生态环境学报 ›› 2022, Vol. 31 ›› Issue (11): 2134-2142.DOI: 10.16258/j.cnki.1674-5906.2022.11.004
肖军1,2(), 雷蕾1, 曾立雄1, 李肇晨2, 马成功3, 肖文发1,*(
)
收稿日期:
2022-06-05
出版日期:
2022-11-18
发布日期:
2022-12-22
通讯作者:
*肖文发(1964年生),男,研究员,博士研究生导师,研究方向为森林生态学、全球气候变化与森林保护和可持续经营等。E-mail: xiaowenf@caf.ac.cn作者简介:
肖军(1982年生),男,博士研究生,研究方向为森林生态学。E-mail: xiaojun@apfnet.cn
基金资助:
XIAO Jun1,2(), LEI Lei1, ZENG Lixiong1, LI Zhaochen2, MA Chenggong3, XIAO Wenfa1,*(
)
Received:
2022-06-05
Online:
2022-11-18
Published:
2022-12-22
摘要:
科学认识不同经营模式下人工林碳储量变化规律对于采取合理的经营措施以提高森林碳汇潜力和木材生产具有重要意义。以赤峰旺业甸实验林场3个龄级(10年林、47年林、56年林)油松(Pinus tabuliformis)人工林为研究对象,调查分析近自然经营、常规经营、未经营等3种经营模式对其生态系统碳储量及6年年均增量的影响。结果表明:3种经营模式的油松人工林生态系统碳储量组成均呈土壤层>乔木层>枯落物层>草本层>灌木层,且乔木层、植被层和生态系统的碳储量均随林龄增加而显著增加(P<0.05);3种经营模式在3个龄级的油松人工林生态系统碳储量年均增量均为正值,未经营林分的随林龄增加而降低,近自然经营林分和常规经营林分通过不同的经营措施均改变了这一下降趋势(P<0.05);近自然经营显著提高了56年林生态系统、47年林和56年林乔木层及3个龄级枯落物层的碳储量年均增量(P<0.05),常规经营显著降低了3个龄级生态系统(P<0.05)、10年林和47年林土壤层碳储量的年均增量(P<0.01);就龄级而言,近自然经营和常规经营56年林生态系统碳储量的年均增量(7.49 Mg·hm-2·a-1,3.49 Mg·hm-2·a-1)均大于47年林(5.82 Mg·hm-2·a-1,1.27 Mg·hm-2·a-1)。为提高油松人工林生态系统碳储量,对尚未郁闭的低龄林分应尽量减少抚育间伐等人为干扰,但综合考虑碳储量增长和大径级用材林培育,近自然经营最理想。该研究区60年左右的油松人工林乔木层和生态系统碳储量仍在持续增长,建议提高其成熟林林龄区间的划分,以提高森林生态系统碳汇功能并培育更多的大径材。
中图分类号:
肖军, 雷蕾, 曾立雄, 李肇晨, 马成功, 肖文发. 不同经营模式对华北油松人工林碳储量的影响[J]. 生态环境学报, 2022, 31(11): 2134-2142.
XIAO Jun, LEI Lei, ZENG Lixiong, LI Zhaochen, MA Chenggong, XIAO Wenfa. Effects of Different Management Regimes on Carbon Stock of Pinus tabulaeformis Plantations in Northern China[J]. Ecology and Environment, 2022, 31(11): 2134-2142.
林龄 Stand age | 经营类型 Management regime | 平均胸径 Mean diameter/cm | 乔木株数 Tree density/(plant·hm-2) | 土壤容重 Soil bulk density/(g·cm-3) | 抚育强度 Thinning intensity | 海拔 Altitude/ m | 坡度 Slope/ (º) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2013 | 2019 | 2013 | 2019 | 2013 | 2019 | |||||||
10 | 近自然经营 CTNM | 2.28±0.06a | 5.10±0.09a | 3261±106b | 3211±96b | 1.25±0.10a | 1.23±0.04a | 16%±1%b | 1142-1202 | ≤20 | ||
47 | 17.84±0.30a | 19.70±0.16a | 789±48a | 783±44a | 1.18±0.03b | 1.35±0.07a | 18%±1%b | 1165-1201 | ≤20 | |||
56 | 24.69±0.85a | 27.56±0.76a | 578±20a | 578±20a | 1.10±0.03b | 1.13±0.05a | 16%±2%b | 1322-1359 | ≤16 | |||
10 | 常规经营 CM | 2.42±0.04a | 5.08±0.09a | 2917±44c | 2861±39c | 1.21±0.02a | 1.34±0.04a | 26%±2%a | 1193-1230 | ≤22 | ||
47 | 18.90±0.60a | 20.90±0.66a | 717±104a | 711±98a | 1.39±0.04a | 1.36±0.04a | 25%±2%a | 1129-1157 | ≤20 | |||
56 | 24.13±0.79a | 26.70±0.65a | 517±38a | 511±34a | 1.31±0.04a | 1.18±0.04a | 24%±4%a | 1349-1373 | ≤15 | |||
10 | 未经营 NHI | 2.30±0.04a | 5.01±0.06a | 3700±88a | 3578±74a | 1.23±0.05a | 1.29±0.09a | 0%±0%c | 1205-1259 | ≤23 | ||
47 | 17.42±1.06a | 19.01±1.08a | 1056±174a | 1022±164a | 1.27±0.05b | 1.29±0.06a | 0%±0%c | 1148-1171 | ≤22 | |||
56 | 24.40±0.71a | 26.84±0.75a | 645±40a | 622±349a | 1.16±0.04b | 1.14±0.02a | 0%±0%c | 1342-1367 | ≤15 |
表1 2013年和2019年3种经营样地概况
Table 1 General profiles of plots within three treatments in 2013 and 2019
林龄 Stand age | 经营类型 Management regime | 平均胸径 Mean diameter/cm | 乔木株数 Tree density/(plant·hm-2) | 土壤容重 Soil bulk density/(g·cm-3) | 抚育强度 Thinning intensity | 海拔 Altitude/ m | 坡度 Slope/ (º) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2013 | 2019 | 2013 | 2019 | 2013 | 2019 | |||||||
10 | 近自然经营 CTNM | 2.28±0.06a | 5.10±0.09a | 3261±106b | 3211±96b | 1.25±0.10a | 1.23±0.04a | 16%±1%b | 1142-1202 | ≤20 | ||
47 | 17.84±0.30a | 19.70±0.16a | 789±48a | 783±44a | 1.18±0.03b | 1.35±0.07a | 18%±1%b | 1165-1201 | ≤20 | |||
56 | 24.69±0.85a | 27.56±0.76a | 578±20a | 578±20a | 1.10±0.03b | 1.13±0.05a | 16%±2%b | 1322-1359 | ≤16 | |||
10 | 常规经营 CM | 2.42±0.04a | 5.08±0.09a | 2917±44c | 2861±39c | 1.21±0.02a | 1.34±0.04a | 26%±2%a | 1193-1230 | ≤22 | ||
47 | 18.90±0.60a | 20.90±0.66a | 717±104a | 711±98a | 1.39±0.04a | 1.36±0.04a | 25%±2%a | 1129-1157 | ≤20 | |||
56 | 24.13±0.79a | 26.70±0.65a | 517±38a | 511±34a | 1.31±0.04a | 1.18±0.04a | 24%±4%a | 1349-1373 | ≤15 | |||
10 | 未经营 NHI | 2.30±0.04a | 5.01±0.06a | 3700±88a | 3578±74a | 1.23±0.05a | 1.29±0.09a | 0%±0%c | 1205-1259 | ≤23 | ||
47 | 17.42±1.06a | 19.01±1.08a | 1056±174a | 1022±164a | 1.27±0.05b | 1.29±0.06a | 0%±0%c | 1148-1171 | ≤22 | |||
56 | 24.40±0.71a | 26.84±0.75a | 645±40a | 622±349a | 1.16±0.04b | 1.14±0.02a | 0%±0%c | 1342-1367 | ≤15 |
树种 Tree species | 含碳率 Carbon factor | 根茎比 Root-to-shoot ratio | 木材密度 Wood density | 生物量扩展因子 Biomass conservation factor |
---|---|---|---|---|
落叶松 Larix principis-rupprechtii | 0.521 | 0.212 | 0.490 | 1.40 |
油松 Pinus tabuliformis | 0.521 | 0.251 | 0.360 | 1.59 |
白桦 Betula platyphylla | 0.491 | 0.248 | 0.541 | 1.37 |
山杨 Betula dahurica | 0.496 | 0.227 | 0.378 | 1.59 |
黑桦 Populus davidiana | 0.491 | 0.248 | 0.541 | 1.37 |
灌木Shrubs | 0.47 | 0.40 | ||
草本Grass | 0.47 | 2.80 |
表2 碳储量计算参数
Table 2 Calculation parameters of carbon stock
树种 Tree species | 含碳率 Carbon factor | 根茎比 Root-to-shoot ratio | 木材密度 Wood density | 生物量扩展因子 Biomass conservation factor |
---|---|---|---|---|
落叶松 Larix principis-rupprechtii | 0.521 | 0.212 | 0.490 | 1.40 |
油松 Pinus tabuliformis | 0.521 | 0.251 | 0.360 | 1.59 |
白桦 Betula platyphylla | 0.491 | 0.248 | 0.541 | 1.37 |
山杨 Betula dahurica | 0.496 | 0.227 | 0.378 | 1.59 |
黑桦 Populus davidiana | 0.491 | 0.248 | 0.541 | 1.37 |
灌木Shrubs | 0.47 | 0.40 | ||
草本Grass | 0.47 | 2.80 |
林龄 Stand age | 10年林 10-year-old stand | 47年林 47-year-old stand | 56年林 56-year-old stand | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
经营类型 Management regime | 调查年 Year | 近自然经营 CTNM | 常规经营 CM | 未经营 NHI | 近自然经营 CTNM | 常规经营 CM | 未经营 NHI | 近自然经营 CTNM | 常规经营 CM | 未经营 NHI | ||
乔木层碳储量 Tree carbon stock | 2013 | 1.75±0.09Ca | 1.70±0.03Ca | 1.85±0.21Ca | 42.02±0.99Ba | 39.76±3.39Ba | 46.44±1.48Ba | 69.16±3.44Aa | 65.68±4.52Aa | 75.50±1.26Aa | ||
2019 | 8.47±0.25Ca | 7.66±0.62Ca | 8.61±0.19Ca | 56.11±1.28Ba | 51.97±3.79Ba | 56.56±1.24Ba | 90.35±3.69Aa | 81.95±4.68Aa | 95.38±1.32Aa | |||
灌木层碳储量 Shrubs carbon stock | 2013 | 0.03±0.00Ab | 0.04±0.02Ab | 0.24±0.06Aa | 0.20±0.10Aa | 0.08±0.08Aa | 0.01±0.00Ba | 0.09±0.04Aa | 0.07±0.04Aa | 0.11±0.03Ba | ||
2019 | 0.07±0.04Aa | 0.03±0.03Aa | 0.07±0.02Aa | 0.13±0.13Aa | 0.02±0.02Aa | 0.00±0.00Ba | 0.08±0.04Aa | 0.02±0.02Aa | 0.02±0.00Ba | |||
草本层碳储量 Grass carbon stock | 2013 | 1.70±0.53Aa | 1.32±0.30Aa | 0.68±0.09Aa | 0.94±0.32Aa | 0.92±0.10ABa | 0.90±0.05Aa | 0.26±0.12Aa | 0.38±0.08Ba | 0.25±0.06Ba | ||
2019 | 0.22±0.13Aa | 0.41±0.04Aa | 0.09±0.04Aa | 0.97±0.35Aa | 0.81±0.09Aa | 0.47±0.02Aa | 0.24±0.13Ba | 0.44±0.25Aa | 0.12±0.04Ba | |||
枯落物层碳储量 Litter carbon stock | 2013 | 2.05±0.69Ba | 2.18±0.61Ba | 1.64±0.10Ba | 2.61±0.20Ba | 2.01±0.20Bab | 1.21±0.40Bb | 4.33±0.30Aa | 5.58±1.17Aa | 3.80±0.39Aa | ||
2019 | 8.03±1.76Aa | 4.63±1.21Aa | 6.93±0.34Aa | 11.88±0.79Aa | 4.18±0.43Ac | 8.51±1.10Ab | 10.20±0.43Aa | 6.93±2.07Aa | 6.73±0.81Aa | |||
土壤层碳储量 Soil carbon stock | 2013 | 18.59±7.50Bb | 61.40±11.56Aa | 41.47±3.81Bab | 50.34±12.23Ba | 55.19±13.69Aa | 31.26±4.68Ba | 86.91±9.33Aa | 119.28±27.55Aa | 95.70±13.29Aa | ||
2019 | 33.67±8.82Ba | 60.69±11.31Aa | 72.16±7.60Aa | 61.94±17.68ABa | 48.60±12.89Aa | 54.98±8.17Aa | 104.83±9.89Aa | 122.56±27.22Aa | 96.97±13.88Aa | |||
植被碳储量 Vegetation carbon stock | 2013 | 3.48±0.47Ca | 3.06±0.34Ca | 2.77±0.29Ca | 43.16±0.78Ba | 40.76±3.47Ba | 47.35±1.43Ba | 69.52±3.32Aa | 66.13±4.40Aa | 75.85±1.31Aa | ||
2019 | 8.75±0.28Ca | 8.09±0.61Ca | 8.77±0.13Ca | 57.21±0.95Ba | 52.80±3.88Ba | 57.03±1.23Ba | 90.67±3.55Aa | 82.41±4.46Aa | 95.51±1.37Aa | |||
生态系统碳储量 Ecosystem carbon stock | 2013 | 24.12±6.42Cb | 66.64±11.87Ca | 45.88±3.47Cab | 96.11±12.37Ba | 97.96±11.78Ba | 79.83±5.16Ba | 160.75±10.55Aa | 190.99±23.47Aa | 175.36±13.39Aa | ||
2019 | 50.45±7.13Ca | 73.41±11.15Ba | 87.86±7.67Ba | 131.03±17.78Ba | 105.58±10.13Ba | 120.52±7.09Ba | 205.70±10.38Aa | 211.90±24.51Aa | 199.22±13.33Aa |
表3 2013年和2019年经营油松人工林生态系统碳储量
Table 3 Carbon stock of Pinus tabuliformis plantations ecosystem under different management regimes in 2013 and 2019 Mg·hm-2
林龄 Stand age | 10年林 10-year-old stand | 47年林 47-year-old stand | 56年林 56-year-old stand | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
经营类型 Management regime | 调查年 Year | 近自然经营 CTNM | 常规经营 CM | 未经营 NHI | 近自然经营 CTNM | 常规经营 CM | 未经营 NHI | 近自然经营 CTNM | 常规经营 CM | 未经营 NHI | ||
乔木层碳储量 Tree carbon stock | 2013 | 1.75±0.09Ca | 1.70±0.03Ca | 1.85±0.21Ca | 42.02±0.99Ba | 39.76±3.39Ba | 46.44±1.48Ba | 69.16±3.44Aa | 65.68±4.52Aa | 75.50±1.26Aa | ||
2019 | 8.47±0.25Ca | 7.66±0.62Ca | 8.61±0.19Ca | 56.11±1.28Ba | 51.97±3.79Ba | 56.56±1.24Ba | 90.35±3.69Aa | 81.95±4.68Aa | 95.38±1.32Aa | |||
灌木层碳储量 Shrubs carbon stock | 2013 | 0.03±0.00Ab | 0.04±0.02Ab | 0.24±0.06Aa | 0.20±0.10Aa | 0.08±0.08Aa | 0.01±0.00Ba | 0.09±0.04Aa | 0.07±0.04Aa | 0.11±0.03Ba | ||
2019 | 0.07±0.04Aa | 0.03±0.03Aa | 0.07±0.02Aa | 0.13±0.13Aa | 0.02±0.02Aa | 0.00±0.00Ba | 0.08±0.04Aa | 0.02±0.02Aa | 0.02±0.00Ba | |||
草本层碳储量 Grass carbon stock | 2013 | 1.70±0.53Aa | 1.32±0.30Aa | 0.68±0.09Aa | 0.94±0.32Aa | 0.92±0.10ABa | 0.90±0.05Aa | 0.26±0.12Aa | 0.38±0.08Ba | 0.25±0.06Ba | ||
2019 | 0.22±0.13Aa | 0.41±0.04Aa | 0.09±0.04Aa | 0.97±0.35Aa | 0.81±0.09Aa | 0.47±0.02Aa | 0.24±0.13Ba | 0.44±0.25Aa | 0.12±0.04Ba | |||
枯落物层碳储量 Litter carbon stock | 2013 | 2.05±0.69Ba | 2.18±0.61Ba | 1.64±0.10Ba | 2.61±0.20Ba | 2.01±0.20Bab | 1.21±0.40Bb | 4.33±0.30Aa | 5.58±1.17Aa | 3.80±0.39Aa | ||
2019 | 8.03±1.76Aa | 4.63±1.21Aa | 6.93±0.34Aa | 11.88±0.79Aa | 4.18±0.43Ac | 8.51±1.10Ab | 10.20±0.43Aa | 6.93±2.07Aa | 6.73±0.81Aa | |||
土壤层碳储量 Soil carbon stock | 2013 | 18.59±7.50Bb | 61.40±11.56Aa | 41.47±3.81Bab | 50.34±12.23Ba | 55.19±13.69Aa | 31.26±4.68Ba | 86.91±9.33Aa | 119.28±27.55Aa | 95.70±13.29Aa | ||
2019 | 33.67±8.82Ba | 60.69±11.31Aa | 72.16±7.60Aa | 61.94±17.68ABa | 48.60±12.89Aa | 54.98±8.17Aa | 104.83±9.89Aa | 122.56±27.22Aa | 96.97±13.88Aa | |||
植被碳储量 Vegetation carbon stock | 2013 | 3.48±0.47Ca | 3.06±0.34Ca | 2.77±0.29Ca | 43.16±0.78Ba | 40.76±3.47Ba | 47.35±1.43Ba | 69.52±3.32Aa | 66.13±4.40Aa | 75.85±1.31Aa | ||
2019 | 8.75±0.28Ca | 8.09±0.61Ca | 8.77±0.13Ca | 57.21±0.95Ba | 52.80±3.88Ba | 57.03±1.23Ba | 90.67±3.55Aa | 82.41±4.46Aa | 95.51±1.37Aa | |||
生态系统碳储量 Ecosystem carbon stock | 2013 | 24.12±6.42Cb | 66.64±11.87Ca | 45.88±3.47Cab | 96.11±12.37Ba | 97.96±11.78Ba | 79.83±5.16Ba | 160.75±10.55Aa | 190.99±23.47Aa | 175.36±13.39Aa | ||
2019 | 50.45±7.13Ca | 73.41±11.15Ba | 87.86±7.67Ba | 131.03±17.78Ba | 105.58±10.13Ba | 120.52±7.09Ba | 205.70±10.38Aa | 211.90±24.51Aa | 199.22±13.33Aa |
图1 2013-2019年油松人工林碳储量年均变化 大写字母表示同经营模式不同龄级的对应数值显著性差异(P<0.05),小写字母表示同龄级不同经营模式的对应数值显著性差异(P<0.05)
Figure 1 Annual increment of carbon stock of Pinus tabuliformis plantations in 2013-2019 Different uppercase letters indicate that the corresponding values at different stand ages have significant differences in the same management regime (P<0.05); Different lowercase letters indicate that the corresponding values at the same stand ages have significant differences in different management regimes (P<0.05); ntree=3, nshrubs=9, ngrass=15, nlitter=9, nsoil=9
[1] |
BADALAMENTI E, BATTIPAGLIA G, GRISTINA L, et al., 2019. Carbon stock increases up to old growth forest along a secondary succession in Mediterranean island ecosystems[J]. PLoS One, 14(7): e0220194.
DOI URL |
[2] |
BASTIN J F, CLAUDE G F Y, MOLLICONE D, et al., 2019. The global tree restoration potential[J]. Science, 365(6448): 76-79.
DOI URL |
[3] |
Bonan G B, 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests[J]. Science, 320(5882): 1444-1449.
DOI PMID |
[4] |
CHEN L C, LIANG M J, WANG S L, 2016. Carbon stock density in planted versus natural Pinus massoniana forests in sub-tropical China[J]. Annals of Forest Science, 73(2): 461-472.
DOI URL |
[5] |
CHENG X Q, HAN H R, KANG F F, et al., 2014. Short-term effects of thinning on soil respiration in a pine (Pinus tabulaeformis) plantation[J]. Biology and Fertility of Soils, 50: 357-367.
DOI URL |
[6] | FAO, 2020. Global forest resources assessment 2020: Key findings[M]. Rome: FAO: 2-4. |
[7] | GUNDERSEN P, THYBRING E E, NORD L T, 2021. Old-growth forest carbon sinks overestimated[J]. Nature, 591(7851): 21-23. |
[8] |
LEI L, XIAO W F, ZENG L X, et al., 2018. Thinning but not understory removal increased heterotrophic respiration and total soil respiration in Pinus massoniana stands[J]. Science of The Total Environment, 621: 1360-1369.
DOI URL |
[9] |
LUYSSAERT, S, SCHULZE, E D, BÖRNER, A, et al., 2008. Old-growth forests as global carbon sinks[J]. Nature, 455(7210): 213-215.
DOI URL |
[10] |
MA J, BU R C, LIU M, et al., 2015. Ecosystem carbon storage distribution between plant and soil in different forest types in northeastern China[J]. Ecological Engineering, 81: 353-362.
DOI URL |
[11] |
MALHI Y, 2012. The productivity, metabolism and carbon cycle of tropical forest vegetation[J]. Journal of Ecology, 100(1): 65-75.
DOI URL |
[12] |
NOORMETS A, EPRON D, DOMEC J C, et al., 2015. Effects of forest management on productivity and carbon sequestration: A review and hypothesis[J]. Forest Ecology and Management, 355: 124-140.
DOI URL |
[13] |
PAN Y D, BIRDSAY R A, FANG J Y, et al., 2011. A large and persistent carbon sink in the world’s forests[J]. Science, 333(6045): 988-993.
DOI URL |
[14] |
PIAO S, FANG J, CIAIS P, et al, 2009. The carbon balance of terrestrial ecosystems in China[J]. Nature, 458(7241): 1009-1013.
DOI URL |
[15] |
VENANZI R, PICCHIO R, PIOVESAN G, 2016. Silvicultural and logging impact on soil characteristics in Chestnut (Castanea sativa Mill.) Mediterranean coppice[J]. Ecological Engineering, 92: 82-89.
DOI URL |
[16] |
WALKER W S, GORELIK S R, COOK P S C, et al., 2022. The global potential for increased storage of carbon on land[J]. PNAS, 119(23): e2111312119.
DOI URL |
[17] |
WANI A A, JOSHI P K, SINGH O, 2015. Estimating biomass and carbon mitigation of temperate coniferous forests using spectral modeling and field inventory data[J]. Ecological Informatics, 25(1): 63-70.
DOI URL |
[18] |
ZHANG X Z, GUAN D X, LI W B, et al., 2018. The effects of forest thinning on soil carbon stocks and dynamics: A meta-analysis[J]. Forest Ecology and Management, 429: 36-43.
DOI URL |
[19] | 陈百灵, 朱玉杰, 董希斌, 等, 2015. 抚育强度对大兴安岭落叶松林枯落物持水能力及水质的影响[J]. 东北林业大学学报, 43(8): 46-49, 70. |
CHEN B L, ZHU Y J, DONG X B, et al., 2015. Water conservation under different fostering intensity in timber forest of Daxing’an Mountains[J]. Journal of Northeast Forestry University, 43(8): 46-49, 70. | |
[20] | 迟璐, 王百田, 曹晓阳, 等, 2014. 山西中部油松生态系统碳储量研究[J]. 干旱区资源与环境, 28(2): 81-85. |
CHI L, WANG B T, CAO X Y, et al., 2014. Carbon storage of Chinese pine forest ecosystem in the central Shanxi province[J]. Journal of Arid Land Resources and Environment, 28(2): 81-85. | |
[21] | 邓蕾, 上官周平, 2011. 秦岭宁陕县森林植被碳储量与碳密度特征[J]. 西北植物学报, 31(11): 2310-2320. |
DENG L, SHANGGUANG Z P, 2011. Characteristics of forest vegetation carbon storage and carbon density in Ningshan County, Qinling Mountain[J]. Acta Botanica Boreali-Occidentalia Sinica, 31(11): 2310-2320. | |
[22] | 董伯骞, 黄选瑞, 夏明瑞, 2011. 退化华北落叶松林枯落物对近自然经营的短期响应[J]. 中国水土保持科学, 9(3): 52-58. |
DONG B Q, HUANG X R, XIA M R, 2011. Short-term response of litter of degraded Larix pricipis-rupprechtii forest to close-to natural management[J]. Science of Soil and Water Conservation, 9(3): 52-58. | |
[23] | 冯源, 朱建华, 肖文发, 等, 2017. 干扰及林龄影响下迪庆州云杉老龄林生态系统碳储量动态[J]. 生态环境学报, 26(9): 1465-1472. |
FENG Y, ZHU J H, XIAO W F, et al., 2017. Disturbances and ageing affected carbon dynamics in old-growth spruce forest in Diqing Prefecture[J]. Ecology and Environmental Sciences, 26(9): 1465-1472. | |
[24] | 郭浩, 王兵, 马向前, 等, 2008. 中国油松林生态服务功能评估[J]. 中国科学C辑: 生命科学, 38(6): 565-572. |
GUO H, WANG B, MA X Q, et al., 2008. Evaluation of ecological service of Pinus tabulaeformis forest in China[J]. Science in China. Series C, Life Sciences, 38(6): 565-572. | |
[25] | 国家林业局, 2011. 造林项目碳汇计量与监测指南[M]. 北京: 国家林业局: 30-34. |
State Forestry Administration, 2011. Guidelines on carbon accounting and monitoring for afforestation project[M]. Beijing: State forestry administration: 30-34. | |
[26] | 国家林业局, 2013. 碳汇造林项目方法学[M]. 北京: 国家林业局: 25, 56-59. |
State Forestry Administration, 2013. Methodology of afforestation project for carbon sequestration[M]. Beijing: State forestry administration: 25, 56-59. | |
[27] | 国家林业局, 黑龙江省林业监测规划院, 2017. LY/T 2908-2017, 主要树种龄级与龄组划分[M]. 北京: 国家林业局: 4. |
State Forestry Administration, Heilongjiang Forestry Monitoring and Planning Institute, 2017. LY/T 2908-2017, Regulations for age-class and age-group division of main tree-species[M]. Beijing: State forestry administration:4. | |
[28] | 何亚婷, 谢和生, 何友均, 2022. 不同经营模式对蒙古栎天然次生林碳储量的影响[J]. 生态环境学报, 31(2): 215-223. |
HE Y T, XIE H S, HE Y J, 2022. Effects of different forest management regimes on carbon stock of natural secondary Quercus mongolica forests[J]. Ecology and Environmental Sciences, 31(2): 215-223. | |
[29] | 黄凯璇, 汤新艺, 秦欢, 等, 2020. 近自然经营对杉木人工林地被物和土壤碳氮积累的影响[J]. 生态环境学报, 29(8): 1556-1565. |
HUANG K X, TANG X Y, QIN H, et al., 2020. Effect of close-to-nature management on carbon and nitrogen accumulation of ground cover and soil in Cunninghamia lanceolata plantations[J]. Ecology and Environmental Sciences, 29(8): 1556-1565. | |
[30] | 江萍, 2015. 不同林龄油松人工林抚育间伐效应研究[D]. 北京: 北京林业大学: 1-2. |
JIANG P, 2015. Studies on thinning effects of different aged Pinus Tabulaeformis plantations[D]. Beijing: Beijing Forestry University: 1-2. | |
[31] | 雷相东, 陆元昌, 张会儒, 等, 2005. 抚育间伐对落叶松云冷杉混交林的影响[J]. 林业科学, 41(4): 78-85. |
LEI X D, LU Y C, ZHANG H R, et al., 2005. Effects of thinning on mixed stands of Larix olgensis, Abies nephrolepis and Picea jazoensis[J]. Scientia Silvae Sinicae, 41(4): 78-85. | |
[32] | 李奇, 朱建华, 冯源, 等, 2016. 中国主要人工林碳储量与固碳能力[J]. 西北林学院学报, 31(4): 1-6. |
LI Q, ZHU J H, FENG Y, et al., 2016. Carbon stocks and carbon sequestration capacity of the main plantations in China[J]. Journal of Northwest Forestry University, 31(4): 1-6. | |
[33] | 李庆华, 曹扬, 陈云明, 等, 2013. 陕西油松人工林下枯落物层生物量及其碳储量[J]. 水土保持研究, 20(4): 24-28. |
LI Q H, CAO Y, CHEN Y M, et al., 2013. Litter mass and carbon storage in the Pinus tabulaeformis plantations in Shaanxi Province[J]. Research of Soil and Water Conservation, 20(4): 24-28. | |
[34] | 廖国莉, 段劼, 贾忠奎, 等, 2020. 辽东地区不同林龄长白落叶松人工林生态系统碳储量分配特征[J]. 东北林业大学学报, 48(11): 8-13, 22. |
LIAO G L, DUAN J, JIA Z K, et al., 2020. Distribution characteristics of carbon storage in Larixolgensis plantation ecosystem of different ages in Eastern Liaoning Province[J]. Journal of Northeast Forestry University, 48(11): 8-13, 22. | |
[35] | 林娜, 刘勇, 李国雷, 等, 2010. 抚育间伐对人工林凋落物分解的影响[J]. 世界林业研究, 23(3): 44-47. |
LIN N, LIU Y, LI G L, et al., 2020. Research progress of impact of thinning on plantation litter decomposition[J]. World Forestry Research, 23(3): 44-47. | |
[36] | 刘冰燕, 陈云明, 曹扬, 等, 2015. 秦岭南坡东段油松人工林生态系统碳、氮储量及其分配格局[J]. 应用生态学报, 26(3): 643-652. |
LIU B Y, CHEN Y M, CAO Y, et al., 2015. Storage and allocation of carbon and nitrogen in Pinus tabuliformis plantations on the south slope of the East Qinling Mountains, China[J]. Chinese Journal of Applied Ecology, 26(3): 643-652. | |
[37] | 刘畅, 李凤日, 贾炜玮, 等, 2014. 基于局域统计量的黑龙江省多尺度森林碳储量空间分布变化[J]. 应用生态学报, 25(9): 2493-2500. |
LIU C, LI F R, JIA W W, et al., 2014. Multiple-scale analysis on spatial distribution changes of forest carbon storage in Heilongjiang Province, Northeast China based on local statistics[J]. Chinese Journal of Applied Ecology, 25(9): 2493-2500. | |
[38] | 刘琳, 熊东红, 张宝军, 等, 2021. 拉萨河谷杨树人工林枯落物蓄积特征及持水性能[J]. 干旱区研究, 38(6): 1674-1682. |
LIU L, XIONG D H, ZHANG B J, et al., 2021. Litter storage and its water-holding capacity of Populus plantations in Lhasa River Valley[J]. Arid Zone Research, 38(6): 1674-1682. | |
[39] | 刘世荣, 杨予静, 王晖, 2018. 中国人工林经营发展战略与对策: 从追求木材产量的单一目标经营转向提升生态系统服务质量和效益的多目标经营[J]. 生态学报, 38(1): 1-10. |
LIU S R, YANG Y J, WANG H, 2018. Development strategy and management countermeasures of planted forests in China: transforming from timber-centered single objective management towards multi-purpose management for enhancing quality and benefits of ecosystem services[J]. Acta Ecologica Sinica, 38(1): 1-10.
DOI URL |
|
[40] | 刘魏魏, 王效科, 逯非, 等, 2015. 全球森林生态系统碳储量、固持能力估算及其区域特征[J]. 应用生态学报, 26(9): 2881-2890. |
LIU W W, WANG X K, LU F, et al., 2015. Regional and global estimates of carbon stocks and carbon sequestration capacity in forest ecosystems: A review[J]. Chinese Journal of Applied Ecology, 26(9): 2881-2890. | |
[41] | 孙志虎, 王秀琴, 陈祥伟, 2016. 不同抚育间伐强度对落叶松人工林生态系统碳储量影响[J]. 北京林业大学学报, 38(12): 1-13. |
SUN Z H, WANG X Q, CHEN X W, 2016. Effects of thinning intensity on carbon storage of Larix olgensis plantation ecosystem[J]. Journal of Beijing Forestry University, 38(12): 1-13. | |
[42] | 陆元昌, 张守攻, 雷相东, 等, 2009. 人工林近自然化改造的理论基础和实施技术[J]. 世界林业研究, 22(1): 20-27. |
LU Y C, ZHANG S G, LEI X D, et al., 2009. Theoretical basis and implementation techniques on close-to-nature transformation of plantations[J]. World Forestry Research, 22(1): 20-27. | |
[43] | 唐禾, 陈永华, 张建国, 等, 2018. 抚育间伐对麻栎次生林枯落物持水性的影响[J]. 水土保持研究, 25(4): 104-109, 115. |
TANG H, CHEN Y H, ZHANG J G, et al., 2018. Effects of thinning on litter water holding capacity of Quercus acutissima secondary forest[J]. Research of Soil and Water Conservation, 25(4): 104-109, 115. | |
[44] | 王宁, 2014. 山西森林生态系统碳密度分配格局及碳储量研究[D]. 北京市: 北京林业大学: 1-2. |
WANG N, 2014. Study of distribution of carbon density and carbon storage of forest in Shanxi Province[D]. Beijing: Beijing Forestry University: 1-2. | |
[45] | 王青天, 2014. 杉木混交林近自然经营效果研究[J]. 西北林学院学报, 29(1): 95-99. |
WANG Q T, 2014. Effectiveness study on the close-to-nature management for mixed forest of Chinese fir[J]. Journal of Northwest Forestry University, 29(1): 95-99. | |
[46] | 王卫霞, 史作民, 罗达, 等, 2013. 我国南亚热带几种人工林生态系统碳氮储量[J]. 生态学报, 33(3): 925-933. |
WANG W X, SHI Z M, LUO D, et al., 2013. Carbon and nitrogen storage under different plantations in subtropical south China[J]. Acta Ecologica Sinica, 33(3): 925-933.
DOI URL |
|
[47] | 徐新良, 曹明奎, 李克让, 2007. 中国森林生态系统植被碳储量时空动态变化研究[J]. 地理科学进展, 26(6): 1-10. |
XU X L, CAO M K, LI K R, 2007. Temporal-spatial dynamics of carbon storage of forest vegetation in China[J]. Progress in Geography, 26(6): 1-10. | |
[48] | 杨玉姣, 陈云明, 曹扬, 2014. 黄土丘陵区油松人工林生态系统碳密度及其分配[J]. 生态学报, 34(8): 2128-213. |
YANG Y J, CHEN Y M, CAO Y, 2014. Carbon density and distribution of Pinus tabulaeformis plantation ecosystem in Hilly Loess Plateau[J]. Acta Ecologica Sinica, 34(8): 2128-2136. | |
[49] | 原志坚, 王孝安, 王丽娟, 等, 2018. 抚育对黄土高原油松人工林林下植被功能多样性的影响[J]. 生态学杂志, 37(2): 339-346. |
YUAN Z J, WANG X A, WANG L J, et al., 2018. Effects of tending on functional diversity of understory vegetation in Pinus tabuliformis plantation on the Loess Plateau[J]. Chinese Journal of Ecology, 37(2): 339-346. | |
[50] | 王有良, 林开敏, 宋重升, 等, 2022. 间伐对杉木人工林生态系统碳储量的短期影响[J]. 南京林业大学学报 (自然科学版), 46(3): 65-73. |
WANG Y L, LIN K M, SONG C S, et al., 2022. Short-term effects of thinning on carbon storage in Chinese fir plantation ecosystems[J]. Journal of Nanjing Forestry University (Natural Science Edition), 46(3): 65-73. | |
[51] | 张万林, 张蓓, 杨传金, 等, 2013. 西藏自治区森林枯落物碳储量估算[J]. 中南林业调查规划, 32(4): 12-15. |
ZHANG W L, ZHANG B, YANG C J, et al., 2013. Forest litter fall carbon storage estimation of Tibet[J]. Central South Forest Inventory and Planning, 32(4): 12-15. | |
[52] | 张新平, 王襄平, 朱彪, 等, 2008. 我国东北主要森林类型的凋落物产量及其影响因素[J]. 植物生态学报, 32(5): 1031-1040. |
ZHANG X P, WANG X P, ZHU B, et al., 2008. Litter fall production in relation to environmental factors in northeast china’s forests[J]. Chinese Journal of Plant Ecology, 2(5): 1031-1040. | |
[53] | 张颖, 李晓格, 温亚利, 2022. 碳达峰碳中和背景下中国森林碳汇潜力分析研究[J]. 北京林业大学学报, 44(1): 38-47. |
ZHANG Y, LI X G, WEN Y L, 2022. Forest carbon sequestration potential in China under the background of carbon emission peak and carbon neutralization[J]. Journal of Beijing Forestry University, 44(1): 38-47. | |
[54] | 赵苏亚, 王瑞辉, 刘凯利, 等, 2020. 抚育间伐对不同年龄杉木人工林生长及林下植被多样性的影响[J]. 中南林业科技大学学报, 40(12): 34-43, 82. |
ZHAO S Y, WANG R H, LIU K L, et al., 2020. Effects of thinning on growth and understory vegetation diversity of Chinese fir plantation at different ages[J]. Journal of Central South University of Forestry & Technology, 40(12): 34-43, 82. |
[1] | 王成武, 罗俊杰, 唐鸿湖. 基于InVEST模型的太行山沿线地区生态系统碳储量时空分异驱动力分析[J]. 生态环境学报, 2023, 32(2): 215-225. |
[2] | 陈治中, 昝梅, 杨雪峰, 董煜. 新疆森林植被碳储量预测研究[J]. 生态环境学报, 2023, 32(2): 226-234. |
[3] | 陈科屹, 王建军, 何友均, 张立文. 黑龙江大兴安岭重点国有林区森林碳储量及固碳潜力评估[J]. 生态环境学报, 2022, 31(9): 1725-1734. |
[4] | 吴胜义, 王飞, 徐干君, 马浩, 党禹杰, 吴菲. 川西北高山峡谷区森林碳储量及空间分布研究--以四川洛须自然保护区为例[J]. 生态环境学报, 2022, 31(9): 1735-1744. |
[5] | 王超越, 郭先华, 郭莉, 白丽芳, 夏利林, 王春博, 李廷真. 基于FLUS-InVEST的西北地区土地利用变化及其对碳储量的影响——以呼包鄂榆城市群为例[J]. 生态环境学报, 2022, 31(8): 1667-1679. |
[6] | 杜雪, 王海燕, 邹佳何, 孟海, 赵晗, 崔雪, 董齐琪. 长白山北坡云冷杉阔叶混交林土壤有机碳分布特征及其影响因素[J]. 生态环境学报, 2022, 31(4): 663-669. |
[7] | 梁蕾, 马秀枝, 韩晓荣, 李长生, 张志杰. 模拟增温下凋落物对大青山油松人工林土壤温室气体通量的影响[J]. 生态环境学报, 2022, 31(3): 478-486. |
[8] | 何亚婷, 谢和生, 何友均. 不同经营模式对蒙古栎天然次生林碳储量的影响[J]. 生态环境学报, 2022, 31(2): 215-223. |
[9] | 张桂莲. 基于遥感估算的上海城市森林碳储量空间分布特征[J]. 生态环境学报, 2021, 30(9): 1777-1786. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||