生态环境学报 ›› 2022, Vol. 31 ›› Issue (9): 1813-1822.DOI: 10.16258/j.cnki.1674-5906.2022.09.011
李勋1(), 崔宁洁2, 张艳1, 覃宇3, 张健4,*(
)
收稿日期:
2022-04-02
出版日期:
2022-09-18
发布日期:
2022-11-07
通讯作者:
*张健,教授。E-mail: sicauzhangjian@163.com作者简介:
李勋(1990年生),男,讲师,博士,主要从事长江上游马尾松低效林改造研究工作。E-mail: 502780405@qq.com
基金资助:
LI Xun1(), CUI Ningjie2, ZHANG Yan1, QIN Yu3, ZHANG Jian4,*(
)
Received:
2022-04-02
Online:
2022-09-18
Published:
2022-11-07
摘要:
凋落叶分解是森林生态系统中养分归还的重要途径,难降解物质的分解速率是控制凋落叶分解的关键过程之一,从而调控森林生态系统的物质循环。为进一步了解森林凋落叶分解过程中纤维素、总酚以及缩合单宁的释放规律,以马尾松(Pinus massoniana,P)、檫木(Sassafras tzumu,S)、香樟(Cinnamomum camphora,C)以及香椿(Toona sinensis,T)凋落叶为实验对象,将以上4个树种的凋落叶按照不同的树种组合以及不同的混合比例设置为31个混合处理后,采用凋落袋法开展野外分解实验。结果表明,大部分凋落叶中纤维素、总酚以及缩合单宁降解率均表现出非加性效应,且主要表现为非加性效应中的协同效应,但是凋落叶在不同分解时期的协同效应有所差异:混合凋落叶纤维素的降解率在分解9个月和12个月后的协同效应较强(74.19%和90.32%),总酚则是在分解3个月、6个月以及15个月表现出较强的协同效应(70.97%-74.19%),而缩合单宁在整个分解过程中的协同效应均较强(67.74%-96.77%)。在所有混合凋落叶处理中,这些含有2-3个阔叶树种,且阔叶树种凋落叶质量占比≥30%(PSCT7111、PSCT6211、PST631、PSC613、PCT721、PCT613)的混合处理,其纤维素、总酚和缩合单宁降解率在≥50%的分解实验时期出现协同效应。可见,将马尾松与香樟、香椿以及檫木凋落叶混合后加快了纤维素、总酚和缩合单宁的降解进程,在后期马尾松纯林的“混交化”改造过程中,适当引入乡土阔叶树种可促进凋落叶中纤维素等物质的降解。
中图分类号:
李勋, 崔宁洁, 张艳, 覃宇, 张健. 马尾松与乡土阔叶树种凋落叶纤维素、总酚以及缩合单宁降解的混合效应[J]. 生态环境学报, 2022, 31(9): 1813-1822.
LI Xun, CUI Ningjie, ZHANG Yan, QIN Yu, ZHANG Jian. Mixed Effects on Cellulose, Total phenols and Condensed Tannins Degradation in the Litter Leaves of Pinus massoniana and Native Broad-leaved Tree Species[J]. Ecology and Environment, 2022, 31(9): 1813-1822.
样地 Plot | pH | w(TC)/ (g∙kg-1) | w(TN)/ (g∙kg-1) | 土壤容重 Soil bulk density/(g∙cm-3) | 海拔 Altitude/m | 坡度 Slope/(°) | 坡向 Aspect |
---|---|---|---|---|---|---|---|
1 | 4.6±0.2 | 14.27±2.01 | 0.73±0.15 | 1.42±0.03 | 811.22±13.35 | 10.67±5.31 | S |
2 | 4.1±0.1 | 13.67±2.11 | 0.70±0.11 | 1.41±0.11 | 824.94±11.45 | 13.11±6.31 | SE |
3 | 4.1±0.1 | 14.11±3.12 | 0.70±0.21 | 1.42±0.14 | 812.44±12.35 | 16.23±4.06 | SE |
表1 样地基本信息
Table 1 Basic information on the three plots
样地 Plot | pH | w(TC)/ (g∙kg-1) | w(TN)/ (g∙kg-1) | 土壤容重 Soil bulk density/(g∙cm-3) | 海拔 Altitude/m | 坡度 Slope/(°) | 坡向 Aspect |
---|---|---|---|---|---|---|---|
1 | 4.6±0.2 | 14.27±2.01 | 0.73±0.15 | 1.42±0.03 | 811.22±13.35 | 10.67±5.31 | S |
2 | 4.1±0.1 | 13.67±2.11 | 0.70±0.11 | 1.41±0.11 | 824.94±11.45 | 13.11±6.31 | SE |
3 | 4.1±0.1 | 14.11±3.12 | 0.70±0.21 | 1.42±0.14 | 812.44±12.35 | 16.23±4.06 | SE |
处理 Treatment | 混合比例 Mixed proportion |
---|---|
P/S/C/T | 10/0 |
PC | 8/2、7/3、6/4 |
PS | 8/2、7/3、6/4 |
PT | 8/2、7/3、6/4 |
PSC | 8/1/1、7/2/1、7/1/2、6/2/2、6/3/1、6/1/3 |
PCT | 8/1/1、7/2/1、7/1/2、6/2/2、6/3/1、6/1/3 |
PST | 8/1/1、7/2/1、7/1/2、6/2/2、6/3/1、6/1/3 |
PSCT | 7/1/1/1、6/2/1/1、6/1/1/2、6/1/2/1 |
表2 试验设计
Table 2 Design of tests
处理 Treatment | 混合比例 Mixed proportion |
---|---|
P/S/C/T | 10/0 |
PC | 8/2、7/3、6/4 |
PS | 8/2、7/3、6/4 |
PT | 8/2、7/3、6/4 |
PSC | 8/1/1、7/2/1、7/1/2、6/2/2、6/3/1、6/1/3 |
PCT | 8/1/1、7/2/1、7/1/2、6/2/2、6/3/1、6/1/3 |
PST | 8/1/1、7/2/1、7/1/2、6/2/2、6/3/1、6/1/3 |
PSCT | 7/1/1/1、6/2/1/1、6/1/1/2、6/1/2/1 |
指标 Index | 马尾松 Pinus massoniana | 檫木 Sassafras tzumu | 香樟 Cinnamomum camphor | 香椿 Toona sinensis |
---|---|---|---|---|
w(C)/(g∙kg-1) | 452.71±6.27A | 413.74±2.77B | 420.77±6.32B | 378.95±2.42C |
w(N)/(g∙kg-1) | 6.07±0.41C | 6.37±0.40BC | 8.22±0.47B | 11.46±0.40A |
w(P)/(g∙kg-1) | 0.92±0.02C | 0.88±0.02BC | 1.11±0.07B | 1.41±0.06A |
w(Lignin)/(g∙kg-1) | 351.07±8.64A | 173.01±9.96B | 149.63±4.16BC | 134.40±6.02C |
w(Cellulose)/(g∙kg-1) | 136.46±12.72A | 96.83±4.54B | 144.72±5.81A | 99.19±3.51B |
w(Total phenol)/(g∙kg-1) | 54.17±2.10A | 35.42±0.11B | 14.82±0.30D | 29.05±0.44C |
w(Condensed tannin)/(g∙kg-1) | 24.75±0.77A | 14.37±0.43B | 13.38±0.07B | 3.67±0.01C |
w(C)/w(N) | 75.34±5.43A | 65.47±3.93AB | 51.52±2.81B | 33.16±1.33C |
w(C)/w(P) | 492.79±16.40A | 472.55±11.19AB | 380.54±21.27B | 269.45±8.99C |
w(N)/w(P) | 6.59±0.38A | 7.26±0.35A | 7.47±0.76A | 8.17±0.54A |
w(Lignin)/w(N) | 58.24±2.86A | 27.50±2.92B | 18.38±1.52BC | 11.76±0.67C |
w(Lignin)/w(P) | 381.87±10.95A | 197.57±11.74B | 135.45±9.37C | 95.84±7.30C |
表3 凋落叶的初始质量特征
Table 3 Initial quality characteristics of foliar litters
指标 Index | 马尾松 Pinus massoniana | 檫木 Sassafras tzumu | 香樟 Cinnamomum camphor | 香椿 Toona sinensis |
---|---|---|---|---|
w(C)/(g∙kg-1) | 452.71±6.27A | 413.74±2.77B | 420.77±6.32B | 378.95±2.42C |
w(N)/(g∙kg-1) | 6.07±0.41C | 6.37±0.40BC | 8.22±0.47B | 11.46±0.40A |
w(P)/(g∙kg-1) | 0.92±0.02C | 0.88±0.02BC | 1.11±0.07B | 1.41±0.06A |
w(Lignin)/(g∙kg-1) | 351.07±8.64A | 173.01±9.96B | 149.63±4.16BC | 134.40±6.02C |
w(Cellulose)/(g∙kg-1) | 136.46±12.72A | 96.83±4.54B | 144.72±5.81A | 99.19±3.51B |
w(Total phenol)/(g∙kg-1) | 54.17±2.10A | 35.42±0.11B | 14.82±0.30D | 29.05±0.44C |
w(Condensed tannin)/(g∙kg-1) | 24.75±0.77A | 14.37±0.43B | 13.38±0.07B | 3.67±0.01C |
w(C)/w(N) | 75.34±5.43A | 65.47±3.93AB | 51.52±2.81B | 33.16±1.33C |
w(C)/w(P) | 492.79±16.40A | 472.55±11.19AB | 380.54±21.27B | 269.45±8.99C |
w(N)/w(P) | 6.59±0.38A | 7.26±0.35A | 7.47±0.76A | 8.17±0.54A |
w(Lignin)/w(N) | 58.24±2.86A | 27.50±2.92B | 18.38±1.52BC | 11.76±0.67C |
w(Lignin)/w(P) | 381.87±10.95A | 197.57±11.74B | 135.45±9.37C | 95.84±7.30C |
图1 31 种不同处理混合凋落叶不同分解时期纤维素降解率的相对混合效应(观测值-预期值) a、b、c、d、e、f、g和h分别表示凋落物分解3、6、9、12、15、18、21和24个月的纤维素降解率的混合效应,柱形图为正值表示观测值>预期值,柱形图为负值表示观测值<预期值。统计显著性水平:**表示P<0.01和*表示P<0.05,百分数值表示31种混合处理中,达到显著混合效应的比例
图a Relative mixing effects of 31 different treatments on the degradation rate of cellulose in mixed litter at different decomposition stages (observed-expected) a, b, c, d, e, f, g and h represent the mixed effects after decomposed for 3, 6, 9, 12, 15, 18, 21 and 24 months, respectively. The insets show differences between the observed values and the expected values for the given variables, where a positive value indicates an observed value>the expected value and vice versa; statistical significance levels: **, P<0.01 and *, P<0.05 for comparisons between the observed and expected values. The percentage value indicate the proportion of corresponding significant interactions in a total of 31 cases. The same as below
图2 31种不同处理混合凋落叶不同分解时期总酚降解率的相对混合效应(观测值-预期值) a、b、c、d、e、f、g和h分别表示凋落物分解3、6、9、12、15、18、21和24个月的总酚降解率的混合效应
图a Relative mixing effects of 31 different treatments on the degradation rate of total phenol in mixed litter at different decomposition stages (observed-expected) a, b, c, d, e, f, g and h represent the mixed effects after decomposed for 3, 6, 9, 12, 15, 18, 21 and 24 months, respectively
图3 31种不同处理混合凋落叶不同分解时期缩合单宁降解率的相对混合效应(观测值-预期值) a、b、c、d、e、f、g和h分别表示凋落物分解3、6、9、12、15、18、21和24个月的缩合单宁降解率的混合效应
图a Relative mixing effects of 31 different treatments on the degradation rate of condensed tannins in mixed litter at different decomposition stages (observed-expected) a, b, c, d, e, f, g and h represent the mixed effects after decomposed for 3, 6, 9, 12, 15, 18, 21 and 24 months, respectively
图4 凋落叶初始化学性质与纤维素(a)、总酚(b)以及缩合单宁(c)混合效应的偏最小二乘回归分析
Figure 4 Results of the PLS regression analysis of initial chemical properties of litter and mixed effects of cellulose (a), total phenols (b) and condensed tannins (c)
[1] | DOMÍNQUEZ M T, GEIBEL M, TREUTTER D, et al., 1994. Influence of polyphenols in the litter decomposition of autochthonous (Quercus ilex L. Quercus suber L. Pinus pinea L. Cistus ladanifer L. and Halimium halimifolium W.K.) and introduced species (Eucalyptus globulus L. and Eucalyptus camaldulensis D.) in the southwest of Spain[J]. Acta Horticulturae, 381(12): 425-428. |
[2] |
FIORETTO A, NARDO C, PAPA S, et al., 2005. Lignin and cellulose degradation and nitrogen dynamics during decomposition of three leaf litter species in a mediterranean ecosystem[J]. Soil Biology & Biochemistry, 37(6): 1083-1091.
DOI URL |
[3] |
HASEY S M M, 1981. Decomposition of chaparral shrub foliage: losses of organic and inorganic constituents from deciduous and evergreen leaves[J]. Ecology, 62(3): 762-774.
DOI URL |
[4] | HÄTTENSCHWILER S, 2005. Effects of tree species diversity on litter quality and decomposition[J]. Ecological studies, 176: 149-164. |
[5] |
HOORENS B, AERTS R, STROETENGA M, 2003. Does initial litter chemistry explain litter mixture effects on decomposition?[J]. Oecologia, 137(4): 578-586.
PMID |
[6] |
MAO R, ZENG D H, 2012. Non-additive effects vary with the number of component residues and their mixing proportions during residue mixture decomposition: a microcosm study[J]. Geoderma, 170: 112-117.
DOI URL |
[7] |
MELILLO J M, ABER J D, MURATOREJ F, 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics[J]. Ecology, 63(3): 621-626.
DOI URL |
[8] |
RISTOK C, LEPPERT K, FRANKE K, et al., 2017. Leaf litter diversity positively affects the decomposition of plant polyphenols[J]. Plant and Soil, 419(1-2): 305-317.
DOI URL |
[9] |
SCHLESINGER W H, ANDREWS J A, 2000. Soil Respiration and the Global Carbon Cycle[J]. Biogeochemistry, 48(1): 7-20.
DOI URL |
[10] |
USHIO M, BALSER T, KITAYAMA K, 2013. Effects of condensed tannins in conifer leaves on the composition and activity of the soil microbial community in a tropical montane forest[J]. Plant and Soil, 365(1-2): 157-170.
DOI URL |
[11] |
WANG Y X, LIU Q, YAN L, et al., 2013. A novel lignin degradation bacterial consortium for efficient pulping[J]. Bioresource Technology, 139: 113-119.
DOI PMID |
[12] | 白云星, 周运超, 张薰元, 等, 2021. 马尾松针阔混交人工林凋落物和土壤水源涵养能力[J]. 林业科学, 57(11): 24-36. |
BAI Y X, ZHOIU Y C, ZHANG X Y, et al., 2021. Water conservation capacity of litter and soil in mixed plantation of Pinus massoniana and broadleaved trees[J]. Scientia Silvae Sinicae, 57(11): 24-36. | |
[13] | 陈代喜, 陈琴, 蒙跃环, 等, 2015. 杉木大径材高效培育技术探讨[J]. 南方农业学报, 46(2): 293-298. |
CHEN D X, CHEN X MENG Y H, et al., 2015. High-efficient management technology of big-diameter timber of Cunninghamia laceolata[J]. Journal of Southern Agriculture, 46(2): 293-298. | |
[14] | 杜婷, 刘一霖, 杨玉婷, 等, 2021. 林窗对川西亚高山6种植物凋落叶纤维素降解的影响[J]. 应用与环境生物学报, 27(3): 617-624. |
DU T, LIU Y L, YANG Y T, et al., 2021. Effects of forest gaps on cellulose degradation during foliar litter decomposition in a subalpine forest of western Sichuan[J]. Chinese Journal of Applied & Environmental Biology, 27(3): 617-624. | |
[15] | 官昭瑛, 赵颖, 童晓立, 2009. 蒲桃和人面子叶片单宁含量与凋落物分解速率及底栖动物定殖的关系[J]. 应用生态学报, 20(10): 2493-2498. |
GUAN Z Y, ZHAO Y, TONG X L, 2009. Relationships of Syzygium jambos and Dracontomelon duperreanum leaf tannin concentration and leaf litter breakdown with the colonization of benthonic invertebrates[J]. Chinese Journal of Applied Ecology, 20(10): 2493-2498. | |
[16] | 黄锦学, 黄李梅, 林智超, 等, 2010. 中国森林凋落物分解速率影响因素分析[J]. 亚热带资源与环境学报, 5(3): 56-63. |
HUANG J X, HUANG L M, LIN Z C, et al., 2010. Controlling factors of litter decomposition rate in China's forests[J]. Journal of Subtropical Resources and Environment, 5(3): 56-63. | |
[17] | 李勋, 张艳, 覃宇, 等, 2022. 马尾松与乡土阔叶树种凋落叶木质素降解的混合效应[J]. 热带亚热带植物学报, 30(1): 19-30. |
LI X, ZHANG Y, QIN Y, et al., 2022. Mixed effects on lignin degradation in the litter leaves of Pinus massoniana and native broad-leaved tree species[J]. Journal of Tropical and Subtropical Botany, 30(1): 19-30. | |
[18] | 李勋, 张艳, 宋思梦, 等, 2022. 马尾松与乡土阔叶树种凋落叶混合分解过程中全碳释放的动态变化[J]. 植物研究, 42(2): 309-320. |
LI X, ZHANG Y, SONG S M, et al., 2022. Dynamic changes of total carbon release during mixed decomposition of leaf litter of Pinus massoniana and native broad-leaved tree Species[J]. Bulletin of Botanical Research, 42(2): 309-320. | |
[19] | 李伟英, 石恬恬, 孔令云, 等, 2014. 微囊藻毒素与酚类和脂肪酸类化感化合物相关关系的研究进展[J]. 安全与环境学报, 14(3): 338-342. |
LI W Y, SHI T T, KONG L Y, et al., 2014. Research review on the advances in the role of microcystin in the process of the community sustainable succession[J]. Journal of Safety and Environment, 14(3): 338-342. | |
[20] | 柳江, 洪伟, 吴承祯, 等, 2002. 天然更新的檫木林的生物量和生产力[J]. 热带亚热带植物学报, 10(2): 105-110. |
LIU J, HONG W, WU C Z, et al., 2002. Biomass production and productivity of natural regenerated Sassafras tzumu trees[J]. Journal of Tropical and Subtropical Botany, 10(2): 105-110. | |
[21] | 刘瑞鹏, 毛子军, 李兴欢, 等, 2013. 模拟增温和不同凋落物基质质量对凋落物分解速率的影响[J]. 生态学报, 33(18): 5661-5667. |
LIU R P, MAO Z J, LI X H, et al., 2013. Effects of simulated temperature increase and vary little quality on litter decomposition[J]. Acta Ecologica Sinica, 33(18): 5661-5667.
DOI URL |
|
[22] | 刘莎茜, 杨瑞, 侯春兰, 等, 2021. 贵州山区生态茶园不同凋落物木质素、纤维素分解特征[J]. 茶叶科学, 41(5): 654-668. |
LIU S Q, YANG R, HOU C L, et al., 2021. Decomposition characteristics of lignin and cellulose in different litters of ecological tea gardens in Mountainous Areas of Guizhou[J]. Journal of Tea Science, 41(5): 654-668. | |
[23] | 李晓晶, 2012. 香椿对重金属的抗性研究[D]. 天津: 天津理工大学: 1-81. |
LI X J, 2012. Studies on resistance of Toona sinensis to heavy metal[D]. Tianjin: Tianjin University Technology: 1-81. | |
[24] | 李宜浓, 周晓梅, 张乃莉, 等, 2016. 陆地生态系统混合凋落物分解研究进展[J]. 生态学报, 36(16): 4977-4987. |
LI Y L, ZHOU X M, ZHANG N L, et al., 2016. The research of mixed litter effects on litter decomposition in terrestrial ecosystems[J]. Acta Ecologica Sinica, 36(16): 4977-4987. | |
[25] | 李志安, 邹碧, 丁永祯, 等, 2004. 森林凋落物分解重要影响因子及其研究进展[J]. 生态学杂志, 23(6): 77-83. |
LI Z A, QIU B, DING Y Z, et al., 2004. Key factors of forest litter decomposition and research progress[J]. Chinese Journal of Ecology, 23(6): 77-83. | |
[26] | 吕树英, 2001. 关于营造混交林的几个基本观点[J]. 云南林业科技, 1(1): 26-28. |
LÜ S Y, 2001. Several basic viewpoints on construction of mixed forests[J]. Yunnan Forestry Science and Technology, 1(1): 26-28. | |
[27] | 路颖, 2020. 药乡林场优势树种叶片凋落物分解混合效应及主要影响因素分析[D]. 泰安: 山东农业大学. |
LU Y, 2020. Analysis of mixed effects of leaf litter decomposition and its main affecting factors of dominant tree species in yaoxiang forest farm[D]. Tai’an: Shandong Agricultural University. | |
[28] | 马志良, 高顺, 杨万勤, 等, 2015. 亚热带常绿阔叶林区凋落叶木质素和纤维素在不同雨热季节的降解特征[J]. 生态学杂志, 34(1): 122-129. |
MA ZL, GAO S, YANG W Q, et al., 2015. Degradation characteristics of lignin and cellulose of foliar litter at different rainy stages in subtropical evergreen broadleaved forest[J]. Chinese Journal of Ecology, 34(1): 122-129. | |
[29] | 潘嘉雯, 2019. 马尾松人工林凋落物分解及养分循环规律[D]. 广州: 华南农业大学. |
PAN J W, 2019. Litter decomposition and nutrient cycling in Pinus massoniana plantation[D]. Guangzhou: South China Agricultural University. | |
[30] | 彭少麟, 1995. 鼎湖山人工马尾松第1代与自然更新代生长动态比较[J]. 应用生态学报, 6(1): 11-13. |
PENG S L, 1995. Comparison of growth dynamics between first generation and regeneration of Pinus massomiana[J]. Chinese Journal of Applied Ecology, 6(1): 11-13. | |
[31] | 覃宇, 张丹桔, 李勋, 等, 2018. 马尾松与阔叶树种混合凋落叶分解过程中总酚和缩合单宁的变化[J]. 应用生态学报, 29(7): 2224-2232. |
QIN Y, ZHANG D J, LI X, et al., 2018. Changes of total phenols and condensed tannins during the decomposition of mixed leaf litter of Pinus massoniana and broad-leaved trees[J]. Chinese Journal of Applied Ecology, 29(7): 2224-2232.
DOI |
|
[32] | 夏建国, 邓良基, 张丽萍, 等, 2002. 四川土壤系统分类初步研究[J]. 四川农业大学学报, 20(2): 117-122. |
XIA J G, DENG L J, ZHANG L P, et al., 2002. Study on soil taxonomy in Sichuan[J]. Journal of Sichuan Agricultural University, 20(2): 117-122. | |
[33] | 胥清利, 2007. 枫香与杉木、马尾松混交林土壤有机质和腐殖质碳的研究[J]. 福建林业科技, 34(4): 42-45. |
XU Q L, 2007. A study on soil organic and humic carbon in mixed plantations of Liquidambar formosana and Cunninghamia lanceolata, L. formosana and Pinus massoniana[J]. Journal of Fujian Forestry Science and Technology, 34(4): 42-45. | |
[34] | 曾锋, 邱治军, 许秀玉, 2010. 森林凋落物分解研究进展[J]. 生态环境学报, 19(1): 239-243. |
ZENG F, QIU Z J, XU X Y, 2010. Review on forest litter decomposition[J]. Ecology and Environmental Sciences, 19(1): 239-243. | |
[35] | 张艳, 2016. 马尾松人工林不同大小林窗对两种树种凋落叶难降解物质的影响[D]. 成都: 四川农业大学. |
ZHANG Y, 2016. Effect of forest gap size on litter recalcitrant components of two tree species in Pinus massoniana plantations[D]. Chengdu: Sichuan Agricultural University. | |
[36] |
张艳, 张丹桔, 李勋, 等, 2016. 马尾松人工林林窗边缘效应对樟和红椿凋落叶难降解物质分解的影响[J]. 应用生态学报, 27(4): 1116-1124.
DOI |
ZHANG Y, ZHANG D J, LI X, et al., 2016. Edge effects of forest gap in Pinus massoniana plantations on the decomposition of leaf litter recalcitrant components of Cinnamomum camphora and Toona ciliata[J]. Chinese Journal of Applied Ecology, 27(4): 1116-1124. | |
[37] | 张艳, 李勋, 宋思梦, 等, 2021. 马尾松与乡土阔叶树种凋落叶混合分解过程中微生物生物量特征[J]. 生态环境学报, 30(4): 681-690. |
ZHANG Y, LI X, SONG S M, et al., 2021. Characteristics of microbial biomass during the decomposition of mixed foliage litter from Pinus massoniana and broadleaved tree species[J]. Ecology and Environment Sciences, 30(4): 681-690. | |
[38] | 张艳, 袁亚玲, 李勋, 等, 2022. 马尾松与3种阔叶树混合凋落叶分解过程中碳循环相关酶活性的变化特征[J]. 植物资源与环境学报, 31(1): 29-41. |
ZHANG Y, YUAN Y L, LI X, et al., 2022. Variation characteristics of activities of carbon cycle-related enzymes of mixed leaf litters of Pinus massoniana and three broad-leaved tree species during decomposition period[J]. Journal of Plant Resources and Environment, 31(1): 29-41. | |
[39] | 周勇, 蔡崇法, 王庆云, 1997. 湖北省土壤系统分类命名及其类比[J]. 土壤, 3(3): 130-136. |
ZHOU Y, CAI C F, WANG Q Y, 1997. Taxonomic nomenclature and analogy of soil in Hubei Province[J]. Soil, 3(3): 130-136. |
[1] | 程传鹏, 徐明洁, 刘慧峰. 间伐对亚热带马尾松人工林碳动态及碳固定经济价值的影响[J]. 生态环境学报, 2022, 31(8): 1499-1509. |
[2] | 张博文, 秦娟, 任忠明, 陈子齐, 姚舜佳, 刘烨, 宋炎玉. 坡向对北亚热带区马尾松纯林及不同针阔混交林型林下植物多样性的影响[J]. 生态环境学报, 2022, 31(6): 1091-1100. |
[3] | 王玄, 熊鑫, 张慧玲, 赵梦頔, 胡明慧, 褚国伟, 孟泽, 张德强. 模拟酸雨对南亚热带森林凋落物分解和土壤呼吸的影响[J]. 生态环境学报, 2021, 30(9): 1805-1813. |
[4] | 张健, 徐明, 王阳, 文春玉, 杨云礼, 张姣, 聂坤. 黔中地区不同马尾松群丛土壤球囊霉素分布特征[J]. 生态环境学报, 2021, 30(12): 2303-2308. |
[5] | 张洋洋, 周清慧, 许骄阳, 魏鸣, 陈继豪, 何伟, 王鹏程, 晏召贵. 林龄对马尾松人工林林下植物与土壤种子库多样性的影响[J]. 生态环境学报, 2021, 30(11): 2121-2129. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||