生态环境学报 ›› 2021, Vol. 30 ›› Issue (7): 1455-1469.DOI: 10.16258/j.cnki.1674-5906.2021.07.015
高峰1(), 陈晓玲2,*(
), 杨文府3,4, 史利江1, 汪雯雯4
收稿日期:
2021-05-12
出版日期:
2021-07-18
发布日期:
2021-10-09
通讯作者:
*E-mail: xiaoling_chen@whu.edu.cn作者简介:
高峰(1987年生),男,讲师,博士,主要从事水环境遥感和气候变化方面的研究。E-mail: gaofeng0204@sxufe.edu.cn
基金资助:
GAO Feng1(), CHEN Xiaoling2,*(
), YANG Wenfu3,4, SHI Lijiang1, WANG Wenwen4
Received:
2021-05-12
Online:
2021-07-18
Published:
2021-10-09
摘要:
水体组分吸收特性是水下光场和水面光谱的主要影响因子,对其进行研究有助于提高对城市水体光学吸收特性的认识和利用遥感技术手段动态监测城市水环境质量。共采集太原市不同类型(晋阳湖和排洪渠、汾河太原城区段和汾河二库)夏季水体30个样本的实测数据,对水体总颗粒物、非色素颗粒物、色素颗粒物和CDOM的吸收特征进行分析。结果表明:(1)太原市不同类型夏季水体总颗粒物吸收特征的主导因素各异,排洪渠和汾河太原城区段为非色素颗粒物主导类型,晋阳湖和汾河二库为色素颗粒物主导类型;(2)太原市不同类型夏季水体绝大多数样本色素颗粒物吸收系数在440、675 nm处呈现典型的Chla吸收峰,色素颗粒物吸收系数aph(440)、aph(675)与Chla浓度均存在显著线性正相关,但675 nm处的相关性强于440 nm;(3)非色素颗粒物吸收系数ad(440)、ad(675)与TSM、ISM、OSM、TP和TN均存在显著的相关性,但与Chla没有相关性;(4)太原市不同类型夏季水体M值较小,CDOM中腐殖酸相对含量较高,相对分子质量较大,陆源性物质的输入占据主导地位;晋阳湖水体M值与太原市其他类型水体相比,M值较大,富里酸的相对含量较高,相对分子质量较小;(5)太原市不同类型水体非色素颗粒物、色素颗粒物和CDOM吸收贡献率在不同波段处差异显著,不同采样点水体吸收特性的主导影响因素各异。该研究对认识城市不同类型夏季水体固有光学特性和构建水质参数遥感反演模型提供重要参考。
中图分类号:
高峰, 陈晓玲, 杨文府, 史利江, 汪雯雯. 太原市不同类型夏季水体颗粒物与CDOM吸收特性研究[J]. 生态环境学报, 2021, 30(7): 1455-1469.
GAO Feng, CHEN Xiaoling, YANG Wenfu, SHI Lijiang, WANG Wenwen. Study on the Absorption Characteristics of Different Types of Water Particles and CDOM in Summer in Taiyuan[J]. Ecology and Environment, 2021, 30(7): 1455-1469.
站点 Sites | 经度 Longitude | 纬度 Latitude | 采样时间 Sampling time | 采样位置 Sampling location |
---|---|---|---|---|
A1 | 112.50°E | 37.76°N | Aug. 14, 2020 | 晋阳湖 Lake Jinyang |
A2 | 112.52°E | 37.76°N | Aug. 15, 2020 | 排洪渠 Flood discharge channel |
A3 | 112.47°E | 37.71°N | Aug. 15, 2020 | |
A4 | 112.46°E | 37.69°N | Aug. 15, 2020 | |
A5 | 112.53°E | 37.84°N | Aug. 15, 2020 | |
A6 | 112.51°E | 37.90°N | Aug. 15, 2020 | |
A7 | 112.53°E | 37.85°N | Aug. 17, 2020 | 汾河太原城区段 Taiyuan reach of the Fenhe river |
A8 | 112.54°E | 37.83°N | Aug. 17, 2020 | |
A9 | 112.53°E | 37.82°N | Aug. 17, 2020 | |
A10 | 112.53°E | 37.79°N | Aug. 17, 2020 | |
A11 | 112.53°E | 37.79°N | Aug. 17, 2020 | |
A12 | 112.53°E | 37.78°N | Aug. 17, 2020 | |
A13 | 112.51°E | 37.93°N | Aug. 18, 2020 | |
A14 | 112.51°E | 37.92°N | Aug. 18, 2020 | |
A15 | 112.53°E | 37.90°N | Aug. 18, 2020 | |
A16 | 112.53°E | 37.89°N | Aug. 18, 2020 | |
A17 | 112.53°E | 37.89°N | Aug. 18, 2020 | |
A18 | 112.53°E | 37.89°N | Aug. 18, 2020 | |
A19 | 112.54°E | 37.76°N | Aug. 20, 2020 | |
A20 | 112.53°E | 37.77°N | Aug. 20, 2020 | |
A21 | 112.53°E | 37.76°N | Aug. 20, 2020 | |
A22 | 112.53°E | 37.76°N | Aug. 20, 2020 | |
A23 | 112.54°E | 37.75°N | Aug. 20, 2020 | |
A24 | 112.54°E | 37.74°N | Aug. 20, 2020 | |
A25 | 112.37°E | 37.98°N | Aug. 22, 2020 | 汾河二库 Fenhe second reservoir |
A26 | 112.36°E | 37.98°N | Aug. 22, 2020 | |
A27 | 112.36°E | 37.97°N | Aug. 22, 2020 | |
A28 | 112.54°E | 37.74°N | Aug. 23, 2020 | 汾河太原城区段 Taiyuan reach of the Fenhe river |
A29 | 112.54°E | 37.71°N | Aug. 23, 2020 | |
A30 | 112.54°E | 37.76°N | Aug. 23, 2020 |
表1 采样点位置和时间
Table 1 Location and time of sample sites
站点 Sites | 经度 Longitude | 纬度 Latitude | 采样时间 Sampling time | 采样位置 Sampling location |
---|---|---|---|---|
A1 | 112.50°E | 37.76°N | Aug. 14, 2020 | 晋阳湖 Lake Jinyang |
A2 | 112.52°E | 37.76°N | Aug. 15, 2020 | 排洪渠 Flood discharge channel |
A3 | 112.47°E | 37.71°N | Aug. 15, 2020 | |
A4 | 112.46°E | 37.69°N | Aug. 15, 2020 | |
A5 | 112.53°E | 37.84°N | Aug. 15, 2020 | |
A6 | 112.51°E | 37.90°N | Aug. 15, 2020 | |
A7 | 112.53°E | 37.85°N | Aug. 17, 2020 | 汾河太原城区段 Taiyuan reach of the Fenhe river |
A8 | 112.54°E | 37.83°N | Aug. 17, 2020 | |
A9 | 112.53°E | 37.82°N | Aug. 17, 2020 | |
A10 | 112.53°E | 37.79°N | Aug. 17, 2020 | |
A11 | 112.53°E | 37.79°N | Aug. 17, 2020 | |
A12 | 112.53°E | 37.78°N | Aug. 17, 2020 | |
A13 | 112.51°E | 37.93°N | Aug. 18, 2020 | |
A14 | 112.51°E | 37.92°N | Aug. 18, 2020 | |
A15 | 112.53°E | 37.90°N | Aug. 18, 2020 | |
A16 | 112.53°E | 37.89°N | Aug. 18, 2020 | |
A17 | 112.53°E | 37.89°N | Aug. 18, 2020 | |
A18 | 112.53°E | 37.89°N | Aug. 18, 2020 | |
A19 | 112.54°E | 37.76°N | Aug. 20, 2020 | |
A20 | 112.53°E | 37.77°N | Aug. 20, 2020 | |
A21 | 112.53°E | 37.76°N | Aug. 20, 2020 | |
A22 | 112.53°E | 37.76°N | Aug. 20, 2020 | |
A23 | 112.54°E | 37.75°N | Aug. 20, 2020 | |
A24 | 112.54°E | 37.74°N | Aug. 20, 2020 | |
A25 | 112.37°E | 37.98°N | Aug. 22, 2020 | 汾河二库 Fenhe second reservoir |
A26 | 112.36°E | 37.98°N | Aug. 22, 2020 | |
A27 | 112.36°E | 37.97°N | Aug. 22, 2020 | |
A28 | 112.54°E | 37.74°N | Aug. 23, 2020 | 汾河太原城区段 Taiyuan reach of the Fenhe river |
A29 | 112.54°E | 37.71°N | Aug. 23, 2020 | |
A30 | 112.54°E | 37.76°N | Aug. 23, 2020 |
站点 Sites | ρ(TSM)/ (mg∙L-1) | ρ(Chla)/ (mg∙m-3) | ρ(ISM)/ (mg∙L-1) | ρ(OSM)/ (mg∙L-1) | ρ(TN)/ (mg∙L-1) | ρ(TP)/ (mg∙L-1) |
---|---|---|---|---|---|---|
A1 | 13.67 | 22.6 | 5 | 8.67 | 1.44 | 0.02 |
A2 | 24 | 48.55 | 15 | 9 | 3.18 | 0.12 |
A3 | 41 | 40.36 | 29.5 | 11.5 | 5.8 | 0.25 |
A4 | 47.5 | 16.01 | 35.5 | 12 | 5.48 | 0.17 |
A5 | 15 | 9.58 | 10.33 | 4.67 | 4.31 | 0.15 |
A6 | 27.5 | 50.86 | 18.5 | 9 | 2.88 | 0.2 |
A7 | 19 | 51.42 | 5 | 14 | 3.17 | 0.12 |
A8 | 17.5 | 68.89 | 7.5 | 10 | 4.24 | 0.12 |
A9 | 11 | 13.25 | 7.67 | 3.33 | 2.07 | 0.05 |
A10 | 18.5 | 32.46 | 5 | 13.5 | 5.44 | 0.2 |
A11 | 47.5 | 42.85 | 31.5 | 16 | 2.53 | 0.13 |
A12 | 18.5 | 62.73 | 12 | 6.5 | 3.62 | 0.22 |
A13 | 37 | 375.95 | 6 | 31 | 3.27 | 0.37 |
A14 | 29.5 | 27.01 | 18.5 | 11 | 4.36 | 0.14 |
A15 | 8.5 | 43.2 | 3.5 | 5 | 2.65 | 0.09 |
A16 | 20.5 | 39.19 | 13 | 7.5 | 3.39 | 0.12 |
A17 | 41.5 | 33.15 | 35 | 6.5 | 3.17 | 0.1 |
A18 | 137.14 | 2.55 | 115.71 | 21.43 | 11.06 | 0.34 |
A19 | 11.67 | 75.46 | 3.67 | 8 | 4.25 | 0.16 |
A20 | 19 | 60.82 | 10 | 9 | 3.46 | 0.11 |
A21 | 16.33 | 87.27 | 7.67 | 8.67 | 3.39 | 0.09 |
A22 | 14.33 | 111.17 | 5.33 | 9 | 3.43 | 0.1 |
A23 | 24 | 332.71 | 5.33 | 18.67 | 3.72 | 0.26 |
A24 | 24.33 | 265.71 | 7 | 17.33 | 3.91 | 0.19 |
A25 | 3.33 | 12.14 | 0.33 | 3 | 1.89 | 0.01 |
A26 | 4 | 12.98 | 0 | 4 | 1.82 | 0.01 |
A27 | 4.67 | 14.81 | 0.33 | 4.33 | 1.69 | 0.01 |
A28 | 14 | 114.27 | 4 | 10 | 3.32 | 0.14 |
A29 | 15 | 137.98 | 3.33 | 11.67 | 3.41 | 0.17 |
A30 | 17.33 | 113.89 | 5.67 | 11.67 | 3.08 | 0.42 |
表2 太原市不同类型水体水质参数结果
Table 2 Results of water quality parameters for different types of water in Taiyuan City
站点 Sites | ρ(TSM)/ (mg∙L-1) | ρ(Chla)/ (mg∙m-3) | ρ(ISM)/ (mg∙L-1) | ρ(OSM)/ (mg∙L-1) | ρ(TN)/ (mg∙L-1) | ρ(TP)/ (mg∙L-1) |
---|---|---|---|---|---|---|
A1 | 13.67 | 22.6 | 5 | 8.67 | 1.44 | 0.02 |
A2 | 24 | 48.55 | 15 | 9 | 3.18 | 0.12 |
A3 | 41 | 40.36 | 29.5 | 11.5 | 5.8 | 0.25 |
A4 | 47.5 | 16.01 | 35.5 | 12 | 5.48 | 0.17 |
A5 | 15 | 9.58 | 10.33 | 4.67 | 4.31 | 0.15 |
A6 | 27.5 | 50.86 | 18.5 | 9 | 2.88 | 0.2 |
A7 | 19 | 51.42 | 5 | 14 | 3.17 | 0.12 |
A8 | 17.5 | 68.89 | 7.5 | 10 | 4.24 | 0.12 |
A9 | 11 | 13.25 | 7.67 | 3.33 | 2.07 | 0.05 |
A10 | 18.5 | 32.46 | 5 | 13.5 | 5.44 | 0.2 |
A11 | 47.5 | 42.85 | 31.5 | 16 | 2.53 | 0.13 |
A12 | 18.5 | 62.73 | 12 | 6.5 | 3.62 | 0.22 |
A13 | 37 | 375.95 | 6 | 31 | 3.27 | 0.37 |
A14 | 29.5 | 27.01 | 18.5 | 11 | 4.36 | 0.14 |
A15 | 8.5 | 43.2 | 3.5 | 5 | 2.65 | 0.09 |
A16 | 20.5 | 39.19 | 13 | 7.5 | 3.39 | 0.12 |
A17 | 41.5 | 33.15 | 35 | 6.5 | 3.17 | 0.1 |
A18 | 137.14 | 2.55 | 115.71 | 21.43 | 11.06 | 0.34 |
A19 | 11.67 | 75.46 | 3.67 | 8 | 4.25 | 0.16 |
A20 | 19 | 60.82 | 10 | 9 | 3.46 | 0.11 |
A21 | 16.33 | 87.27 | 7.67 | 8.67 | 3.39 | 0.09 |
A22 | 14.33 | 111.17 | 5.33 | 9 | 3.43 | 0.1 |
A23 | 24 | 332.71 | 5.33 | 18.67 | 3.72 | 0.26 |
A24 | 24.33 | 265.71 | 7 | 17.33 | 3.91 | 0.19 |
A25 | 3.33 | 12.14 | 0.33 | 3 | 1.89 | 0.01 |
A26 | 4 | 12.98 | 0 | 4 | 1.82 | 0.01 |
A27 | 4.67 | 14.81 | 0.33 | 4.33 | 1.69 | 0.01 |
A28 | 14 | 114.27 | 4 | 10 | 3.32 | 0.14 |
A29 | 15 | 137.98 | 3.33 | 11.67 | 3.41 | 0.17 |
A30 | 17.33 | 113.89 | 5.67 | 11.67 | 3.08 | 0.42 |
图2 太原市不同类型水体总颗粒物吸收系数光谱曲线 (a)晋阳湖和排洪渠;(b)汾河二库;(c)汾河太原城区段。下同
Fig. 2 Spectral curves of the absorption coefficient of total particles for different types of water in Taiyuan city (a) Lake Jinyang and flood discharge channel; (b) Fenhe second reservoir; (c) Taiyuan district section of Fenhe river. The same below
图3 太原市不同类型水体总颗粒物、非色素颗粒物和色素颗粒物平均吸收光谱曲线
Fig. 3 Average absorption spectral curves of total suspended particles, non-algal particles and phytoplankton for different types of water in Taiyuan city
参数 Parameters | ap(440) | ap(675) | ad(440) | ad(675) | aph(440) | aph(675) | ag(440) | Chla | TSM | ISM | OSM | TP | TN |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ap(440) | 1.0000 | ||||||||||||
ap(675) | 0.7058** | 1.0000 | |||||||||||
ad(440) | 0.7071** | 0.0167 | 1.0000 | ||||||||||
ad(675) | 0.8405** | 0.3889* | 0.7996** | 1.0000 | |||||||||
aph(440) | 0.7275** | 0.9815** | 0.0292 | 0.4123* | 1.0000 | ||||||||
aph(675) | 0.6348** | 0.9941** | -0.0770 | 0.2863 | 0.9720** | 1.0000 | |||||||
ag(440) | 0.5824** | 0.1778 | 0.6212** | 0.6238** | 0.2206 | 0.1112 | 1.0000 | ||||||
Chla | 0.5959** | 0.9605** | -0.1033 | 0.2295 | 0.9426** | 0.9718** | 0.1668 | 1.0000 | |||||
TSM | 0.6821** | 0.0332 | 0.9469** | 0.7118** | 0.0454 | -0.0495 | 0.6296** | -0.0458 | 1.0000 | ||||
ISM | 0.5312** | -0.1645 | 0.9298** | 0.6355** | -0.1513 | -0.2462 | 0.5850** | -0.2428 | 0.9734** | 1.0000 | |||
OSM | 0.8600** | 0.7342** | 0.4945** | 0.6022** | 0.7359** | 0.6924** | 0.4493* | 0.6955** | 0.5531** | 0.3474 | 1.0000 | ||
TP | 0.7354** | 0.5641** | 0.4876** | 0.5722** | 0.5664** | 0.5191** | 0.6232** | 0.5037** | 0.5074** | 0.3740* | 0.7169** | 1.0000 | |
TN | 0.6132** | 0.0254 | 0.8720** | 0.7247** | 0.0207 | -0.0592 | 0.7009** | -0.0609 | 0.8370** | 0.8191** | 0.4469* | 0.5567** | 1.0000 |
表3 颗粒物吸收系数、CDOM和水质参数之间的线性相关关系
Table 3 Linear relationship between absorption coefficient of particulates and water quality parameters
参数 Parameters | ap(440) | ap(675) | ad(440) | ad(675) | aph(440) | aph(675) | ag(440) | Chla | TSM | ISM | OSM | TP | TN |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ap(440) | 1.0000 | ||||||||||||
ap(675) | 0.7058** | 1.0000 | |||||||||||
ad(440) | 0.7071** | 0.0167 | 1.0000 | ||||||||||
ad(675) | 0.8405** | 0.3889* | 0.7996** | 1.0000 | |||||||||
aph(440) | 0.7275** | 0.9815** | 0.0292 | 0.4123* | 1.0000 | ||||||||
aph(675) | 0.6348** | 0.9941** | -0.0770 | 0.2863 | 0.9720** | 1.0000 | |||||||
ag(440) | 0.5824** | 0.1778 | 0.6212** | 0.6238** | 0.2206 | 0.1112 | 1.0000 | ||||||
Chla | 0.5959** | 0.9605** | -0.1033 | 0.2295 | 0.9426** | 0.9718** | 0.1668 | 1.0000 | |||||
TSM | 0.6821** | 0.0332 | 0.9469** | 0.7118** | 0.0454 | -0.0495 | 0.6296** | -0.0458 | 1.0000 | ||||
ISM | 0.5312** | -0.1645 | 0.9298** | 0.6355** | -0.1513 | -0.2462 | 0.5850** | -0.2428 | 0.9734** | 1.0000 | |||
OSM | 0.8600** | 0.7342** | 0.4945** | 0.6022** | 0.7359** | 0.6924** | 0.4493* | 0.6955** | 0.5531** | 0.3474 | 1.0000 | ||
TP | 0.7354** | 0.5641** | 0.4876** | 0.5722** | 0.5664** | 0.5191** | 0.6232** | 0.5037** | 0.5074** | 0.3740* | 0.7169** | 1.0000 | |
TN | 0.6132** | 0.0254 | 0.8720** | 0.7247** | 0.0207 | -0.0592 | 0.7009** | -0.0609 | 0.8370** | 0.8191** | 0.4469* | 0.5567** | 1.0000 |
水体类型 Water type | M值变化范围 Range of M value | M值均值 Mean of M value | 文献来源 Reference |
---|---|---|---|
本研究 This study | 5.62‒10.74 | 7.01±1.18 | ‒ |
太湖 Taihu | 6.94‒9.88 | 8.66±0.088 | 施坤等, (Shi et al., |
巢湖 Chaohu | 8.57‒15.22 | 10.6±1.57 | 施坤等, (Shi et al., |
滇池 Dianchi | 6.443‒10.238 | 7.678±0.164 | 张红等, 2011 (Zhang et al., 2011) |
查干湖 Chagan | 7.5‒15.09 | 11.44±2.00 | 李思佳等, (Li et al., |
新立城水库 Xinlicheng | 6.17‒8.89 | 7.53±0.79 | 李思佳等, (Li et al., |
表4 不同水体M值统计结果
Table 4 Statistic results of M values in different waters
水体类型 Water type | M值变化范围 Range of M value | M值均值 Mean of M value | 文献来源 Reference |
---|---|---|---|
本研究 This study | 5.62‒10.74 | 7.01±1.18 | ‒ |
太湖 Taihu | 6.94‒9.88 | 8.66±0.088 | 施坤等, (Shi et al., |
巢湖 Chaohu | 8.57‒15.22 | 10.6±1.57 | 施坤等, (Shi et al., |
滇池 Dianchi | 6.443‒10.238 | 7.678±0.164 | 张红等, 2011 (Zhang et al., 2011) |
查干湖 Chagan | 7.5‒15.09 | 11.44±2.00 | 李思佳等, (Li et al., |
新立城水库 Xinlicheng | 6.17‒8.89 | 7.53±0.79 | 李思佳等, (Li et al., |
[1] |
BINDING C E, JEROME J H, BUKATA R P, et al., 2008. Spectral absorption properties of dissolved and particulate matter in Lake Erie[J]. Remote Sensing of Environment, 112(4): 1702-1711.
DOI URL |
[2] |
BRICAUD A, BAIN M, MOREL A, 1995. Variability in the chlorophyll specific absorption coefficients of natural phytoplankton: Analysis and parameterization[J]. Journal of Geophysical Research, 100(C7): 13321-13332.
DOI URL |
[3] |
BRICAUD A, MOREL A, BABIN M, et al., 1998. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models[J]. Journal of Geophysical Research, 103(C13): 31033-31044.
DOI URL |
[4] | DAS S, HZARA S, GIRI S, et al., 2017. Light absorption characteristics of chromophoric dissolved organic matter (CDOM) in the coastal waters of northern Bay of Bengal during winter season[J]. Indian Journal of Geo-Marine Sciences, 46(5): 884-892. |
[5] |
GUILLERMINA RUIZ M, LUTZ V, FROUIN R, 2017. Spectral absorption by marine chromophoric dissolved organic matter: Laboratory determination and piecewise regression modeling[J]. Marine Chemistry, 194: 10-21.
DOI URL |
[6] | KIRK J T O, 1994. Light and photosynthesis in aquatic ecosystem[M]. Cambridge: Cambridge University Press: 1-431. |
[7] |
LEI X, PAN J Y, DEVLIN A, 2019. Characteristics of Absorption Spectra of Chromophoric Dissolved Organic Matter in the Pearl River Estuary in Spring[J]. Remote Sensing, DOI: 10.3390/rs11131533.
DOI |
[8] |
ZHANG Y L, ZHANG B, WANG X, et al., 2007. A study of absorption characteristics of chromophoric dissolved organic matter and particles in Lake Taihu, China[J]. Hydrobiologia, 592(1): 105-120.
DOI URL |
[9] | 曹文熙, 杨跃忠, 许晓强, 等, 2003. 珠江口悬浮颗粒物的吸收光谱及区域模式[J]. 科学通报, 48(17): 1876-1882. |
CAO W X, YANG Y Z, XU X Q, et al., 2003. Absorption spectrum and regional model of suspended particulate matter in the Pearl River Estuary[J]. Chinese Science Bulletin, 48(17): 1876-1882. | |
[10] | 陈毅忠, 杜尔登, 王聿琳, 等, 2017. 三维荧光组合PARAFAC分析评估城市水体DOM特征分布与来源[J]. 常州大学学报(自然科学版), 29(6): 55-62. |
CHEN Y Z, DU E D, WANG Y L, et al., 2017. Distribution and source of DOM in urban water bodies by EEMs spectrum and PARAFAC analysis[J]. Journal of Changzhou University (Natural Science Edition), 29(6): 55-62. | |
[11] | 程艳, 胡霞, 杜加强, 等, 2018. 西北内陆河城区段入河水体CDOM三维荧光光谱特征[J]. 中国环境科学, 38(7): 2680-2690. |
CHENG Y, HU X, DU J Q, et al., 2018. Characteristics of three-dimensional fluorescence on CDOM of the sewage into city segment of a typical northwest inland river[J]. China Environment Science, 38(7): 2680-2690. | |
[12] | 戴永宁, 李素菊, 王学军, 2008. 巢湖水体固有光学特性研究[J]. 环境科学研究, 21(5): 173-177. |
DAI Y N, LI S J, WANG X J, 2008. Inherent optical properties of water body of Chao Lake[J]. Research of Environmental Science, 21(5): 173-177. | |
[13] | 丁潇蕾, 李云梅, 吕恒, 等, 2018. 城市黑臭水体的吸收特性分析[J]. 环境科学, 39(10): 4519-4529. |
DING X L, LI Y M, LYN H, et al., 2018. Analysis of absorption characteristics of urban black-odor water[J]. Environmental Science, 39(10): 4519-4529. | |
[14] | 盖利亚, 刘正军, 张继贤, 2010. 三峡坝区水体吸收系数的特征研究[J]. 遥感学报, 14(2): 313-332. |
GAI L Y, LIU Z J, ZHANG J X, 2010. Absorption coefficient characteristics of the Three Gorges Dam water[J]. Journal of Remote Sensing, 14(2): 313-332. | |
[15] | 郭燕妮, 李元鹏, 石玉, 等, 2020. 大型通江湖泊有色可溶性有机物对不同水文情景的响应[J]. 环境科学, 41(5): 2198-2209. |
GUO Y N, LI Y P, SHI Y, et al., 2020. Response of chromophoric dissolved organic matter dynamics to different hydrological scenarios in the two largest freshwater lakes connected to the Yangtze River[J]. Environmental Science, 41(5): 2198-2209. | |
[16] | 黄昌春, 李云梅, 孙德勇, 等, 2009. 太湖CDOM紫外吸收特性及其分子量时空分布特征[J]. 中国环境科学, 29(3): 261-268. |
HUANG C C, LI Y M, SUN D Y, et al., 2009. Spatial-temporal distribution of CDOM molecular weight and its ultraviolet absorption characteristics in Taihu Lake[J]. China Environmental Science, 29(3): 261-268. | |
[17] | 雷霞, 郭子祺, 田野, 等, 2013. 官厅水库秋季悬浮颗粒物和CDOM吸收特性[J]. 湖泊科学, 26(6): 883-891. |
LEI X, GUO Z Q, TIAN Y, et al., 2013. Absorption characteristics of particulates and the CDOM in autumn in Guangting Reservoir[J]. Journal of Lake Science, 26(6): 883-891. | |
[18] | 李方, 徐京萍, 何艳芬, 等, 2009. 长春市石头口门水库颗粒物光谱吸收特性[J]. 湖泊科学, 21(2):280-287. |
LI F, XU J P, HE Y F, et al., 2009. Spectral absorption properties of particulate matters in the Shitoukoumen Reservori of Changchun city[J]. Journal of Lake Science, 21(2): 280-287. | |
[19] | 李佳琦, 李家国, 朱利, 等, 2019. 太原市黑臭水体遥感识别与地面验证[J]. 遥感学报, 23(4): 773-784. |
LI J Q, LI J G, ZHU L, et al., 2019. Remote sensing identification and validation of urban black and odorous water in Taiyuan city[J]. Journal of Remote Sensing, 23(4): 773-784. | |
[20] | 李思佳, 宋开山, 陈智文, 等, 2015. 兴凯湖春季水体悬浮颗粒物和CDOM吸收特性[J]. 湖泊科学, 27(5): 941-952. |
LI S J, SONG K S, CHEN Z W, et al., 2015. Absorption characteristics of particulaates and CDOM in spring in the Lake Xingkai[J]. Journal of Lake Science, 27(5): 941-952. | |
[21] | 李思佳, 宋开山, 赵莹, 等, 2016. 查干湖和新立城水库秋季水体悬浮颗粒物和CDOM吸收特性[J]. 环境科学, 37(1): 112-122. |
LI S J, SONG K S, ZHAO Y, et al., 2016. Absorption characteristics of particulates and CDOM in waters of Chagan Lake and Xinglicheng Reservoir in Autumn[J]. Environmental Science, 37(1): 112-122. | |
[22] | 刘剑, 李俊生, 申茜, 等, 2015. 昆明湖水体悬浮颗粒物与有色可溶性有机物光谱吸收特性研究[J]. 环境科学学报, 35(4): 1089-1096. |
LIU J, LI J S, SHEN Q, et al., 2015. Spectral absorption features of suspended particulate and colored dissolved organic matter in Kunming Lake[J]. Acta Scientiae Circumstantiate, 35(4): 1089-1096. | |
[23] | 刘忠华, 李云梅, 吕恒, 等, 2012. 太湖春季水体固有光学特性及其对遥感反射率变化的影响[J]. 生态学报, 32(2): 438-447. |
LIU Z H, LI Y M, LYN H, et al., 2012. Analysis of inherent optical properties of Lake Taihu in spring and its influence on the change of remote sensing reflectance[J]. Acta Ecological Sinica, 32(2): 438-447. | |
[24] | 柳彩霞, 郭子祺, 张宝钢, 等, 2011. 太湖流域坤承湖春季颗粒物和有色可溶性有机物吸收特性[J]. 湖泊科学, 23(5): 773-782. |
LIU C X, GUO Z Q, ZHANG B G, et al., 2011. Absorption characteristics of particulates and the CDOM in Spring in Lake Kuncheng, Taihu Basin[J]. Journal of Lake Science, 23(5): 773-782. | |
[25] | 马荣华, 戴锦芳, 张运林, 2005. 东太湖CDOM吸收光谱的影响因素与参数确定[J]. 湖泊科学, 17(2): 120-126. |
MA R H, DAI J F, ZHANG Y L, 2005. Influence Factors and slope coefficients of spectral absorption of coloured dissolved organic matter (CDOM) in East Taihu Lake, China[J]. Journal of Lake Sciences, 17(2): 120-126.
DOI URL |
|
[26] | 钱伟, 江淼华, 黄佳芳, 等, 2020. 闽江下游有机碳及CDOM的季节动态[J]. 亚热带资源与环境学报, 15(3): 1-8. |
QIAN W, JIANG M H, HUANG J F, et al., 2020. Seasonal variations of organic carbon and CDOM in the Lower Reaches of Min River[J]. Journal of Subtropical Resources and Environment, 15(3): 1-8. | |
[27] | 邵田田, 宋开山, 丁智, 等, 2016. 辽河水体光学吸收特性的季节变化[J]. 生态学报, 36(7): 1861-1871. |
SHAO T T, SONG K S, DING Z, et al., 2016. Absorption characteristics and seasonal variation of optically active water constituents from Liaohe River[J]. Acta Ecologica Sinica, 36(7): 1861-1871. | |
[28] | 施坤, 李云梅, 王桥, 等, 2010. 太湖、巢湖水体CDOM吸收特性和组成的异同[J]. 环境科学, 31(5): 1183-1191. |
SHI K, LI Y M, WANG Q, et al., 2010. Similarities and differences in absorption characteristics and composition of CDOM between Taihu Lake and Chaohu Lake[J]. Environmental Science, 31(5): 1183-1191. | |
[29] | 宋开山, 温志丹, 刘阁, 等, 2018. 内陆水体CDOM光学特性与遥感反演研究进展[J]. 吉林师范大学学报(自然科学版), 39(4): 115-125. |
SONG K S, WEN Z D, LIU G, et al., 2018. The research progress of CDOM optical characteristics and remote sensing retrieval for inland waters[J]. Journal of Jilin Normal University (Natural Science Edition), 39(4): 115-125. | |
[30] | 魏兰苏, 孙德勇, 李楠, 2018. 东中国海水体悬浮颗粒物的光谱吸收特征研究[J]. 科技视界 (21): 58-61. |
WEI L S, SUN D Y, LI N, 2018. Research on spectral absorption characteristics of particulates in East China sea[J]. Science & Technology Vision (21): 58-61. | |
[31] | 张运林, 秦伯强, 2007. 梅梁湾、大太湖夏季和冬季CDOM特征及可能来源分析[J]. 水科学进展, 18(3): 415-423. |
ZHANG Y L, QIN B Q, 2007. Feature of CDOM and its possible source in Meiliang bay and Da Taihu lake in Taihu lake in summer and winter[J]. Advances in Water Science, 18(3): 415-423. | |
[32] | 张运林, 秦伯强, 杨龙元, 2006. 太湖梅梁湾水体悬浮颗粒物和CDOM的吸收特性[J]. 生态学报, 26(12): 3969-3979. |
ZHANG Y L, QIN B Q, YANG L Y, 2006. Spectral absorption coefficients of particulate matter and chromophoric dissolved organic matter in Meiliang Bay of Lake Taihu[J]. Acta Ecology Sinica, 26(12): 3969-3979. | |
[33] | 张运林, 张恩楼, 刘明亮, 2009. 云南高原湖泊有色可溶性有机物和颗粒物光谱吸收特性[J]. 湖泊科学, 21(2): 255-263. |
ZHANG Y L, ZHANG E L, LIU M L, 2009. Spectral absorption properties of chromophoric dissolved organic matter and particulate matter in Yunnan Plateau lakes[J]. Journal of Lake Science, 21(2): 255-263. | |
[34] | 赵巧华, 张运林, 秦伯强, 2006. 太湖梅梁湾水体悬浮颗粒物吸收系数的分离[J]. 湖泊科学, 18(4): 356-362. |
ZHAO Q H, ZHANG Y L, QIN B Q, 2006. Partitioning spectral absorption of particulate matter in Meiliang Bay of Lake Taihu[J]. Journal of Lake Science, 18(4): 356-362. | |
[35] | 赵巧华, 秦伯强, 2008. 太湖有色溶解有机质光谱吸收空间的分异特征[J]. 中国环境科学, 28(4): 289-293. |
ZHAO Q H, QIN B Q, 2008. Mechanisms and characteristics of spatial distribution of colored dissolved organic matter in Taihu Lake between summer and winter[J]. China Environmental Science, 28(4): 289-293. |
[1] | 王家一, 孙亭亭, 沙润钰, 谌婷红, 邢冉, 秦伯强, 施文卿. 富营养化湖泊蓝藻打捞减污降碳效果模拟研究[J]. 生态环境学报, 2023, 32(6): 1108-1114. |
[2] | 张莉, 李铖, 谭皓泽, 韦家怡, 程炯, 彭桂香. 广州典型城市林地对大气颗粒物的削减效应及影响因素[J]. 生态环境学报, 2023, 32(2): 341-350. |
[3] | 程鹏, 孙明东, 郝韶楠. 基于最简水质综合评价指数的官厅水库上游河流水质评价[J]. 生态环境学报, 2023, 32(2): 372-380. |
[4] | 傅梦琪, 刘娟, 李进, 张凡, 李雪瑶, 杨正军, 李彭辉, 金陶胜. 不同油品对国Ⅳ、国Ⅴ柴油公交车的碳排放影响研究[J]. 生态环境学报, 2022, 31(9): 1849-1855. |
[5] | 王占永, 陈昕, 胡喜生, 何红弟, 蔡铭, 彭仲仁. 植物屏障影响路边大气颗粒物分布机理及研究方法的进展[J]. 生态环境学报, 2022, 31(5): 1047-1058. |
[6] | 朱旭, 李海梅, 李彦华, 孙迎坤, 田园. 8种灌木对大气颗粒物污染的生理响应[J]. 生态环境学报, 2022, 31(3): 535-545. |
[7] | 崔键, 杜易, 丁程成, 李金凤, 高方述, 常雅军, 张继彪, 刘晓静, 姚东瑞. 中国湖泊水体磷的赋存形态及污染治理措施进展[J]. 生态环境学报, 2022, 31(3): 621-633. |
[8] | 薛文凯, 朱攀, 德吉, 郭小芳. 纳木措水体可培养丝状真菌优势种的时空特征研究[J]. 生态环境学报, 2022, 31(12): 2331-2340. |
[9] | 刘佩伶, 刘效东, 冯英杰, 苏宇乔, 甘先华, 张卫强. 新丰江水库库区水源涵养林土壤饱和导水率特征[J]. 生态环境学报, 2022, 31(10): 1993-2001. |
[10] | 赵晓亮, 郭猛, 吕美婷, 赵雪莹, 姜瑰国, 黄媛媛, 王凡, 姬亚芹. 阜新市绿化树种对大气颗粒物及重金属滞留能力研究[J]. 生态环境学报, 2021, 30(8): 1662-1671. |
[11] | 王薇, 张蕾. 基于CiteSpace的城市环境中细颗粒物研究进展的可视化分析[J]. 生态环境学报, 2021, 30(6): 1321-1332. |
[12] | 包宇飞, 胡明明, 王殿常, 吴兴华, 王雨春, 李姗泽, 王启文, 温洁. 黄柏河梯级水库沉积物营养盐与重金属分布特征及污染评价[J]. 生态环境学报, 2021, 30(5): 1005-1016. |
[13] | 张凯, 郭紫微, 王倩, 韩雅, 李贶家, 张中帅. 华中地区水库型水源地抗生素抗性细菌的赋存特征研究[J]. 生态环境学报, 2021, 30(5): 1017-1022. |
[14] | 张伟, 王凯丽, 梁胜, 杜心宇, 刘路云, 陈存友, 胡希军. 基于计算力流体力学的城市近郊湖泊“冷岛效应”及其情景模拟研究——以长沙市同升湖为例[J]. 生态环境学报, 2021, 30(10): 2054-2066. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||