生态环境学报 ›› 2022, Vol. 31 ›› Issue (9): 1802-1812.DOI: 10.16258/j.cnki.1674-5906.2022.09.010
韩翠1,2(), 康扬眉3, 余海龙3, 李冰2, 黄菊莹1,*(
)
收稿日期:
2022-02-21
出版日期:
2022-09-18
发布日期:
2022-11-07
通讯作者:
*黄菊莹(1980年生),女,研究员,主要从事全球变化生态学和生态系统生态学研究。E-mail: juyinghuang@163.com作者简介:
韩翠(1996年生),女,硕士研究生,主要从事降水量变化及氮添加下荒漠草原碳源汇特征研究。E-mail: 18838933825@163.com
基金资助:
HAN Cui1,2(), KANG Yangmei3, YU Hailong3, Li Bing2, HUANG Juying1,*(
)
Received:
2022-02-21
Online:
2022-09-18
Published:
2022-11-07
摘要:
近年来,受全球变暖的影响,中国降水格局发生了改变。土壤酶是地下能量流动和物质循环的重要生物活化剂,在土壤养分转化中扮演着重要的角色。研究降水量变化下荒漠草原土壤酶活性的影响因素,可为深入了解降水格局改变下干旱半干旱区草原生态系统生物地球化学循环提供数据支撑。基于2014年在宁夏荒漠草原设置的降水量变化野外试验平台,研究了凋落物分解过程中土壤过氧化氢酶、蔗糖酶和脲酶活性的变化,分析了其与气象因子、土壤理化性质以及植物种凋落物元素累积释放量之间的关系。结果表明:凋落物分解过程中,过氧化氢酶活性(0.077-0.138 g∙mL-1∙h-1)呈逐渐上升趋势,蔗糖酶(7.075-19.550 mg∙g-1∙d-1)和脲酶(0.483-0.998 mg∙g-1∙d-1)活性无明显的时间动态。减少降水量处理对3种酶活性影响较小。增加降水量处理有助于提高蔗糖酶和脲酶活性,但其影响程度在不同凋落物分解时间之间存在差异;对酶活性影响显著的环境因子依次为月平均风速、月平均气温、月降水量、土壤N:P和土壤NH4+-N质量分数(P<0.05);除脲酶活性与草木樨状黄芪(Astragalus melilotoides)氮累积释放量无显著的关系外(P>0.05),其他情况下3种酶活性与植物种凋落物元素累积释放量呈显著正相关的线性关系(P<0.05)。综上,凋落物分解过程中酶活性主要受气象因子调控;增加降水量提高了土壤水分和氮有效性,有利于刺激蔗糖酶和脲酶活性;随着酶活性的增加,植物种凋落物分解速率加快,碳和氮释放量增多;土壤温度是调控酶活性的主要因子之一。今后还需结合土壤温度等数据,从较长的时间尺度上深入探讨降水量变化下荒漠草原酶活性的驱动因素。
中图分类号:
韩翠, 康扬眉, 余海龙, 李冰, 黄菊莹. 荒漠草原凋落物分解过程中降水量对土壤酶活性的影响[J]. 生态环境学报, 2022, 31(9): 1802-1812.
HAN Cui, KANG Yangmei, YU Hailong, Li Bing, HUANG Juying. Effects of Precipitation on Soil Enzyme Activities during Litter Decomposition in A Desert Steppe of Northwestern China[J]. Ecology and Environment, 2022, 31(9): 1802-1812.
图1 试验期间研究区域月降水量、平均气温和平均风速的变化
Figure 1 Variations in monthly precipitation, average air temperature and average wind speed during the experiment in the studied area
处理 Treatment | 降水状态 Status of precipitation | 降水量 Precipitation/mm | ||
---|---|---|---|---|
2014 | 2015 | 2016 | ||
W1 | 减少 | 149.4 | 153.6 | 147.3 |
总接受 | 196.8 | 211.9 | 200.4 | |
W2 | 减少 | 90.6 | 92.6 | 89.4 |
总接受 | 255.6 | 272.9 | 258.3 | |
W3 (对照 Control) | 增加/减少 | 0 | 0 | 0 |
总接受 | 346.2 | 365.5 | 347.7 | |
W4 | 增加 | 86.9 | 86.9 | 86.9 |
总接受 | 433.1 | 452.4 | 434.6 | |
W5 | 增加 | 144.9 | 144.9 | 144.9 |
总接受 | 491.1 | 510.4 | 492.6 |
表1 2014-2016年各降水量处理实际改变的降水量和接受的总降水量
Table 1 The actually altered precipitation and the received precipitation in each treatment during 2014-2016
处理 Treatment | 降水状态 Status of precipitation | 降水量 Precipitation/mm | ||
---|---|---|---|---|
2014 | 2015 | 2016 | ||
W1 | 减少 | 149.4 | 153.6 | 147.3 |
总接受 | 196.8 | 211.9 | 200.4 | |
W2 | 减少 | 90.6 | 92.6 | 89.4 |
总接受 | 255.6 | 272.9 | 258.3 | |
W3 (对照 Control) | 增加/减少 | 0 | 0 | 0 |
总接受 | 346.2 | 365.5 | 347.7 | |
W4 | 增加 | 86.9 | 86.9 | 86.9 |
总接受 | 433.1 | 452.4 | 434.6 | |
W5 | 增加 | 144.9 | 144.9 | 144.9 |
总接受 | 491.1 | 510.4 | 492.6 |
变异来源 Source of variation | 自由度 Degree of freedom | 过氧化氢酶活性 Catalase activity | 蔗糖酶活性 Sucrase activity | 脲酶活性 Urease activity |
---|---|---|---|---|
降水量 Precipitation (α) | 4 | 2.499* | 7.373** | 11.195** |
分解时间 Decomposition time (β) | 5 | 93.920** | 35.552** | 20.134** |
降水量×分解时间 Interaction of α and β | 20 | 1.293 | 1.012 | 1.194 |
表2 降水量、分解时间及其交互作用对土壤酶活性的影响
Table 2 Effect of precipitation, decomposition time and their interaction on soil enzyme activity
变异来源 Source of variation | 自由度 Degree of freedom | 过氧化氢酶活性 Catalase activity | 蔗糖酶活性 Sucrase activity | 脲酶活性 Urease activity |
---|---|---|---|---|
降水量 Precipitation (α) | 4 | 2.499* | 7.373** | 11.195** |
分解时间 Decomposition time (β) | 5 | 93.920** | 35.552** | 20.134** |
降水量×分解时间 Interaction of α and β | 20 | 1.293 | 1.012 | 1.194 |
图2 降水量对土壤酶活性的影响 不同小写字母表示相同分解时间下土壤酶活性在降水量处理间的差异显著(P<0.05)。不同大写字母表示相同降水量处理下土壤酶活性在分解时间间的差异显著(P<0.05)。n=5
Figure 2 Effects of precipitation on soil enzyme activities Different lowercase letters indicate significant differences in soil enzyme activities between the precipitation treatments under the same decomposition time (P<0.05). Different capital letters indicate significant differences in soil enzyme activities between the decomposition times under the same precipitation treatment (P<0.05). n=5
图3 降水量对土壤酶活性的影响 不同小写字母表示土壤酶活性在降水量处理间的差异显著(P<0.05)。n =30
Figure 3 Effect of precipitation on soil enzyme activity Different lowercase letters indicate significant differences in soil enzyme activities between the precipitation treatments (P<0.05). n =30
图4 降水量对土壤理化性质的影响 不同小写字母表示相同分解时间下土壤指标在降水量处理间的差异显著(P<0.05)。n =5
Figure 4 Effects of precipitation on soil physicochemical properties Different lowercase letters indicate significant difference in soil index between the precipitation treatments under the same decomposition time (P<0.05). n=5
图5 土壤酶活性与环境因子的RDA CA、SA和UA分别代表土壤过氧化氢酶、蔗糖酶和脲酶。MP、MAT和MAW分别代表月降水量、平均气温和平均风速。SWC、N:P和NH4+-N分别代表土壤含水量、N:P和NH4+-N。P值小于0.05的环境因子未列出。n =150
Figure 5 RDA of soil enzyme activities and environmental factors CA, SA and UA represent soil catalase activity, sucrase activity and urease activity, respectively. MP, MAT and MAW represent monthly precipitation, average atmospheric temperature and average wind speed, respectively. SWC, N:P and NH4+-N represent soil water content, N:P and NH4+-N, respectively. The environmental factors with P value less than 0.05 are not listed. n =150
因子 Factor | 贡献率 Contribution/% | F | P |
---|---|---|---|
月平均风速 Monthly average wind speed | 40.7 | 41.4 | 0.002 |
土壤N:P Soil N:P | 36.8 | 53.3 | 0.002 |
月平均气温 Monthly average air temperature | 6.8 | 10.7 | 0.002 |
土壤含水量 Soil water content | 4.8 | 7.9 | 0.002 |
月降水量 Monthly precipitation | 3 | 5.2 | 0.020 |
土壤NH4+-N Soil NH4+-N | 3.2 | 5.7 | 0.010 |
土壤NO3--N Soil NO3--N | 1.5 | 2.7 | 0.098 |
土壤有机C Soil organic C | 0.9 | 1.6 | 0.200 |
土壤pH Soil pH | 0.4 | 0.8 | 0.374 |
土壤C:P Soil C:P | 0.3 | 0.5 | 0.506 |
土壤全P Soil total P | 1.1 | 2 | 0.168 |
土壤电导率 Soil electrical conductivity | 0.2 | 0.4 | 0.524 |
土壤速效P Soil available P | 0.1 | 0.2 | 0.692 |
土壤C:N Soil C:N | <0.1 | 0.1 | 0.774 |
土壤全N Soil total N | <0.1 | <0.1 | 0.884 |
表3 土壤酶活性与环境因子RDA统计学分析
Table 3 Statistics analysis in RDA of soil enzyme activities and environmental factors
因子 Factor | 贡献率 Contribution/% | F | P |
---|---|---|---|
月平均风速 Monthly average wind speed | 40.7 | 41.4 | 0.002 |
土壤N:P Soil N:P | 36.8 | 53.3 | 0.002 |
月平均气温 Monthly average air temperature | 6.8 | 10.7 | 0.002 |
土壤含水量 Soil water content | 4.8 | 7.9 | 0.002 |
月降水量 Monthly precipitation | 3 | 5.2 | 0.020 |
土壤NH4+-N Soil NH4+-N | 3.2 | 5.7 | 0.010 |
土壤NO3--N Soil NO3--N | 1.5 | 2.7 | 0.098 |
土壤有机C Soil organic C | 0.9 | 1.6 | 0.200 |
土壤pH Soil pH | 0.4 | 0.8 | 0.374 |
土壤C:P Soil C:P | 0.3 | 0.5 | 0.506 |
土壤全P Soil total P | 1.1 | 2 | 0.168 |
土壤电导率 Soil electrical conductivity | 0.2 | 0.4 | 0.524 |
土壤速效P Soil available P | 0.1 | 0.2 | 0.692 |
土壤C:N Soil C:N | <0.1 | 0.1 | 0.774 |
土壤全N Soil total N | <0.1 | <0.1 | 0.884 |
图6 土壤酶活性与植物种凋落物元素累积释放量的线性拟合关系 Am、Lp、As和Pc分别代表草木樨状黄芪、牛枝子、猪毛蒿和白草。n=30
Figure 6 Linear fitting relationships between soil enzyme activities and elemental cumulative release amounts from plant species litters Am, Lp, As, and Pc represent Astragalus melilotoides, Lespedeza potaninii, Artemisia scoparia, and Pennisetum centrasiaticum, respectively. n=30
[1] |
AKINYEMIA D S, ZHU Y K, ZHAO M Y, et al., 2020. Response of soil extracellular enzyme activity to experimental precipitation in a shrub-encroached grassland in Inner Mongolia[J]. Global Ecology and Conservation, DOI: 10.1016/j.gecco.2020.e01175.
DOI |
[2] |
ALLISON S D, LU Y, WEIHE C, et al., 2013. Microbial abundance and composition influence litter decomposition response to environmental change[J]. Ecology, 94(3): 714-725.
PMID |
[3] |
AVAZPOORL Z, MORADIL M, BASIRIL R, et al., 2019. Soil enzyme activity variations in riparian forests in relation to plant species and soil depth[J]. Arabian Journal of Geosciences, 12(23): 708.
DOI URL |
[4] |
BURNS R G, DEFOREST G L, MARXSEN J, et al., 2013. Soil enzymes in a changing environment: Current knowledge and future directions[J]. Soil Biology and Biochemistry, 58: 216-234.
DOI URL |
[5] |
ESCH, LIPSON D, CLELAND E E, 2017. Direct and indirect effects of shifting rainfall on soil microbial respiration and enzyme activity in a semi-arid system[J]. Plant and Soil, 411(1-2): 333-346.
DOI URL |
[6] |
FENG Y, ZHAO X Y, 2015. Changes in spatiotemporal pattern of precipitation over China during 1980-2012[J]. Environmental Earth Sciences, 73: 1649-1662.
DOI URL |
[7] |
GAO W L, REED S C, MUNSON S M, et al., 2021. Responses of soil extracellular enzyme activities and bacterial community composition to seasonal stages of drought in a semiarid grassland[J]. Geoderma, DOI: 10.1016/j.geoderma.2021.115327.
DOI |
[8] |
GE X G, XIAO W F, ZENG L X, et al., 2017. Relationships between soil-litter interface enzyme activities and decomposition in Pinus massoniana plantations in China[J]. Journal of Soil and Sediments, 17(4): 996-1008.
DOI URL |
[9] |
HEWINS D B, BROADBENT T, BORK E W, et al., 2016. Extracellular enzyme activity response to defoliation and water addition in two ecosites of the mixed grass prairie[J]. Agriculture, Ecosystems & Environment, 230: 79-86.
DOI URL |
[10] | IPCC, 2021. Climate Change 2021: The Physical Science Basis[R]. Cambridge: Cambridge University Press. |
[11] |
JING X, WANG Y H, CHUNG H, et al., 2014. No temperature acclimation of soil extracellular enzymes to experimental warming in an alpine grassland ecosystem on the Tibetan Plateau[J]. Biogeochemistry, 117(1): 39-54.
DOI URL |
[12] |
KIVLIN S N, TRESEDER K K, 2014. Soil extracellular enzyme activities correspond with abiotic factors more than fungal community composition[J]. Biogeochemistry, 117(1): 23-37.
DOI URL |
[13] |
KOTROCZO Z, VERES Z, FEKETE I, et al., 2014. Soil enzyme activity in response to long-term organic matter manipulation[J]. Soil Biology and Biochemistry, 70: 237-224.
DOI URL |
[14] |
KOURTEV P S, EHRENFELD J G, Huang W Z, 2002. Enzyme activities during litter decomposition of two exotic and two native plant species in hardwood forests of New Jersey[J]. Soil Biology and Biochemistry, 34(9): 1207-1218.
DOI URL |
[15] | LADWIG L M, SINSABAUGH R L, COLLINS S L, et al., 2015. Soil enzyme responses to varying rainfall regimes in Chihuahuan Desert soils[J]. Ecosphere, 6(3): 1-10. |
[16] |
MA W J, LI J, GAO Y, et al., 2020. Responses of soil extracellular enzyme activities and microbial community properties to interaction between nitrogen addition and increased precipitation in a semi-arid grassland ecosystem[J]. Science of the Total Environment, DOI: 10.1016/j.scitotenv.2019.134691.
DOI |
[17] |
NA X F, YU H L, WANG P, et al., 2019. Vegetation biomass and soil moisture coregulate bacterial community succession under altered precipitation regimes in a desert steppe in northwestern China[J]. Soil Biology and Biochemistry, DOI: 10.1016/j.soilbio.2019.107520.
DOI |
[18] |
NANNIPIERI P, GIAGNONI L, RENELLA G, et al., 2012. Soil enzymology: Classical and molecular approaches[J]. Biology and Fertility of Soils, 48(7): 743-762.
DOI URL |
[19] |
SHI A D, MARSCHNER P, 2014. Drying and rewetting frequency influences cumulative respiration and its distribution over time in two soils with contrasting management[J]. Soil Biology and Biochemistry, 72: 172-179.
DOI URL |
[20] |
SUSEELA V, THARAYIL N, XING B S, et al., 2014. Warming alters potential enzyme activity but precipitation regulates chemical transformations in grass litter exposed to simulated climatic changes[J]. Soil Biology and Biochemistry, 75: 102-112.
DOI URL |
[21] |
TAYLOR P G, CLEVELAND C C, WIEDER W R, et al., 2017. Temperature and rainfall interact to control carbon cycling in tropical forests[J]. Ecology Letters, 20(6): 779-788.
DOI PMID |
[22] |
WARING B G, 2013. Exploring relationships between enzyme activities and leaf litter decomposition in a wet tropical forest[J]. Soil Biology and Biochemistry, 64: 89-95.
DOI URL |
[23] |
WU Y J, WU SVY, WEN J H, et al., 2016. Changing characteristics of precipitation in China during 1960-2012[J]. International Journal of Climatology, 36(3): 1387-1402.
DOI URL |
[24] |
XU Z W, LI M H, ZIMMERMANN N E, et al., 2018. Plant functional diversity modulates global environmental change effects on grassland productivity[J]. Journal of Ecology, 106(5): 1941-1951.
DOI URL |
[25] |
ZECHMEISTER-BOLTEBSTERN S, KEIBLINGER K M, MOOSHAMMER M, et al., 2015. The application of ecological stoichiometry to plant-microbial-soil organic matter transformations[J]. Ecological Monographs, 85(2): 133-155.
DOI URL |
[26] | 白永飞, 赵玉金, 王扬, 等, 2020. 中国北方草地生态系统服务评估和功能区划助力生态安全屏障建设[J]. 中国科学院院刊, 35(6): 675-689. |
BAI Y F, ZHAO Y J, WANG Y, et al., 2020. Assessment of ecosystem services and ecological regionalization of grasslands support establishment of ecological security barriers in Northern China[J]. Bulletin of Chinese Academy of Sciences, 35(6): 675-689. | |
[27] | 鲍士旦, 2000. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社. |
BAO S D, 2000. Soil and agricultural chemistry analysis[M]. Third Edition. Beijing: China Agriculture Press. | |
[28] | 曹聪, 阮超越, 任寅榜, 等, 2020. 模拟增温对武夷山不同海拔森林表层土壤碳氮及酶活性的影响[J]. 生态学报, 40(15): 5347-5356. |
CAO C, RUAN C Y, REN Y B, et al., 2020. Effects of stimulating warming on surface soil carbon, nitrogen and its enzyme activities across a subtropical elevation gradient in Wuyi Mountain, China[J]. Acta Ecologica Sinica, 40(15): 5347-5356. | |
[29] | 柴锦隆, 徐长林, 张德罡, 等, 2019. 模拟践踏和降水对高寒草甸土壤养分和酶活性的影响[J]. 生态学报, 39(1): 333-344. |
CHAI J L, XU C L, ZHANG D G, et al., 2019. Effects of simulated trampling and rainfall on soil nutrients and enzyme activity in an alpine meadow[J]. Ecologica Sinica, 39(1): 333-344. | |
[30] | 钞然, 张东, 陈雅丽, 等, 2018. 模拟增温增雨对典型草原土壤酶活性的影响[J]. 干旱区研究, 35(5): 1068-1074. |
CHAO R, ZHANG D, CHEN Y L, et al., 2018. Effects of simulated temperature and precipitation increase on soil enzyme activity in typical steppe[J]. Arid Zone Research, 35(5): 1068-1074. | |
[31] |
陈敏玲, 张兵伟, 任婷婷, 等, 2016. 内蒙古半干旱草原土壤水分对降水格局变化的响应[J]. 植物生态学报, 40(7): 658-668.
DOI |
CHEN M L, ZHANG B W, REN T T, et al., 2016. Responses of soil moisture to precipitation pattern change in semiarid grasslands in Nei Mongol, China[J]. Chinese Journal of Plant Ecology, 40(7): 658-668.
DOI URL |
|
[32] | 陈晓丽, 王根绪, 杨燕, 等, 2015. 山地森林表层土壤酶活性对短期增温及凋落物分解的响应[J]. 生态学报, 35(21): 7071-7079. |
CHEN X L, WANG G X, YANG Y, et al., 2015. Response of soil surface enzyme activities to short-term warming and litter decomposition in a mountain forest[J]. Acta Ecologica Sinica, 35(21): 7071-7079. | |
[33] | 付琦, 邢亚娟, 闫国永, 等, 2019. 北方森林凋落物动态对长期氮沉降的响应[J]. 生态环境学报, 28(7): 1341-1350. |
FU Q, XING Y J, YAN G Y, et al., 2019. Response of litter dynamics of boreal forest to long-term nitrogen deposition[J]. Ecology and Environmental Sciences, 28(7): 1341-1350. | |
[34] | 耿玉清, 王冬梅, 2012. 土壤水解酶活性测定方法的研究进展[J]. 中国生态农业学报, 20(4): 387-394. |
GENG Y Q, WANG D M, 2012. Research advances on the measurement methods for soil hydrolytic enzymes activities[J]. Chinese Journal of Eco-Agriculture, 20(4): 387-394.
DOI URL |
|
[35] | 韩翠, 康扬眉, 余海龙, 等, 2022. 降水量对4种荒漠草原植物凋落物碳氮磷释放的影响[J]. 生态学杂志, 41(6): 1090-1100. |
HAN C, KANG Y M, YU H L, et al., 2022. Effects of precipitation on the release of carbon,nitrogen,and phosphorus from decomposing litter of four plant species in a desert steppe[J]. Chinese Journal of Ecology, 41(6): 1090-1100. | |
[36] | 黄菊莹, 余海龙, 刘吉利, 等, 2018. 控雨对荒漠草原植物、微生物和土壤C、N、P化学计量特征的影响[J]. 生态学报, 38(15): 5362-5373. |
HUANG J Y, YU H L, LIU J L, et al., 2018. Effects of precipitation levels on the C:N:P stoichiometry in plants, microbes, and soils in a desert steppe in China[J]. Acta Ecologica Sinica, 38(15): 5362-5373. | |
[37] | 黄小燕, 李耀辉, 冯建英, 等, 2015. 中国西北地区降水量及极端干旱气候变化特征[J]. 生态学报, 35(5): 1359-1370. |
HUANG X Y, LI Y H, FENG J Y, et al., 2015. Climate characteristics of precipitation and extreme drought events in Northwest China[J]. Acta Ecologica Sinica, 35(5): 1359-1370. | |
[38] |
贾丙瑞, 2019. 凋落物分解及其影响机制[J]. 植物生态学报, 43(8): 648-657.
DOI |
JIA B R, 2019. Litter decomposition and its underlying mechanisms[J]. Chinese Journal of Plant Ecology, 43(8): 648-657.
DOI URL |
|
[39] |
李明, 孙洪泉, 苏志诚, 2021. 中国西北气候干湿变化研究进展[J]. 地理研究, 40(4): 1180-1194.
DOI |
LI M, SUN H Q, SU Z C, 2021. Research progress in dry/wet climate variation in Northwest China[J]. Geographical Research, 40(4): 1180-1194.
DOI |
|
[40] | 李吉玫, 张毓涛, 韩燕梁, 等, 2015. 降水变化对天山云杉细根分解及养分释放的影响[J]. 生态环境学报, 24(9): 1453-1460. |
LI J M, ZHANG Y T, HAN Y L, et al., 2015. Effects of variation of precipitation on the fine root decomposition and related nutrient release in Picea schrenkiana var. tianshanica[J]. Ecology and Environmental Sciences, 24(9): 1453-1460. | |
[41] | 刘红梅, 周广帆, 李洁, 等, 2018. 氮沉降对贝加尔针茅草原土壤酶活性的影响[J]. 生态环境学报, 27(8): 1387-1394. |
LIU H M, ZHOU G F, LI J, et al., 2018. Effects of nitrogen deposition on soil enzyme activities of Stipa baicalensis steppe[J]. Ecology and Environmental Sciences, 27(8): 1387-1394. | |
[42] | 王理德, 王方琳, 郭春秀, 等, 2016. 土壤酶学硏究进展[J]. 土壤, 48(1): 12-21. |
WANG L D, WANG F L, GUO C X, et al., 2016. Review: progress of soil enzymology[J]. Soil, 48(1): 12-21. | |
[43] | 王涛, 马宇丹, 许亚东, 等, 2018. 退耕刺槐林土壤养分与酶活性关系[J]. 生态学杂志, 37(7): 2083-2091. |
WANG T, MA Y D, XU Y D, et al., 2018. Relationship between soil nutrients and enzyme activity in Robinia pseudoacacia plantation[J]. Chinese Journal of Ecology, 37(7): 2083-2091. | |
[44] | 许华, 何明珠, 孙岩, 2018. 干旱荒漠区土壤酶活性对降水调控的响应[J]. 兰州大学学报(自然科学版), 54(6): 790-797. |
XU H, HE M Z, SUN Y, 2018. Response of soil enzyme activities to precipitation regulation in arid desert areas[J]. Journal of Lanzhou University (Natural Sciences), 54(6): 790-797. | |
[45] | 闫钟清, 齐玉春, 彭琴, 等, 2017. 降水和氮沉降增加对草地土壤酶活性的影响[J]. 生态学报, 37(9): 3019-3027. |
YAN Z Q, QI Y C, PENG Q, et al., 2017. Effects of increased precipitation and nitrogen deposition on soil enzyme activities[J]. Acta Ecologica Sinica, 37(9): 3019-3027. |
[1] | 杜彩艳, 杨鹏, 蜂述先, 毛妍婷, 陶琼, 此主拉姆, 彭慧娉, 和建美, 李卫林. 不同生态区维西糯山药品质与生态因子相关性研究[J]. 生态环境学报, 2023, 32(6): 1053-1061. |
[2] | 盛美君, 李胜君, 杨昕玥, 王蕊, 李洁, 李刚, 修伟明. 华北潮土农田土壤酶活性对土地利用强度的响应特征探讨[J]. 生态环境学报, 2023, 32(2): 299-308. |
[3] | 符传博, 丹利, 佟金鹤, 陈红. 海口市区臭氧污染变化特征及潜在源区分析[J]. 生态环境学报, 2023, 32(2): 331-340. |
[4] | 黄伟佳, 刘春, 刘岳, 黄斌, 李定强, 袁再健. 南岭山地不同海拔土壤生态化学计量特征及影响因素[J]. 生态环境学报, 2023, 32(1): 80-89. |
[5] | 李勋, 崔宁洁, 张艳, 覃宇, 张健. 马尾松与乡土阔叶树种凋落叶纤维素、总酚以及缩合单宁降解的混合效应[J]. 生态环境学报, 2022, 31(9): 1813-1822. |
[6] | 孙建波, 畅文军, 李文彬, 张世清, 李春强, 彭明. 香蕉不同生育期根际微生物生物量及土壤酶活的变化研究[J]. 生态环境学报, 2022, 31(6): 1169-1174. |
[7] | 冯乙晴, 郝立凯, 郭圆, 徐绯, 徐恒. 酸性矿山废水微生物组时空演变特征及微生物-矿物互作机制[J]. 生态环境学报, 2022, 31(5): 1032-1046. |
[8] | 梁蕾, 马秀枝, 韩晓荣, 李长生, 张志杰. 模拟增温下凋落物对大青山油松人工林土壤温室气体通量的影响[J]. 生态环境学报, 2022, 31(3): 478-486. |
[9] | 周椿富, 于锐, 王翔, 闯绍闯, 杨洪杏, 谢越. 抗生素对不同土壤中酶活性的影响[J]. 生态环境学报, 2022, 31(11): 2234-2241. |
[10] | 陈漾, 张金谱, 邱晓暖, 琚鸿, 黄俊. 2021年广州市臭氧污染特征及气象因子影响分析[J]. 生态环境学报, 2022, 31(10): 2028-2038. |
[11] | 李春环, 王攀, 韩翠, 许艺馨, 黄菊莹. 硫氮沉降下西北荒漠煤矿区周边土壤性质的变化特点[J]. 生态环境学报, 2022, 31(1): 170-180. |
[12] | 王瑞, 宋祥云, 柳新伟. 黄河三角洲不同植被类型土壤酶活性的季节变化[J]. 生态环境学报, 2022, 31(1): 62-69. |
[13] | 王玄, 熊鑫, 张慧玲, 赵梦頔, 胡明慧, 褚国伟, 孟泽, 张德强. 模拟酸雨对南亚热带森林凋落物分解和土壤呼吸的影响[J]. 生态环境学报, 2021, 30(9): 1805-1813. |
[14] | 李欣, 陈小华, 顾海蓉, 钱晓雍, 沈根祥, 赵庆节, 白玉杰. 典型农田土壤酶活性分布特征及影响因素分析[J]. 生态环境学报, 2021, 30(8): 1634-1641. |
[15] | 邹旭东, 蔡福, 李荣平, 米娜, 赵胡笳, 王笑影, 张云海, 汪宏宇, 贾庆宇. 玉米农田水热通量及能量变化研究[J]. 生态环境学报, 2021, 30(8): 1642-1653. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||