生态环境学报 ›› 2021, Vol. 30 ›› Issue (8): 1642-1653.DOI: 10.16258/j.cnki.1674-5906.2021.08.011
邹旭东*(), 蔡福, 李荣平, 米娜, 赵胡笳, 王笑影, 张云海, 汪宏宇, 贾庆宇
收稿日期:
2021-04-07
出版日期:
2021-08-18
发布日期:
2021-11-03
通讯作者:
*作者简介:
邹旭东(1979年生),男,副研究员,从事生态环境气象研究。E-mail: zouxd_163.com@163.com
基金资助:
ZOU Xudong*(), CAI Fu, LI Rongping, MI Na, ZHAO Hujia, WANG Xiaoying, ZHANG Yunhai, WANG Hongyu, JIA Qingyu
Received:
2021-04-07
Online:
2021-08-18
Published:
2021-11-03
摘要:
为揭示中国北方农田生态系统的水热通量动态特征及其对气象因子的变化响应和能量平衡过程特征,利用榆树市玉米农田生态系统观测站2015年、2018—2019年水热通量观测数据,分别对榆树市玉米农田水热通量的小时、日、月份、年际变化特征,潜热通量(Fl)、感热通量(Fs)受气温、降水、日照等气象因子的相关影响,土壤含水量、水热通量的季节变化和降水,各年份Fl、Fs和降水的分布情况进行了详细的分析,以得出各变量的季节分布和降水过程中的变化特征;还对净辐射、土壤热通量的日变化和季节变化,土壤热通量和土壤含水量的季节变化进行对比分析;最后对能量平衡中各项能量的季节变化、日变化,以及能量闭合情况进行分析。结果表明,水热通量的日变化呈单峰型二次曲线,峰值出现在正午,其中Fl为229.2 W∙m-2,Fs为148.0 W∙m-2。潜热年变化呈单峰型,显热年变化呈双峰型,Fl、Fs最高值分别为114.3、51.7 W∙m-2。净辐射和土壤热通量的日变化和年变化都和水热通量相似,但是净辐射峰值出现的时间提前,土壤热通量峰值出现的时间滞后。Fl的年变化与气温、降水呈正相关,与气压呈负相关。Fl和Fs对降水过程都有显著的响应,Fl对降水的反应更加敏感,而连续的降水对Fs有阻碍作用。各种能量项的平衡分析呈现能量不闭合现象,同时能量不闭合情况表现有明显的日变化和年变化,夏季好于冬季,白天好于夜间。7月平均能量闭合比率达到83%,9月白天的能量闭合度达到89%以上。
中图分类号:
邹旭东, 蔡福, 李荣平, 米娜, 赵胡笳, 王笑影, 张云海, 汪宏宇, 贾庆宇. 玉米农田水热通量及能量变化研究[J]. 生态环境学报, 2021, 30(8): 1642-1653.
ZOU Xudong, CAI Fu, LI Rongping, MI Na, ZHAO Hujia, WANG Xiaoying, ZHANG Yunhai, WANG Hongyu, JIA Qingyu. Study on Water and Heat Flux and Energy Change of Maize Field[J]. Ecology and Environment, 2021, 30(8): 1642-1653.
图2 2015、2018—2019年水热通量年动态、月动态,2015年日动态(潜热通量Fl, 显热通量Fs)
Fig. 2 Annual variations of water and heat flux in 2015 and 2018-2019, monthly variations, and diurnal variations in 2015 (Fl: latent heat flux; Fs: sensible heat flux)
图3 2015、2018—2019年大气压强(图a)、空气温度(图b)和饱和水汽压差(图c)的季节变化
Fig. 3 Seasonal variations of Atmospheric pressure (Fig. a), Air temperature (Fig. b) and Vapor pressure deficit (Fig. c) in 2015, 2018-2019
年份 Year | 最高月均温度 Max-t (Monthly average)/℃ | 最低月均温度 Min-t (Monthly average)/℃ | 平均温度 t (Annual averege)/ ℃ | 年降水量 Annual precipitation/mm | 日照 Sunlight/h | 生长季节降水量所占比例 Ratio of precipitation in growing season/% | 水热通量均值 Annual vapor water and heat flux/(W∙m-2) |
---|---|---|---|---|---|---|---|
2015 | 28.3 (Jul.) | -21.1 (Jan.) | 5.5 | 597.5 | 2524.9 | 83.3 | 55.0 |
2016 | Nan | Nan | Nan | 474.9 | Nan | 91.1 | Nan |
2017 | 28.9 (Jul.) | -21.6 (Dec.) | 4.9 | 514.1 | Nan | 92.1 | Nan |
2018 | 29.2 (Jul.) | -24.4 (Jan.) | 5.4 | 519.5 | Nan | 83.6 | 52.0 |
2019 | 28.5 (Jul.) | -19.3 (Dec.) | 6.2 | 801.4 | Nan | 91.1 | 58.8 |
表1 年气温、降水量和日照时数
Table 1 Annual air temperature, precipitation and sunshine hours
年份 Year | 最高月均温度 Max-t (Monthly average)/℃ | 最低月均温度 Min-t (Monthly average)/℃ | 平均温度 t (Annual averege)/ ℃ | 年降水量 Annual precipitation/mm | 日照 Sunlight/h | 生长季节降水量所占比例 Ratio of precipitation in growing season/% | 水热通量均值 Annual vapor water and heat flux/(W∙m-2) |
---|---|---|---|---|---|---|---|
2015 | 28.3 (Jul.) | -21.1 (Jan.) | 5.5 | 597.5 | 2524.9 | 83.3 | 55.0 |
2016 | Nan | Nan | Nan | 474.9 | Nan | 91.1 | Nan |
2017 | 28.9 (Jul.) | -21.6 (Dec.) | 4.9 | 514.1 | Nan | 92.1 | Nan |
2018 | 29.2 (Jul.) | -24.4 (Jan.) | 5.4 | 519.5 | Nan | 83.6 | 52.0 |
2019 | 28.5 (Jul.) | -19.3 (Dec.) | 6.2 | 801.4 | Nan | 91.1 | 58.8 |
图11 2015年各项能量过程的日变化(a:3月;b:5月;c:7月;d:9月)、月动态(e)
Fig. 11 Diurnal variations (a: March; b: May; c: July; d: September) and monthly variations (e) of energy balance in 2015
图13 2015年不同月份地表能量平衡日变化特征 其中Ea1、Eb1是考虑地表热通量和垂直感热平流通量的可供能量和支出能量,Ea2、Eb2是没考虑S和Hadv的可供能量和支出能量
Fig. 13 Diurnal variation characteristics of land surface energy balance in different months of 2015 Among them, Ea1 and Eb1 is available energy and expenditure energy considering surface heat flux and vertical sensible heat advection flux, while Ea2 and Eb2 is available energy and expenditure energy not considered
[1] |
ANDO T, UEYAMA M, 2017. Surface energy exchange in a dense urban built-up area based on two-year eddy covariance measurements in Sakai, Japan[J]. Urban Climate, 19: 155-169.
DOI URL |
[2] |
GE Z M, ZHOU X, KELLOMÄKI S, et al., 2011. Climate, canopy conductance and leaf area development controls on evapotranspiration in a boreal coniferous forest over a 10-year period: A united model assessment[J]. Ecological Modeling, 222(9): 1626-1638.
DOI URL |
[3] |
KUANG W H, YANG T R, LIU A L, et al., 2017. An EcoCity model for regulating urban land cover structure and thermal environment: Taking Beijing as an Example[J]. Science China Earth Sciences, 60(6): 1098-1109.
DOI URL |
[4] |
LAW B E, FALGE E, GU L, et al., 2002. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation[J]. Agricultural and Forest Meteorology, 113: 97-120.
DOI URL |
[5] |
LAUNIAINEN S, 2010. Seasonal and inter-annual variability of energy exchange above a boreal scots pine forest[J]. Biogeosciences, 7(12): 3921-3940.
DOI URL |
[6] |
LIU Z P, SHAO M A, WANG Y Q, 2011. Effect of environmental factors on regional soil organic carbon stocks across the Loess Plateau region, China[J]. Agriculture, Ecosystems & Environment, 142(3-4): 184-194.
DOI URL |
[7] | 陈星, 余晔, 陈晋北, 等, 2016. 黄土高原半干旱区雨养农田地表辐射和能量通量的季节变化[J]. 高原气象, 35(2): 351-362. |
CHEN X, YU Y, CHEN J B, et al., 2016. Seasonal variation of radiation and energy fluxes over the rain-fed cropland in the semi-arid area of Loess Plateau[J]. Plateau Meteorology, 35(2): 351-362. | |
[8] | 曹寰琦, 何清, 金莉莉, 等, 2018. 塔克拉玛干沙漠北缘夏秋冬季地表能量平衡闭合特征[J]. 干旱区研究, 35(4): 830-839. |
CAO H Q, HE Q, JIN L L, et al., 2018. Surface energy balance closure of summer, autumn and winter in the northern margin of Taklimakan desert[J]. Arid Zone Research, 35(4): 830-839. | |
[9] | 郭家选, 梅旭荣, 卢志光, 等, 2004. 测定农田蒸散的涡度相关技术[J]. 中国农业科学, 37(8): 1172-1176. |
GUO J X, MEI X R, LU Z G, et al., 2004. Field evapotranspiration measurement based on eddy covariance technology[J]. Scientia Agricultura Sinica, 37(8): 1172-1176. | |
[10] | 黄辉, 孟平, 张劲松, 等, 2011. 华北低丘山地人工林蒸散的季节变化及环境影响要素[J]. 生态学报, 31(13): 3569-3580. |
HUANG H, MENG P, ZHANG J S, et al., 2011. Seasonal variations and environmental control impacts of evapotranspiration in a hilly plantation in the mountain areas of North China[J]. Acta Ecologica Sinica, 31(13): 3569-3580. | |
[11] | 陆宣承, 文军, 田辉, 等, 2020. 若尔盖高寒湿地-大气间水热交换湍流通量的日变化特征分[J]. 高原气象, 39(4): 719-728. |
LU X C, WEN J, TIAN H, et al., 2020. Analysis of the turbulent fluxes of water & heat exchange between the Zoige Alpine Wetland and atmosphere[J]. Plateau Meteorology, 39(4): 719-728. | |
[12] |
李祎君, 许振柱, 王云龙, 等, 2007. 玉米农田水热通量动态与能量闭合分析[J]. 植物生态学报, 31(6): 1132-1144.
DOI |
LI Y J, XU Z Z, WANG Y L, et al., 2007. Latent and sensible heat fluxes and energy balance in a maize agroecosystem[J]. Journal of Plant Ecology, 31(6): 1132-1144. | |
[13] | 梁捷宁, 张镭, 张武, 等, 2013. 黄土高原半干旱区地表能量不闭合及其对二氧化碳通量的影响[J]. 物理学报, 62(9): 536-547. |
LIANG J N, ZHANG L, ZHANG W, et al., 2013. Energy balance analysis over Loess Plateau and the consequences for carbon dioxide flux[J]. Acta Physica Sinica, 62(9): 536-547. | |
[14] | 邱让建, 杨再强, 景元书, 等, 2018. 轮作稻麦田水热通量及影响因素分析[J]. 农业工程学报, 34(17): 82-88. |
QIU R J, YANG Z Q, JING Y S, et al., 2018. Analysis of water and heat flux over rice-wheat rotation field and influencing factors[J]. Transactions of the Chinese Society of Agricultural Engineering, 34(17): 82-88. | |
[15] | 曲延光, 郭永杰, 2014. 榆树市地表水资源分析与评价[J]. 农业与技术, 34(1): 46-47. |
QU Y G, GUO Y J, 2014. Analysis and evaluation of surface water resources in Yushu City[J]. Agriculture and Technology, 34(1): 46-47. | |
[16] |
邱国玉, 王帅, 吴晓, 2006. 三温模型-基于表面温度测算蒸散和评价环境质量的方法Ⅰ. 土壤蒸发[J]. 植物生态学报, 30(2): 231-238.
DOI |
QIU G Y, WANG S, WU X, 2006. Three temperature mode-a method to estimate evapotranspiration and evaluate environmental quality[J]. Journal of Plant Ecology, 30(2): 231-238. | |
[17] | 任雪塬, 张强, 岳平, 等, 2021. 中国北方四类典型下垫面能量分配特征及其环境影响因子研究[J]. 高原气象, 40(1): 109-122. |
REN X Y, ZHANG Q, YUE P, et al., 2021. Study on energy partitioning and its environmental factors of four types of typical underlying surfaces in North China[J]. Plateau Meteorology, 40(1): 109-122. | |
[18] | 孙照渤, 曹蓉, 倪东鸿, 2016. 东北夏季降水分型及其大气环流特征[J]. 大气科学学报, 39(1):18-27. |
SUN Z B, CAO R, NI D H, 2016. A classification of summer precipitation patterns over Northeast China and their atmospheric circulation characteristics[J]. Transactions of Atmospheric Sciences, 39(1): 18-27. | |
[19] | 唐祥, 陈文婧, 李春义, 等, 2013. 北京八达岭林场人工林净碳交换及其环境影响因子[J]. 应用生态学报, 24(11): 3057-3064. |
TANG X, CHEN W J, LI C Y, et al., 2013. Net carbon exchange and its environmental affecting factors in a forest plantation in Badaling, Beijing of China[J]. Chinese Journal of Applied Ecology, 24(11): 3507-3064. | |
[20] |
谭丽萍, 刘苏峡, 莫兴国, 等, 2015. 华北人工林水热碳通量环境影响因子分析[J]. 植物生态学报, 39(8): 773-784.
DOI |
TAN L P, LIU S X, MO X G, et al., 2015. Environmental controls over energy, water and carbon fluxes in a plantation in Northern China[J]. Chinese Journal of Plant Ecology, 39(8): 773-784.
DOI URL |
|
[21] |
王玉辉, 井长青, 白洁, 等, 2014. 亚洲中部干旱区3个典型生态系统生长季水碳通量特征[J]. 植物生态学报, 38(8): 795-808.
DOI |
WANG Y H, JING C Q, BAI J, et al., 2014. Characteristics of water and carbon fluxes during growing season in three typical arid ecosystems in central Asia[J]. Chinese Journal of Plant Ecology, 38(8): 795-808.
DOI URL |
|
[22] | 于贵瑞, 温学发, 李庆康, 等, 2005. 中国亚热带和温带典型森林生态系统呼吸的季节模式及环境响应特征[J]. 中国科学D辑: 地球科学, 34 (增刊Ⅱ): 84-94. |
YU G R, WEN X F, LI Q K, et al., 2005. Seasonal patterns of Chinese typical subtropical and temperate forest ecosystem respiration and its response to environmental changes[J]. Science in China Series D: Earth Sciences, 34(s2): 84-94. | |
[23] | 岳平, 张强, 赵文, 等, 2013. 云和降水扰动对黄土高原半干旱草地辐射收支及能量分配的影响[J]. 物理学报, 62(20): 1-14. |
YUE P, ZHANG Q, ZHAO W, et al., 2013. Effects of clouds and precipitation disturbance on the surface radiation budget and energy balance over loess plateau semi-arid grassland in China[J]. Acta Physica Sinica, 62(20): 1-14. | |
[24] | 邹旭东, 刘海龙, 贾庆宇, 等, 2017. 北方典型农业生态区陆面过程研究简述[J]. 湖北农业科学, 56(21): 4006-4012. |
ZOU X D, LIU H L, JIA Q Y, et al., 2017. A brief introduction of study on land surface processes in typical agro ecological Regions of north China[J]. Hubei Agricultural Sciences, 56(21): 4006-4012. | |
[25] | 张强, 李宏宇, 2010. 黄土高原地表能量不闭合度与垂直感热平流的关系[J]. 物理学报, 59(8): 5889-5896. |
ZHANG Q, LI H Y, 2010. The relationship between surface energy balance unclosure and vertical sensible heat advection over the Loess Plateau[J]. Acta Physica Sinica, 59(8): 5889-5896. | |
[26] | 支克广, 涂钢, 廉毅, 等, 2002. 乾安地区盐碱地显热通量的测量[J]. 气象学报, 60(6): 780-785. |
ZHI K G, TU G, LIAN Y, et al., 2002. Measuring sensible heat fluxes over saline-alkali land area in Qianan[J]. Acta Metecologica Sinica, 60(6): 780-785. | |
[27] | 张永强, 刘昌明, 于强, 等, 2002. 华北平原典型农田水、热与CO2通量的测定[J]. 地理学报, 57(3): 333-342. |
ZHANG Y Q, LIU C M, YU Q, et al., 2002. Measurement and analysis of water, heat and CO2 flux from a farmland in the North China Plain[J]. Acta Geographical Sinica, 57(3): 333-342. |
[1] | 杜彩艳, 杨鹏, 蜂述先, 毛妍婷, 陶琼, 此主拉姆, 彭慧娉, 和建美, 李卫林. 不同生态区维西糯山药品质与生态因子相关性研究[J]. 生态环境学报, 2023, 32(6): 1053-1061. |
[2] | 符传博, 丹利, 佟金鹤, 陈红. 海口市区臭氧污染变化特征及潜在源区分析[J]. 生态环境学报, 2023, 32(2): 331-340. |
[3] | 韩翠, 康扬眉, 余海龙, 李冰, 黄菊莹. 荒漠草原凋落物分解过程中降水量对土壤酶活性的影响[J]. 生态环境学报, 2022, 31(9): 1802-1812. |
[4] | 陈漾, 张金谱, 邱晓暖, 琚鸿, 黄俊. 2021年广州市臭氧污染特征及气象因子影响分析[J]. 生态环境学报, 2022, 31(10): 2028-2038. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||