生态环境学报 ›› 2022, Vol. 31 ›› Issue (4): 732-739.DOI: 10.16258/j.cnki.1674-5906.2022.04.011
魏岚1(), 黄连喜1, 李翔1, 王泽煌2, 陈伟盛1, 黄庆1, 黄玉芬1, 刘忠珍1,*(
)
收稿日期:
2021-11-11
出版日期:
2022-04-18
发布日期:
2022-06-22
通讯作者:
*刘忠珍(1977年生),女,研究员,博士,研究方向为土壤环境。E-mail: lzzgz2001@163.com作者简介:
魏岚(1981年生),女,副研究员,博士,研究方向为环境污染修复与治理等。E-mail: 441004456@qq.com
基金资助:
WEI Lan1(), HUANG Lianxi1, LI Xiang1, WANG Zehuang2, CHEN Weisheng1, HUANG Qing1, HUANG Yufen1, LIU Zhongzhen1,*(
)
Received:
2021-11-11
Online:
2022-04-18
Published:
2022-06-22
摘要:
在香蕉幼苗生长过程中,基质酸化、养分不足或失衡是一个常见的问题,为了解决这一问题,同时兼顾循环利用农林废弃物,按照体积分数分别配制6种不同的基质,分别为CK(100%椰糠),T1(2%生物炭+98%椰糠),T2(5%生物炭+95%椰糠),T3(10%生物炭+90%椰糠),T4(20%生物炭+80%椰糠)和T5(50%生物炭+50%椰糠),采用育苗袋种植巴西蕉组培苗120 d。结果表明,与对照相比,在含生物炭的基质上生长的香蕉假茎长提高了56.3%—93.8%,根长增加了66.7%—155.6%,地上部和地下部干重分别提高了100.6%—174.1%和84.8%—468.2%,同时香蕉幼苗地上部氮磷钾累积量也增加。这显然是由于生物炭显著改善基质肥力性状所致,如pH、有机碳、EC、全氮磷钾和速效磷钾含量,均随着生物炭分数的增加而提高。但是,生物炭分数超过20%,对香蕉幼苗生长的促进作用会降低,最合适的基质是10%生物炭加90%椰糠(T3)。此外,还需要注意,生物炭的促生作用主要表现在幼苗生长后期。
中图分类号:
魏岚, 黄连喜, 李翔, 王泽煌, 陈伟盛, 黄庆, 黄玉芬, 刘忠珍. 生物炭基质可显著地促进香蕉幼苗生长[J]. 生态环境学报, 2022, 31(4): 732-739.
WEI Lan, HUANG Lianxi, LI Xiang, WANG Zehuang, CHEN Weisheng, HUANG Qing, HUANG Yufen, LIU Zhongzhen. Biochar Medium Could Significantly Improve Banana Seedling Growth[J]. Ecology and Environment, 2022, 31(4): 732-739.
物料 Materials | 有机碳质量分数 w(organic carbon )/(g∙kg-1) | 总氮质量分数 w(Total N)/(g∙kg-1) | 总磷质量分数 w(Total P)/(g∙kg-1) | 总钾质量分数 w(Total K)/(g∙kg-1) | pH | 电导率 EC/(mS∙cm-1) |
---|---|---|---|---|---|---|
椰糠 Coconut coir dust | 6.02 | 9.02 | 0.50 | 0.25 | 4.60 | 0.11 |
生物炭 Biochar | 7.28 | 100.50 | 25.02 | 4.20 | 9.80 | 1.23 |
表1 不同基质成分的物理化学性质
Table 1 Physicochemical properties of different matrix components
物料 Materials | 有机碳质量分数 w(organic carbon )/(g∙kg-1) | 总氮质量分数 w(Total N)/(g∙kg-1) | 总磷质量分数 w(Total P)/(g∙kg-1) | 总钾质量分数 w(Total K)/(g∙kg-1) | pH | 电导率 EC/(mS∙cm-1) |
---|---|---|---|---|---|---|
椰糠 Coconut coir dust | 6.02 | 9.02 | 0.50 | 0.25 | 4.60 | 0.11 |
生物炭 Biochar | 7.28 | 100.50 | 25.02 | 4.20 | 9.80 | 1.23 |
图1 不同生物炭和椰糠体积比处理对香蕉组培苗生长状况(假茎长和根长)的影响 n=3;不同的小写字母代表不同处理之间的显著差异(P<0.05)。下同
Figure 1 Effects of different volume ratios of biochar and coconut bran treatments on the growth status (pseudostem length and root length) of banana tissue culture seedlings n=3; Different lower letters represent significant differences between different treatments (P<0.05). The same below
图2 不同生物炭和椰糠体积比处理对香蕉组培苗生物量(地上部和地下部)的影响
Figure 2 Effects of different volume ratios of biochar and coconut bran treatments on biomass (aboveground and underground) of banana tissue culture seedlings
处理Treatment | 50 d | 80 d | 120 d | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
总氮质量分数 w(Total N)/ (g∙kg-1) | 总磷质量分数 w(Total P)/ (g∙kg-1) | 总钾质量分数 w(Total K)/ (g∙kg-1) | 总氮质量分数 w(Total N)/ (g∙kg-1) | 总磷质量分数 w(Total P)/ (g∙kg-1) | 总钾质量分数 w(Total K)/ (g∙kg-1) | 总氮质量分数 w(Total N)/ (g∙kg-1) | 总磷质量分数 w(Total P)/ (g∙kg-1) | 总钾质量分数 w(Total K)/ (g∙kg-1) | |||
CK | 37.09±0.53d | 5.46±0.09b | 87.51±0.48cd | 30.67±0.48bc | 6.71±0.05b | 85.59±0.68bc | 29.46±0.15b | 6.92±0.32c | 73.56±0.12b | ||
T1 | 38.85±0.36c | 5.87±0.03a | 88.88±0.45bc | 31.34±0.28b | 7.61±0.24a | 85.21±0.85bc | 28.14±0.49c | 7.55±0.28b | 70.85±3.15c | ||
T2 | 39.94±0.13b | 5.59±0.06b | 95.34±0.30a | 27.25±0.66d | 6.13±0.17c | 86.05±1.50bc | 18.88±0.45e | 4.51±0.72e | 43.32±3.31d | ||
T3 | 41.42±0.09a | 5.04±0.12c | 91.26±1.31b | 32.08±0.41a | 6.96±0.17b | 96.13±0.67a | 31.71±0.21a | 7.06±0.29c | 72.87±1.70b | ||
T4 | 38.643±0.13c | 4.94±0.06c | 91.23±1.15b | 30.46±0.65c | 5.16±0.32d | 87.39±3.02b | 29.32±0.71b | 8.05±0.32a | 86.86±1.01a | ||
T5 | 37.65±0.34d | 4.11±0.04d | 85.13±0.70d | 27.3±0.45d | 4.84±0.19e | 97.19±1.22a | 26.43±0.79d | 5.11±0.26d | 73.05±2.23b |
表2 不同生物炭和椰糠体积比处理对香蕉组培苗地上部分营养元素含量的动态影响
Table 2 Dynamic effects of different volume ratios of biochar and coconut bran on the contents of nutrient elements in aboveground parts of banana tissue culture seedlings
处理Treatment | 50 d | 80 d | 120 d | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
总氮质量分数 w(Total N)/ (g∙kg-1) | 总磷质量分数 w(Total P)/ (g∙kg-1) | 总钾质量分数 w(Total K)/ (g∙kg-1) | 总氮质量分数 w(Total N)/ (g∙kg-1) | 总磷质量分数 w(Total P)/ (g∙kg-1) | 总钾质量分数 w(Total K)/ (g∙kg-1) | 总氮质量分数 w(Total N)/ (g∙kg-1) | 总磷质量分数 w(Total P)/ (g∙kg-1) | 总钾质量分数 w(Total K)/ (g∙kg-1) | |||
CK | 37.09±0.53d | 5.46±0.09b | 87.51±0.48cd | 30.67±0.48bc | 6.71±0.05b | 85.59±0.68bc | 29.46±0.15b | 6.92±0.32c | 73.56±0.12b | ||
T1 | 38.85±0.36c | 5.87±0.03a | 88.88±0.45bc | 31.34±0.28b | 7.61±0.24a | 85.21±0.85bc | 28.14±0.49c | 7.55±0.28b | 70.85±3.15c | ||
T2 | 39.94±0.13b | 5.59±0.06b | 95.34±0.30a | 27.25±0.66d | 6.13±0.17c | 86.05±1.50bc | 18.88±0.45e | 4.51±0.72e | 43.32±3.31d | ||
T3 | 41.42±0.09a | 5.04±0.12c | 91.26±1.31b | 32.08±0.41a | 6.96±0.17b | 96.13±0.67a | 31.71±0.21a | 7.06±0.29c | 72.87±1.70b | ||
T4 | 38.643±0.13c | 4.94±0.06c | 91.23±1.15b | 30.46±0.65c | 5.16±0.32d | 87.39±3.02b | 29.32±0.71b | 8.05±0.32a | 86.86±1.01a | ||
T5 | 37.65±0.34d | 4.11±0.04d | 85.13±0.70d | 27.3±0.45d | 4.84±0.19e | 97.19±1.22a | 26.43±0.79d | 5.11±0.26d | 73.05±2.23b |
处理Treatment | 50 d | 80 d | 120 d | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
总氮质量分数 w(Total N)/ (g∙kg-1) | 总磷质量分数 w(Total P)/ (g∙kg-1) | 总钾质量分数 w(Total K)/ (g∙kg-1) | 总氮质量分数 w(Total N)/ (g∙kg-1) | 总磷质量分数 w(Total P)/ (g∙kg-1) | 总钾质量分数 w(Total K)/ (g∙kg-1) | 总氮质量分数 w(Total N)/ (g∙kg-1) | 总磷质量分数 w(Total P)/ (g∙kg-1) | 总钾质量分数 w(Total K)/ (g∙kg-1) | |||
CK | 27.56±0.54cd | 4.81±0.20ab | 88.93±0.12e | 23.71±0.27b | 5.17±0.29b | 73.49±1.27d | 25.07±0.17b | 4.39±0.09d | 53.79±0.12e | ||
T1 | 28.24±0.49bc | 4.99±0.14a | 93.47±2.44d | 23.39±0.51b | 4.97±0.15bcd | 58.65±0.18e | 25.69±0.37b | 6.45±0.26a | 74.42±0.51a | ||
T2 | 30.96±0.55a | 4.32±0.17cd | 94.69±0.74d | 23.43±0.16b | 6.15±0.24a | 84.23±0.31b | 20.89±0.29d | 5.03±0.29c | 53.69±1.57e | ||
T3 | 26.86±0.32d | 4.61±0.11bc | 108.71±1.33a | 25.75±0.51a | 4.61±0.15d | 84.26±1.07b | 26.88±1.62a | 5.82±0.15b | 69.22±1.28b | ||
T4 | 28.65±0.27b | 4.19±0.20d | 99.07±0.47c | 23.01±0.55b | 4.69±0.17cd | 79.76±1.31c | 22.32±0.62c | 6.41±0.18a | 65.19±0.14d | ||
T5 | 27.94±0.11bc | 4.14±0.17d | 102.29±2.03b | 23.568±0.62b | 5.05±0.18bc | 90.23±2.12a | 23.49±0.46c | 5.67±0.13b | 66.88±0.31c |
表3 不同生物炭和椰糠体积比处理对香蕉组培苗地下部分营养元素含量的动态影响
Table 3 Dynamic effects of different volume ratios of biochar and coconut bran on the contents of nutrient elements in underground parts of banana tissue culture seedlings
处理Treatment | 50 d | 80 d | 120 d | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
总氮质量分数 w(Total N)/ (g∙kg-1) | 总磷质量分数 w(Total P)/ (g∙kg-1) | 总钾质量分数 w(Total K)/ (g∙kg-1) | 总氮质量分数 w(Total N)/ (g∙kg-1) | 总磷质量分数 w(Total P)/ (g∙kg-1) | 总钾质量分数 w(Total K)/ (g∙kg-1) | 总氮质量分数 w(Total N)/ (g∙kg-1) | 总磷质量分数 w(Total P)/ (g∙kg-1) | 总钾质量分数 w(Total K)/ (g∙kg-1) | |||
CK | 27.56±0.54cd | 4.81±0.20ab | 88.93±0.12e | 23.71±0.27b | 5.17±0.29b | 73.49±1.27d | 25.07±0.17b | 4.39±0.09d | 53.79±0.12e | ||
T1 | 28.24±0.49bc | 4.99±0.14a | 93.47±2.44d | 23.39±0.51b | 4.97±0.15bcd | 58.65±0.18e | 25.69±0.37b | 6.45±0.26a | 74.42±0.51a | ||
T2 | 30.96±0.55a | 4.32±0.17cd | 94.69±0.74d | 23.43±0.16b | 6.15±0.24a | 84.23±0.31b | 20.89±0.29d | 5.03±0.29c | 53.69±1.57e | ||
T3 | 26.86±0.32d | 4.61±0.11bc | 108.71±1.33a | 25.75±0.51a | 4.61±0.15d | 84.26±1.07b | 26.88±1.62a | 5.82±0.15b | 69.22±1.28b | ||
T4 | 28.65±0.27b | 4.19±0.20d | 99.07±0.47c | 23.01±0.55b | 4.69±0.17cd | 79.76±1.31c | 22.32±0.62c | 6.41±0.18a | 65.19±0.14d | ||
T5 | 27.94±0.11bc | 4.14±0.17d | 102.29±2.03b | 23.568±0.62b | 5.05±0.18bc | 90.23±2.12a | 23.49±0.46c | 5.67±0.13b | 66.88±0.31c |
处理Treatment | 50 d | 80 d | 120 d | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
氮累积量 Nitrogen accumulation/ (mg∙plant-1) | 磷累积量 Phosphorus accumulation/ (mg∙plant-1) | 钾累积量 Potassium accumulation/ (mg∙plant-1) | 氮累积量 Nitrogen accumulation/ (mg∙plan-1) | 磷累积量 Phosphorus accumulation/ (mg∙plant-1) | 钾累积量 Potassium accumulation/ (mg∙plant-1) | 氮累积量 Nitrogen accumulation/ (mg∙plant-1) | 磷累积量 Phosphorus accumulation/ (mg∙plant-1) | 钾累积量 Potassium accumulation/ (mg∙plant-1) | |||
CK | 17.19±0.25c | 2.53±0.09b | 40.54±0.48c | 23.21±0.48c | 5.07±0.05e | 64.76±0.68d | 37.52±0.15d | 8.81±0.32e | 93.67±0.12d | ||
T1 | 25.26±0.24b | 3.81±0.03a | 57.77±0.45b | 40.95±0.28b | 9.94±0.24a | 111.32±0.84c | 64.17±0.48b | 17.21±0.28b | 161.54±3.15c | ||
T2 | 22.24±0.13b | 3.11±0.07ab | 53.07±0.29b | 37.71±0.65b | 8.48±0.17b | 119.04±1.50c | 72.87±0.45a | 17.41±0.72b | 167.23±3.32c | ||
T3 | 30.24±0.08a | 3.68±0.12a | 66.62±1.31a | 48.24±0.41a | 10.45±0.17a | 144.51±0.67a | 65.62±0.21b | 14.61±0.29c | 180.85±1.70b | ||
T4 | 19.19±0.13c | 2.45±0.06b | 45.31±1.14c | 47.11±0.65a | 7.81±0.32c | 135.17±3.02b | 76.42±0.71a | 20.99±0.32a | 226.43±1.01a | ||
T5 | 11.31±0.34d | 1.23±0.04c | 25.54±0.70d | 38.13±0.45b | 6.76±0.19d | 135.75±1.23b | 59.39±0.79c | 11.48±0.26d | 164.12±2.23c |
表4 不同生物炭和椰糠体积比处理对香蕉组培苗地上部分营养元素累积量的动态影响
Table 4 Dynamic effects of different volume ratios of biochar and coconut bran on nutrient accumulation of aboveground parts of banana tissue culture seedlings
处理Treatment | 50 d | 80 d | 120 d | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
氮累积量 Nitrogen accumulation/ (mg∙plant-1) | 磷累积量 Phosphorus accumulation/ (mg∙plant-1) | 钾累积量 Potassium accumulation/ (mg∙plant-1) | 氮累积量 Nitrogen accumulation/ (mg∙plan-1) | 磷累积量 Phosphorus accumulation/ (mg∙plant-1) | 钾累积量 Potassium accumulation/ (mg∙plant-1) | 氮累积量 Nitrogen accumulation/ (mg∙plant-1) | 磷累积量 Phosphorus accumulation/ (mg∙plant-1) | 钾累积量 Potassium accumulation/ (mg∙plant-1) | |||
CK | 17.19±0.25c | 2.53±0.09b | 40.54±0.48c | 23.21±0.48c | 5.07±0.05e | 64.76±0.68d | 37.52±0.15d | 8.81±0.32e | 93.67±0.12d | ||
T1 | 25.26±0.24b | 3.81±0.03a | 57.77±0.45b | 40.95±0.28b | 9.94±0.24a | 111.32±0.84c | 64.17±0.48b | 17.21±0.28b | 161.54±3.15c | ||
T2 | 22.24±0.13b | 3.11±0.07ab | 53.07±0.29b | 37.71±0.65b | 8.48±0.17b | 119.04±1.50c | 72.87±0.45a | 17.41±0.72b | 167.23±3.32c | ||
T3 | 30.24±0.08a | 3.68±0.12a | 66.62±1.31a | 48.24±0.41a | 10.45±0.17a | 144.51±0.67a | 65.62±0.21b | 14.61±0.29c | 180.85±1.70b | ||
T4 | 19.19±0.13c | 2.45±0.06b | 45.31±1.14c | 47.11±0.65a | 7.81±0.32c | 135.17±3.02b | 76.42±0.71a | 20.99±0.32a | 226.43±1.01a | ||
T5 | 11.31±0.34d | 1.23±0.04c | 25.54±0.70d | 38.13±0.45b | 6.76±0.19d | 135.75±1.23b | 59.39±0.79c | 11.48±0.26d | 164.12±2.23c |
天数Time/d | 处理 Treatment | pH | 有机碳 Organic carbon w(C content)/ (g∙kg-1) | 容重 Bulk density/ (g∙cm-1) | 总孔隙度 Total porosity/ % | 电导率 Conductivity EC/ (mS∙cm-1) | 碱解氮Alkali-hydro nitrogen w(Alkali-N)/ (mg·kg-1) | 有效磷Available phosphorus w(Olsen-P)/ (mg∙kg-1) | 有效钾Available potassium w(Available-P)/ (mg∙kg-1) | 总氮 Total nitrogen w(Total N)/ (g∙kg-1) | 总磷 Total phosphorus w(Total P)/ (g∙kg-1) | 总钾 Total potassium w(Total K)/ (g∙kg-1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | CK | 4.82c | 40.1±1.6c | 0.21±0.01d | 70±3a | 0.11±0.01d | 761±36a | 252±87c | 2842±303c | 9.11±0.61d | 0.82±0.11e | 2.63±0.32e |
T1 | 4.90c | 44.9±0.6bc | 0.25±0.01bc | 68±2a | 0.13±0.04d | 727±37a | 254±98c | 3109±453c | 8.02±0.72d | 0.83±0.12de | 3.02±0.11de | |
T2 | 5.15b | 45.8±0.1b | 0.28±0.03b | 67±2ab | 0.12±0.02d | 720±49a | 303±77c | 3814±577c | 10.61±0.52c | 1.02±0.10d | 4.23±0.63d | |
T3 | 5.20b | 49.9±0.4ab | 0.30±0.02b | 65±2b | 0.25±0.00c | 780±31a | 543±99b | 6136±291b | 11.43±0.84bc | 1.11±0.11c | 6.82±0.32c | |
T4 | 5.42a | 47.2±5.8ab | 0.33±0.01a | 64±1b | 0.34±0.01b | 755±43a | 711±62ab | 7484±748b | 12.43±0.24b | 1.32±0.10b | 8.32±0.52b | |
T5 | 5.68a | 51.6±0.1a | 0.35±0.01a | 60±3c | 0.53±0.04a | 623±63a | 783±60a | 11050±680a | 14.82±0.12a | 1.53±0.10a | 12.35±1.11a | |
120 | CK | 4.53d | 49.7±0.2d | 0.21±0.01d | 71±2a | 0.09±0.01a | 615±24a | 172±38c | 1437±372c | 9.72±0.52e | 0.74±0.13b | 2.52±0.53b |
T1 | 4.85c | 52.1±0.6c | 0.22±0.01d | 69±2a | 0.09±0.00a | 612±19a | 183±20bc | 1518±222c | 10.53±0.41de | 1.52±0.15a | 2.61±0.41b | |
T2 | 4.95bc | 54.7±1.6bc | 0.24±0.01c | 67±1ab | 0.09±0.01a | 633±31a | 249±66bc | 1949±322bc | 11.22±0.11cd | 0.83±0.11ab | 2.72±0.85b | |
T3 | 5.16b | 54.3±0.4b | 0.27±0.02b | 66±1b | 0.10±0.02a | 634±43a | 400±99ab | 2555±536b | 11.92±0.10bc | 1.32±0.33a | 3.41±1.01a | |
T4 | 5.40a | 57.0±1.0a | 0.29±0.02b | 63±2c | 0.12±0.02a | 631±47a | 414±54ab | 3044±513ab | 12.34±0.32b | 1.42±0.22a | 4.02±1.02a | |
T5 | 5.56a | 57.0±1.4a | 0.33±0.01a | 60±2c | 0.12±0.01a | 593±48a | 481±99a | 3682±163a | 14.62±0.42a | 1.45±0.14a | 4.72±1.23a |
表5 生长前后不同生物炭和椰糠体积比处理对香蕉基质物理化学性质的影响
Table 5 Effects of differentvolume ratios of biochar and coconut bran on physicochemical properties of banana matrix before and after growth
天数Time/d | 处理 Treatment | pH | 有机碳 Organic carbon w(C content)/ (g∙kg-1) | 容重 Bulk density/ (g∙cm-1) | 总孔隙度 Total porosity/ % | 电导率 Conductivity EC/ (mS∙cm-1) | 碱解氮Alkali-hydro nitrogen w(Alkali-N)/ (mg·kg-1) | 有效磷Available phosphorus w(Olsen-P)/ (mg∙kg-1) | 有效钾Available potassium w(Available-P)/ (mg∙kg-1) | 总氮 Total nitrogen w(Total N)/ (g∙kg-1) | 总磷 Total phosphorus w(Total P)/ (g∙kg-1) | 总钾 Total potassium w(Total K)/ (g∙kg-1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | CK | 4.82c | 40.1±1.6c | 0.21±0.01d | 70±3a | 0.11±0.01d | 761±36a | 252±87c | 2842±303c | 9.11±0.61d | 0.82±0.11e | 2.63±0.32e |
T1 | 4.90c | 44.9±0.6bc | 0.25±0.01bc | 68±2a | 0.13±0.04d | 727±37a | 254±98c | 3109±453c | 8.02±0.72d | 0.83±0.12de | 3.02±0.11de | |
T2 | 5.15b | 45.8±0.1b | 0.28±0.03b | 67±2ab | 0.12±0.02d | 720±49a | 303±77c | 3814±577c | 10.61±0.52c | 1.02±0.10d | 4.23±0.63d | |
T3 | 5.20b | 49.9±0.4ab | 0.30±0.02b | 65±2b | 0.25±0.00c | 780±31a | 543±99b | 6136±291b | 11.43±0.84bc | 1.11±0.11c | 6.82±0.32c | |
T4 | 5.42a | 47.2±5.8ab | 0.33±0.01a | 64±1b | 0.34±0.01b | 755±43a | 711±62ab | 7484±748b | 12.43±0.24b | 1.32±0.10b | 8.32±0.52b | |
T5 | 5.68a | 51.6±0.1a | 0.35±0.01a | 60±3c | 0.53±0.04a | 623±63a | 783±60a | 11050±680a | 14.82±0.12a | 1.53±0.10a | 12.35±1.11a | |
120 | CK | 4.53d | 49.7±0.2d | 0.21±0.01d | 71±2a | 0.09±0.01a | 615±24a | 172±38c | 1437±372c | 9.72±0.52e | 0.74±0.13b | 2.52±0.53b |
T1 | 4.85c | 52.1±0.6c | 0.22±0.01d | 69±2a | 0.09±0.00a | 612±19a | 183±20bc | 1518±222c | 10.53±0.41de | 1.52±0.15a | 2.61±0.41b | |
T2 | 4.95bc | 54.7±1.6bc | 0.24±0.01c | 67±1ab | 0.09±0.01a | 633±31a | 249±66bc | 1949±322bc | 11.22±0.11cd | 0.83±0.11ab | 2.72±0.85b | |
T3 | 5.16b | 54.3±0.4b | 0.27±0.02b | 66±1b | 0.10±0.02a | 634±43a | 400±99ab | 2555±536b | 11.92±0.10bc | 1.32±0.33a | 3.41±1.01a | |
T4 | 5.40a | 57.0±1.0a | 0.29±0.02b | 63±2c | 0.12±0.02a | 631±47a | 414±54ab | 3044±513ab | 12.34±0.32b | 1.42±0.22a | 4.02±1.02a | |
T5 | 5.56a | 57.0±1.4a | 0.33±0.01a | 60±2c | 0.12±0.01a | 593±48a | 481±99a | 3682±163a | 14.62±0.42a | 1.45±0.14a | 4.72±1.23a |
[1] | DOWNIE A, CROSKY A, MUNROE P, 2009. Physical properties of biochar, In Biochar for Environmental Management:Science and Technology, Edited by:Lehmann, J. and Joseph, S.[M]. London: Earth-scan: 13-33. |
[2] |
HINSINGER P, PLASSARD C, TANG C, et al., 2003. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review[J]. Plant Soil, 248(1-2): 43-59.
DOI URL |
[3] | NOGUERA P, ABAD M, NOGUERA V, et al., 2000. Coconut coir dust waste, a new and viable ecologically friendly peat Substitute[J]. Acta Horticulturae, 517: 279-286. |
[4] | REZENDE E I P, ANGELO L C, SANTOS S S D, et al., 2011. Biochar & Carbon Sequestration[J]. Biochar, 3(5): 426-433. |
[5] |
ZENG M, DE VRIES W, BONTEN L T C, et al., 2017. Model-based analysis of the long-term effects of fertilization management on cropland soil acidification[J]. Environmental Science & Technology, 51(7): 3843-3851.
DOI URL |
[6] | 陈海斌, 2017. 香蕉氮磷钾钙镁硫胁迫下的营养特性与营养诊断研究[D]. 广州: 华南农业大学: 112-126. |
CHEN H B, 2017. Study on banana nutrition characteristics under N, P, K, Ca, Mg, S deficiency and banana nutrition diagnosis[D]. Guangzhou: South China Agricultural University: 112-126. | |
[7] | 戴敏洁, 马蔚红, 刘永霞, 等, 2013. 香蕉组培苗组育苗基质配方的筛选[J]. 热带作物学报, 34(9): 1714-1724. |
DAI M J, MA W H, LIU Y X, et al., 2013. Substrates selection for the banana tissue culturing[J]. Chinese Journal of Tropical Crops, 34(9): 1714-1724. | |
[8] | 范如芹, 张振华, 严少华, 等, 2018. 生物炭和高吸水树脂可改善养殖垫料基质理化性状[J]. 植物营养与肥料学报, 24(2): 435-443. |
FAN R Q, ZHANG Z H, YAN S H, et al., 2018. Improvement of bedding material-based substrate using biochar and super absorbent polymer[J]. Journal of Plant Nutrition and Fertilizers, 24(2): 435-443. | |
[9] | 房彬, 李心清, 赵斌, 等, 2014. 生物炭对旱作农田土壤理化性质及作物产量的影响[J]. 生态环境学报, 23(8): 1292-1297. |
FANG B, LI X Q, ZHAO B, et al., 2014. Influence of biochar on soil physical and chemical properties and crop yields in rainfed field[J]. Ecology and Environment Sciences, 23(8): 1292-1297. | |
[10] | 高海英, 何绪生, 耿增超, 等, 2011. 生物炭及炭基氮肥对土壤持水性能影响的研究[J]. 中国农学通报, 27(24): 207-213. |
GAO H Y, HE X S, GENG Z C, et al., 2011. Effects of biochar and biochar-based nitrogen fertilizer on soil water-holding capacity[J]. Chinese Agricultural Science Bulletin, 27(24): 207-213. | |
[11] | 勾芒芒, 屈忠义, 2013. 土壤中施用生物炭对番茄根系特征及产量的影响[J]. 生态环境学报, 22(8): 1348-1352. |
GOU M M, QU Z Y, 2013. Effect of biochar on root distribution and yield of tomato in sandy loam soil[J]. Ecology and Environment Sciences, 22(8): 1348-1352. | |
[12] | 郭世荣, 2003. 无土栽培学[M]. 北京: 中国农业出版社: 423-424. |
GUO S R, 2003. Soilless Culture[M]. Beijing: China Agriculture Press: 423-424. | |
[13] | 何绪生, 耿增超, 佘雕, 等, 2011. 生物炭生产与农用的意义及国内外动态[J]. 农业工程学报, 27(2): 1-7. |
HE X S, GENG Z C, SHE D, et al., 2011. Implications of production and agricultural utilization of biochar and its international dynamic[J]. Transactions of the Chinese Society of Agricultural Engineering, 27(2): 1-7. | |
[14] | 胡青青, 李恋卿, 潘根兴, 2017. 生物质炭醋糟复配物代替草炭对辣椒幼苗生长的影响[J]. 土壤, 49(2): 273-282. |
HU Q Q, LI L Q, PAN G X, 2017. Effects of biochar-vinegar mixed substrates instead of peat on pepper seedling growth[J]. Soil, 49(2): 273-282. | |
[15] | 蒋梦蝶, 何志龙, 孙赟, 等, 2018. 尿素和生物质炭对茶园土壤pH值及CO2和CH4排放的影响[J]. 农业环境科学学报, 37(1): 196-204. |
JIANG M D, HE Z L, SUN Y, et al., 2018. The effect of wheat-straw derived biochar on the soil pH and emissions of CO2 and CH4 from tea garden soil[J]. Journal of Agro-Environment Science, 37(1): 196-204. | |
[16] | 李昌见, 屈忠义, 勾芒芒, 等, 2014. 生物炭对土壤水肥利用效率与番茄生长影响研究[J]. 农业环境科学学报, 33(11): 2187-2193. |
LI C J, QU Z Y, GOU M M, et al., 2014. Effects of biochar amendment on soil water and nutrient utilization efficiencies and tomato growth[J]. Journal of Agro-Environment Science, 33(11): 2187-2193. | |
[17] | 李昌娟, 杨文浩, 周碧青, 等, 2021. 生物炭基肥对酸化茶园土壤养分及茶叶产质量的影响[J]. 土壤通报, 52(2): 387-397. |
LI C J, YANG W H, ZHOU B Q, et al., 2021. Effects of biochar based fertilizer on soil nutrients, tea output and quality in an acidified tea field[J]. Chinese Journal of Soil Science, 52(2): 387-397. | |
[18] | 李天鹤, 2019. 生物炭对马铃薯脱毒苗生长及产量品质的影响[D]. 长春: 吉林农业大学: 18-22. |
LI T H, 2019. Effect of biochar on the growth yield and quality of potato Virus-free seedlings[D]. Changchun: Jilin Agricultural University: 18-22. | |
[19] | 李志刚, 秦军, 赵健, 等, 2010. 添加硫酸铵的生物质炭型育苗基质使用效果研究[J]. 中国农学通报, 26(24): 295-300. |
LI Z G, QIN J, ZHAO J, et al., 2010. Studies on application effect of biomass charcoal seedling substrate after added ammonium sulfate[J]. Chinese Agricultural Science Bulletin, 26(24): 295-300. | |
[20] | 刘卉, 周清明, 黎娟, 等, 2015. 生物炭施用量对土壤改良剂烤烟生长的影响[J]. 核农学报, 30(7): 1411-1419. |
LIU H, ZHOU Q M, LI J, et al., 2015. Effect of biochar application amount on the soil improvement and the growth of flue-cured tobacco[J]. Journal of Nuclear Agricultural Sciences, 30(7): 1411-1419. | |
[21] | 刘洁云, 吴艳艳, 牟海飞, 等, 2021. 苗期施硒对香蕉植株生长及果实品质的影响[J]. 热带农业科学, 41(1): 13-18. |
LIU J Y, WU Y Y, MOU H F, et al., 2021. Effects of Selenium application at the seedling stage on plant growth and fruit quality of banana[J]. Chinese Journal of Tropical Agriculture, 41(1): 13-18. | |
[22] | 刘玉学, 刘微, 吴伟祥, 等, 2009. 土壤生物质炭环境行为与环境效应[J]. 应用生态学报, 20(4): 977-982. |
LIU Y X, LIU W, WU W X, et al., 2009. Environmental behavior and effect of biomass-derived black carbon in soil: A review[J]. Chinese Journal of Applied Ecology, 20(4): 977-982. | |
[23] | 鲁如坤, 2000. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社: 150-152, 179-181, 194-195, 308-315. |
LU R K, 2000. Methods for agricultural chemical analysis of soils[M]. Beijing: China Agricultural Science and Technology Press: 150-152, 179-181, 194-195, 308-315. | |
[24] | 王必尊, 唐粉玲, 何应对, 等, 2013. 不同基质对香蕉组培苗生长及光合特性的影响[J]. 热带作物学报, 34(3): 398-402. |
WANG B Z, TANG F L, HE Y D, et al., 2013. The Effects of the Different Substrates on Banana Plantlet Growth and Photosynthetic Characteristics[J]. Chinese Journal of Tropical Agriculture, 34(3): 398-402. | |
[25] | 王雪玉, 刘金泉, 胡云, 等, 2018. 生物炭对黄瓜根际土壤细菌丰度、速效养分含量及酶活性的影响[J]. 核农学报, 32(2): 370-376. |
WANG X Y, LIU J Q, HU Y, et al., 2018. Effect of biochar on microorganism, nutrient content and enzyme activity of cucumber rhizosphere soil[J]. Journal of Nuclear Agricultural Sciences, 32(2): 370-376. | |
[26] | 颜永毫, 郑纪勇, 张兴昌, 等, 2013. 生物炭添加对黄土高原典型土壤田间持水量的影响[J]. 水土保持学报, 27(4): 120-124, 190. |
YAN Y H, ZHENG J Y, ZHANG X C, et al., 2013. Impact of biochar addition into typical soils on field capacity in Loess Plateau[J]. Journal of Soil and Water Conservation, 27(4): 120-124, 190. | |
[27] | 杨解君, 2021. 实现碳中和的多元化路径[J/OL]. 南京工业大学学报 (社会科学版), 20(2): 14-25. |
YANG X J, 2021. Diversified paths to carbon neutrality[J/OL]. Journal of Nanjing Tech University (Social Science Edition), 20(2): 14-25. | |
[28] | 余小兰, 2012. 香蕉吸钾特性及钾肥效应研究[D]. 南宁: 广西大学: 18-23. |
YU X L, 2012. Potassium uptake characteristics of Banana and K fertilization effect[D]. Nanning: Guangxi University: 18-23. | |
[29] | 郑慧芬, 吴红慧, 翁伯琦, 等, 2019. 施用生物炭提高酸性红壤茶园土壤的微生物特征及酶活性[J]. 中国土壤与肥料 (2): 68-74. |
ZHENG H F, WU H H, WENG B Q, et al., 2019. Improved soil microbial characteristics and enzyme activities with wheat straw biochar addition to an acid tea plantation in red soil[J]. Soils and Fertilizers Sciences in China (2): 68-74. | |
[30] | 赵凤亮, 邹刚华, 单颖, 等, 2020. 香蕉园化肥施用现状、面源污染风险及其养分综合管理措施[J]. 热带作物学报, 41(11): 2346-2352. |
ZHAO F L, ZOU G H, SHAN Y, et al., 2020. Current status of chemical fertilizer application in banana plantation, environmental risks and integrated nutrient management practices[J]. Chinese Journal of Tropical Crops, 41(11): 2346-2352. | |
[31] | 赵倩雯, 孟军, 陈温福, 2015. 生物炭对大白菜幼苗生长的影响[J]. 农业环境科学学报, 34(12): 2394-2401. |
ZHAO Q W, MENG J, CHEN W F, 2015. Effect of biochar on growth of Brassica campestris L. ssp. pekinesis (Lour) Olsson[J]. Journal of Agro-Environment Science, 34(12): 2394-2401. |
[1] | 赵维彬, 唐丽, 王松, 刘玲玲, 王树凤, 肖江, 陈光才. 两种生物炭对滨海盐碱土的改良效果[J]. 生态环境学报, 2023, 32(4): 678-686. |
[2] | 向兴, 满百膺, 张俊忠, 罗洋, 毛小涛, 张超, 孙丙华, 王希. 黄山土壤细菌群落及氮循环功能群的垂向分布格局[J]. 生态环境学报, 2023, 32(1): 56-69. |
[3] | 游宏建, 张文文, 兰正芳, 马兰, 张宝娣, 穆晓坤, 李文慧, 曹云娥. 蚯蚓原位堆肥与生物炭对黄瓜根结线虫及根际微生物的影响[J]. 生态环境学报, 2023, 32(1): 99-109. |
[4] | 肖国举, 李秀静, 郭占强, 胡延斌, 王静. 贺兰山东麓土壤有机碳对玉米生长发育及水分利用的影响[J]. 生态环境学报, 2022, 31(9): 1754-1764. |
[5] | 李晓晖, 艾仙斌, 李亮, 王玺洋, 辛在军, 孙小艳. 新型改性稻壳生物炭材料对镉污染土壤钝化效果的研究[J]. 生态环境学报, 2022, 31(9): 1901-1908. |
[6] | 陶玲, 黄磊, 周怡蕾, 李中兴, 任珺. 污泥-凹凸棒石共热解生物炭对矿区土壤重金属生物有效性和环境风险的影响[J]. 生态环境学报, 2022, 31(8): 1637-1646. |
[7] | 房献宝, 张智钧, 赖阳晴, 叶脉, 刁增辉. 新型污泥生物炭对土壤重金属Cr和Cd的修复研究[J]. 生态环境学报, 2022, 31(8): 1647-1656. |
[8] | 孙梦鑫, 张岳, 辛宇, 钟鼎杰, 杨存建. 川西高原近20 a植被物候变化及其对气候变化的响应[J]. 生态环境学报, 2022, 31(7): 1326-1339. |
[9] | 李程程, 张子蕤, 宋晓萱, 孔娟娟, 韩阳, 阮亚男. 臭氧胁迫对大豆抗氧化代谢与生殖生长的影响[J]. 生态环境学报, 2022, 31(7): 1383-1392. |
[10] | 刘宁, 刘洋, 续京平, 宋慧平, 冯政君, 程芳琴. 丛枝菌根真菌对人工湿地植物生长及水质净化的影响研究[J]. 生态环境学报, 2022, 31(7): 1434-1441. |
[11] | 钱莲文, 余甜甜, 梁旭军, 王义祥, 陈永山. 茶园土壤酸化改良中生物炭应用5 a后的稳定性研究[J]. 生态环境学报, 2022, 31(7): 1442-1447. |
[12] | 刘晓红, 刘柳青青, 栗敏, 刘强, 曹东东, 郑浩, 罗先香. 不同粒径的聚乙烯微塑料对玉米和黄瓜种子发芽和幼苗生长的影响[J]. 生态环境学报, 2022, 31(6): 1263-1271. |
[13] | 张慧琦, 李子忠, 秦艳. 玉米秸秆生物炭用量对砂土孔隙和持水性的影响[J]. 生态环境学报, 2022, 31(6): 1272-1277. |
[14] | 邓晓, 武春媛, 杨桂生, 李怡, 李勤奋. 椰壳生物炭对海南滨海土壤的改良效果[J]. 生态环境学报, 2022, 31(4): 723-731. |
[15] | 赵超凡, 周丹丹, 孙建财, 钱坤鹏, 李芳芳. 生物炭中可溶性组分对其吸附镉的影响[J]. 生态环境学报, 2022, 31(4): 814-823. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||