生态环境学报 ›› 2022, Vol. 31 ›› Issue (5): 1032-1046.DOI: 10.16258/j.cnki.1674-5906.2022.05.019

• 综述 • 上一篇    下一篇

酸性矿山废水微生物组时空演变特征及微生物-矿物互作机制

冯乙晴1,3(), 郝立凯1,2,3,*(), 郭圆1, 徐绯4, 徐恒4   

  1. 1.中国科学院地球化学研究所/环境地球化学国家重点实验室,贵州 贵阳 550081
    2.中国科学院第四纪科学与全球变化卓越创新中心,陕西 西安 710061
    3.中国科学院大学, 北京 100049
    4.四川大学,四川 成都 610065
  • 收稿日期:2022-03-17 出版日期:2022-05-18 发布日期:2022-07-12
  • 通讯作者: * 郝立凯(1980年生),男,研究员,博士,研究方向为地球微生物学。E-mail: haolikai@mail.gyig.ac.cn
  • 作者简介:冯乙晴(1991年生),女,博士研究生,研究方向为地球微生物学。E-mail: fengyiqing@mail.gyig.ac.cn
  • 基金资助:
    国家重点研发计划项目(2018YFC1802601);国家自然科学基金项目(41877400);中国科学院B类战略性先导科技专项资助(XDB40020300);中国科学院启动经费(2017-020);环境地球化学国家重点实验室开放课题(SKLEG2018911)

Spatio-temporal Evolution Characteristics of Microbiome in Acid Mine Drainage and Microbial-mineral Interaction Mechanism

FENG Yiqing1,3(), HAO Likai1,2,3,*(), GUO Yuan1, XU Fei4, XU Heng4   

  1. 1. State Key Laboratory of Environmental Geochemistry/Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, P. R. China
    2. CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, P. R. China
    3. University of Chinese Academy of Sciences, Beijing 100049, P. R. China
    4. Sichuan University, Chengdu 610065, P. R. China
  • Received:2022-03-17 Online:2022-05-18 Published:2022-07-12

摘要:

酸性矿山废水(Acid Mine Drainage,AMD)是世界范围内最严重的环境问题之一。微生物是AMD形成过程的主要驱动者,主导了该系统中Fe-S地球化学循环,并与矿物之间存在复杂的相互作用关系。对其群落结构、功能和代谢特征的深入分析有助于揭示极端酸性环境中优势物种和稀有物种的生态意义,有利于制定科学合理的AMD污染防控和修复措施。采用微生物组学(基因组、转录组、蛋白组、代谢组和表型组)方法进行系统研究有助于明确极端环境胁迫下微生物适应性反应的分子机制。AMD微生物组在尾矿酸化过程、生物膜发育过程、生物处理过程和水热驱动的季节演替等不同时间序列及局部和精细空间尺度上具有明显的系统聚类趋势,体现了其适应极端酸性和有毒金属环境的生态策略。AMD系统Fe-S生物地球化学梯度对微生物群落结构和功能具有显著的影响,铁硫代谢相关微生物对环境梯度变化的响应又驱动了Fe-S生物地球化学循环,主导了AMD矿物的演变过程、相变平衡及金属元素的形态转化。酸性矿山废水微生物成矿作用是生物和非生物反应相互作用的共同结果,表面反应控制是矿物微生物氧化反应机理的关键,接触机制是其主导机制。此外,AMD矿物的微生物还原遵循电化学过程,含铁矿物是AMD系统微生物胞外呼吸最重要的电子受体之一,铁呼吸过程驱动了AMD系统的元素生物地球化学循环,进而驱动其微生物群落和功能、代谢等的演化。

关键词: 酸性矿山废水(AMD), 微生物组, 微生物成矿, 微生物-矿物作用(MMI), Fe-S, 生物地球化学循环

Abstract:

Acid mine drainage (AMD) is one of the most serious environmental problems in the world. Microorganism are responsible for the formation of AMD via Fe-S geochemical cycle, in which has complex interaction with minerals. In-depth analysis of the microbial community structure, function and metabolic characteristics will be helpful to reveal the ecological significance of dominant and rare species in extreme acidic environments, contributing to the remediation of AMD contamination. Systematic studies using multi-omics methods, including genome, transcriptome, proteome, metabolism and phenome, are helpful to clarify the molecular mechanism of microbe-environment interactions. Microbiome in AMD were clustered in different time series such as tailings acidification process, biofilm development process, biological treatment process and seasonal succession driven by water and heat, and regional and fine spatial scales, reflecting their ecological strategies adapting to extreme acidic and toxic metal environments. The Fe-S biogeochemical gradient in AMD system has a significant impact on the structure and function of microbial communities. The response of Fe- and S-metabolizing microbial populations to environmental gradient changes drives the Fe-S biogeochemical cycle and leads to the evolution process, phase transformation equilibrium of AMD minerals, and the transformation of metal elements. The microbial mineralization in AMD is the result of the interaction between biotic and abiotic reactions. The control of surface reaction plays a key role for mineral microbial oxidation, which is driven by the contact mechanism. In addition, the microbial reduction of minerals in AMD follows the electrochemical process. The iron-bearing mineral is one of the most important electron acceptors of extracellular respiration of microorganisms in AMD system, so that the iron respiration drives the biogeochemical cycle of elements, and further drives the evolution of microbial community, function and metabolism in AMD system.

Key words: acid mine drainage (AMD), microbiome, microbial mineralization, microbial-mineral interaction (MMI), Fe-S, biogeochemical cycle

中图分类号: