10): 1180-1188.
DOI URL |
[35] | WU J, LIN Q, HUANG Q, et al., 2006. Measurement method and application of soil microbial biomass[M]. Beijing: China Meteorological Press. |
[36] | YANG W, ZHAO H, CHEN X L, et al., 2013. Consequences of short-term C4 plant Spartina alterniflora invasions for soil organic carbon dynamics in a coastal wetland of Eastern China[J]. Ecological Engineering, 61(Part A): 50-57. |
[37] |
ZHAN M, CAO C G, WANG J P, et al., 2011. Dynamics of methane emission, active soil organic carbon and their relationships in wetland integrated rice-duck systems in Southern China[J]. Nutrient Cycling in Agroecosystems, 89(1): 1-13.
DOI URL |
[38] | 褚润, 陈年来, 2017. UV-B辐射增强对芦苇光合生理及叶绿体超微结构的影响[J]. 应用生态学报, 28(11): 3515-3520. |
CHU R, CGEN N L, 2017. Effects of enhanced UV-B radiation on photosynthetic physiology and chloroplast ultrastructure of Phragmites australis[J]. Chinese Journal of Applied Ecology, 28(11): 3515-3520. | |
[39] | 耿玉清, 王冬梅, 2012. 土壤水解酶活性测定方法的研究进展[J]. 中国生态农业学报, 20(4): 387-394. |
GENG Y Q, WANG D M, 2012. Research advances on the measurement methods for soil hydrolytic enzymes activities[J]. Chinese Journal of Eco-Agriculture, 20(4): 387-394
DOI URL |
|
[40] | 关松荫, 1986. 土壤酶及其研究方法[M]. 北京: 中国农业出版社. |
GUAN S Y, 1986. Soil enzyme and its research method[M]. Beijing: China Agricultural Press. | |
[41] | 何永美, 湛方栋, 高召华, 等, 2012. 水稻对UV-B辐射响应的敏感性差异[J]. 生态环境学报, 21(3): 489-495. |
HE Y M, ZHAN F D, GAO S H, et al., 2012. Differences of UV-B radiation sensitivity of rice[J]. Ecology and Environment Sciences, 21(3): 489-495. | |
[42] | 何永美, 湛方栋, 吴炯, 等, 2016. UV-B辐射对元阳梯田水稻根系LMWOAs分泌量和根际微生物数量的影响[J]. 农业环境科学学报, 35(4): 613-619. |
HE Y M, ZHAN F D, WU J, et al., 2016. Effects of UV-B radiation on rice root exudation LMWOAs and rhizospheric microorganism quantities in a paddy field of Yuanyang Terraces, Yunnan Province[J]. Journal of Agro-Environment Science, 35(4): 613-619. | |
[43] | 胡正华, 凌慧, 陈书涛, 等, 2011. UV-B增强对稻田呼吸速率、CH4和N2O排放的影响[J]. 环境科学, 32(10): 3018-3022. |
HU Z H, LING H, CHEN S T, et al., 2011. Impacts of enhanced UV-B radiation on respiration rate, CH4 and N2O emission fluxes from rice paddy[J]. Environmental Science, 32(10): 3018-3022. | |
[44] | 蒋静艳, 牛传坡, 胡正华, 等, 2006. 地表UV-B辐射增强对土壤-冬小麦系统N2O排放的影响机理研究[J]. 环境科学, 27(9): 1712-1716. |
JIANG J Y, NIU C P, HU Z H, et al., 2006. Study on mechanism of enhanced UV-B radiation influencing on N2O emission from soil-winter wheat system[J]. Environmental Science, 27(9): 1712-1716. | |
[45] | 李海防, 夏汉平, 熊燕梅, 等, 2007. 土壤温室气体产生与排放影响因素研究进展[J]. 生态环境, 16(6): 1781-1788. |
LI H F, XIA H P, XIONG Y M, et al., 2007. Mechanism of greenhouse gases fluxes from soil and its controlling factors: A review[J]. Ecology and Environment Sciences, 16(6): 1781-1788. | |
[46] | 李想, 谢春梅, 何永美, 等, 2018. UV-B辐射与稻瘟病菌复合胁迫对元阳梯田水稻生长和光合特性的影响[J]. 农业环境科学学报, 37(4): 613-620. |
LI X, XIE C M, HE Y M, et al., 2018. Effects of complex UV-B radiation and Magnaporthe oryzae stresses on the growth and photosynthetic characteristics of rice in Yuanyang Terrace, China[J]. Journal of Agro-Environment Science, 37(4): 613-620. | |
[47] | 李元, 杨济龙, 王勋陵, 1999. 紫外辐射增加对春小麦根际土壤微生物种群数量的影响[J]. 中国环境科学, 19(2): 157-160. |
LI Y, YANG J H, WANG X L, 1999. The effect of UV-B radiation on the population quantity of spring wheat rhizosphere microorganisms[J]. China Environmental Science, 19(2): 157-160. | |
[48] | 李增强, 张贤, 王建红, 等, 2018. 紫云英施用量对土壤活性有机碳和碳转化酶活性的影响[J]. 中国土壤与肥料 (4): 14-20. |
LI Z Q, ZHANG X, WANG J H, 2018. Effects of Chinese milk vetch (Astragalus sinicus L.) application rate on soil labile organic carbon and C-transformation enzyme activities[J]. Soils and Fertilizers Sciences in China (4): 14-20 | |
[49] | 李振高, 骆永明, 滕应, 2008. 土壤与环境微生物研究法[M]. 北京: 科学出版社. |
LI Z G, LUO Y M, TENG Y, 2008. Soil and environmental microbiological research method[M]. Beijing: Science Press. | |
[50] | 柳淑蓉, 胡荣桂, 蔡高潮, 2012. UV-B辐射增强对陆地生态系统碳循环的影响[J]. 应用生态学报, 23(7): 1992-1998. |
LIU S R, HU R G, CAI G C, 2012. Effects of enhanced UV-B radiation on terrestrial ecosystem carbon cycle: A review[J]. Chinese Journal of Applied Ecology, 23(7): 1992-1998. | |
[51] | 娄运生, 周文鳞, 2012. UV-B辐射增强对抗除草剂转基因水稻CH4排放的影响[J]. 生态学报, 32(15): 4731-4736. |
LOU Y S, ZHOU W L, 2012. Effect of elevated ultraviolet-B radiation on CH4 emission in herbicide resistant transgenic rice from a paddy soil[J]. Acta Ecologica Sinica, 32(15): 4731-4736.
DOI URL |
|
[52] | 盛浩, 宋迪思, 王翠红, 等, 2015. 土壤溶解性有机碳四种测定方法的对比和转换[J]. 土壤, 47(6): 1049-1053. |
SHENG H, SONG D S, WANG C H, et al., 2015. Comparison and transform of soil dissolved organic carbon measured by four methods[J]. Soils, 47(6): 1049-1053. | |
[53] | 王灿, 李虹茹, 湛方栋, 等, 2018. UV-B辐射对元阳梯田稻田土壤活性有机碳含量与温室气体排放的影响[J]. 农业环境科学学报, 37(2): 383-391. |
WANG C, LI H R, ZHAN F D, et al., 2018. Effects of enhanced UV-B radiation on the content of soil active organic carbon and greenhouse gas emission from a rice paddy in Yuanyang Terraces[J]. Journal of Agro-Environment Science, 37(2): 383-391. | |
[54] | 吴家梅, 纪雄辉, 霍莲杰, 等, 2013. 稻田土壤氧化态有机碳组分变化及其与甲烷排放的关联性[J]. 生态学报, 33(15): 4599-4607. |
WU J M, JI X H, HUO L J, et al., 2013. Fraction changes of oxidation organic carbon in paddy soil and its correlation with CH4 emission fluxes[J]. Acta Ecologica Sinica, 33(15): 4599-4607.
DOI URL |
|
[55] | 吴家梅, 霍莲杰, 纪雄辉, 等, 2017. 不同施肥处理对土壤活性有机碳和甲烷排放的影响[J]. 生态学报, 37(18): 6167-6175. |
WU J M, HUO L J, JI X H, et al., 2017. Effects of organic manure application on active soil organic carbon and methane emission in paddy soils[J]. Acta Ecologica Sinica, 37(18): 6167-6175. | |
[56] | 徐渭渭, 何永美, 湛方栋, 等, 2015. UV-B辐射增强对元阳哈尼梯田稻田CH4排放规律的影响[J]. 生态学报, 35(5): 1329-1336. |
XU W W, HE Y M, ZHAN F D, 2015. Effect of enhanced UV-B radiation on CH4 emission from paddy field in Yuanyang Hani Terraces[J]. Acta Ecologica Sinica, 35(5): 1329-1336. | |
[57] | 张彦雪, 何永美, 李想, 等, 2020. UV-B辐射增强对稻田土壤氮转化的影响[J]. 农业环境科学学报, 39(3): 656-664. |
ZAHNG Y X, HE Y M, LI X, et al., 2020. Effects of enhanced UV-B radiation on nitrogen transformation in paddy soil[J]. Journal of Agro-Environment Science, 39(3): 656-664. | |
[58] | 赵炳梓, 陈吉, 张佳宝, 等, 2011. 风干土保存时间和湿土培育时间对黄淮海平原潮土酶活性的影响[J]. 土壤, 43(3): 418-425. |
ZHAO B Z, CHEN J, ZHANG J B, et al., 2011. Effect of storage time of air-drying soil and incubation period following rewetting on soil enzyme activities in North China Plain[J]. Soils, 43(3): 418-425. | |
[59] | 肇思迪, 娄运生, 张祎玮, 等, 2017. UV-B增强下施硅对稻田CH4和N2O排放及其增温潜势的影响[J]. 生态学报, 37(14): 4715-4724. |
ZHAO S D, LOU Y S, ZHANG Y W, et al., 2017. Effect of silicate supply on CH4 and N2O emissions and their global warming potentials in a Chinese paddy soil under enhanced UV-B radiation[J]. Acta Ecologica Sinica, 37(14): 4715-4724. | |
[60] | 郑有飞, 张金恩, 吴荣军, 等, 2011. UV-B辐射增强与O3胁迫对冬小麦光合特征的影响[J]. 环境科学, 32(10): 3023-3032. |
ZHENG Y F, ZHANG J E, WU R J, et al., 2011. Combination effects of enhanced UV-B radiation and O3 stress on photosynthetic characteristics of winter wheat[J]. Environmental Science, 32(10): 3023-3032. |
[1] | 贺晓佳, 冯书华, 蒋明, 李明锐, 湛方栋, 李元, 何永美. UV-B辐射对水稻根际土壤活性有机碳转化和产甲烷潜力的影响[J]. 生态环境学报, 2022, 31(3): 556-564. |
[2] | 郝小雨, 王晓军, 高洪生, 毛明艳, 孙磊, 马星竹, 周宝库, 迟凤琴, 李伟群. 松嫩平原不同秸秆还田方式下农田温室气体排放及碳足迹估算[J]. 生态环境学报, 2022, 31(2): 318-325. |
[3] | 宋瑞朋, 杨起帆, 郑智恒, 习丹. 3种林下植被类型对杉木人工林土壤有机碳及其组分特征的影响[J]. 生态环境学报, 2022, 31(12): 2283-2291. |
[4] | 李梦丽, 徐墨馨, 陈永山, 叶丽丽, 蒋金平. 石灰性土壤添加不同量碳酸钙对秸秆有机碳矿化的影响[J]. 生态环境学报, 2022, 31(10): 2002-2009. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||