生态环境学报 ›› 2022, Vol. 31 ›› Issue (5): 1032-1046.DOI: 10.16258/j.cnki.1674-5906.2022.05.019
冯乙晴1,3(), 郝立凯1,2,3,*(
), 郭圆1, 徐绯4, 徐恒4
收稿日期:
2022-03-17
出版日期:
2022-05-18
发布日期:
2022-07-12
通讯作者:
* 郝立凯(1980年生),男,研究员,博士,研究方向为地球微生物学。E-mail: haolikai@mail.gyig.ac.cn作者简介:
冯乙晴(1991年生),女,博士研究生,研究方向为地球微生物学。E-mail: fengyiqing@mail.gyig.ac.cn
基金资助:
FENG Yiqing1,3(), HAO Likai1,2,3,*(
), GUO Yuan1, XU Fei4, XU Heng4
Received:
2022-03-17
Online:
2022-05-18
Published:
2022-07-12
摘要:
酸性矿山废水(Acid Mine Drainage,AMD)是世界范围内最严重的环境问题之一。微生物是AMD形成过程的主要驱动者,主导了该系统中Fe-S地球化学循环,并与矿物之间存在复杂的相互作用关系。对其群落结构、功能和代谢特征的深入分析有助于揭示极端酸性环境中优势物种和稀有物种的生态意义,有利于制定科学合理的AMD污染防控和修复措施。采用微生物组学(基因组、转录组、蛋白组、代谢组和表型组)方法进行系统研究有助于明确极端环境胁迫下微生物适应性反应的分子机制。AMD微生物组在尾矿酸化过程、生物膜发育过程、生物处理过程和水热驱动的季节演替等不同时间序列及局部和精细空间尺度上具有明显的系统聚类趋势,体现了其适应极端酸性和有毒金属环境的生态策略。AMD系统Fe-S生物地球化学梯度对微生物群落结构和功能具有显著的影响,铁硫代谢相关微生物对环境梯度变化的响应又驱动了Fe-S生物地球化学循环,主导了AMD矿物的演变过程、相变平衡及金属元素的形态转化。酸性矿山废水微生物成矿作用是生物和非生物反应相互作用的共同结果,表面反应控制是矿物微生物氧化反应机理的关键,接触机制是其主导机制。此外,AMD矿物的微生物还原遵循电化学过程,含铁矿物是AMD系统微生物胞外呼吸最重要的电子受体之一,铁呼吸过程驱动了AMD系统的元素生物地球化学循环,进而驱动其微生物群落和功能、代谢等的演化。
中图分类号:
冯乙晴, 郝立凯, 郭圆, 徐绯, 徐恒. 酸性矿山废水微生物组时空演变特征及微生物-矿物互作机制[J]. 生态环境学报, 2022, 31(5): 1032-1046.
FENG Yiqing, HAO Likai, GUO Yuan, XU Fei, XU Heng. Spatio-temporal Evolution Characteristics of Microbiome in Acid Mine Drainage and Microbial-mineral Interaction Mechanism[J]. Ecology and Environment, 2022, 31(5): 1032-1046.
图2 AMD微生物群时空演变特征 ①尾矿酸化过程;②水平方向:梯田(上层—下层);③垂直方向:湖泊(底层—表层);④垂直方向:土壤(底层—表层)。沿箭头方向环境pH逐渐降低,微生物群落结构趋于简单化
Figure 2 Spatio-temporal evolution characteristics of microbiota in AMD Tailings acidification; ②Horizontal scale: terraced fields (upper to lower); ③Vertical scale: pool (bottom to surface); ④Vertical scale: soil (bottom to surface). Microbial community structure tends to be simplified with the gradual decrease of environmental pH along the arrow direction
[1] | ABINANDAN S, PERERA I A, SUBASHCHANDRABOSE S R, et al., 2020. Acid-adapted microalgae exhibit phenotypic changes for their survival in acid mine drainage samples[J]. FEMS Microbiology Ecology, 96(11): 1-12. |
[2] |
ABINANDAN S S R, SUBASHCHANDRABOSE N, COLE R, et al., 2019. Sustainable production of biomass and biodiesel by acclimation of non-acidophilic microalgae to acidic conditions[J]. Bioresource Technology, 271: 316-324.
DOI URL |
[3] |
AKCIL A, SONER K, 2006. Acid mine drainage (AMD): Causes, treatment and case studies[J]. Journal of Cleaner Production, 14(12): 1139-1145.
DOI URL |
[4] |
AKINPELU E A, NTWAMPE S K O, FOSSO-KANKEU E, et al., 2021. Performance of microbial community dominated by Bacillus spp. in acid mine drainage remediation systems: A focus on the high removal efficiency of SO42-, Al3+, Cd2+, Cu2+, Mn2+, Pb2+ and Sr2+[J]. Heliyon, 7(6): e07241.
DOI URL |
[5] |
ALLEN, ERIC E, JILLIAN F, BANFIELD, 2005. Community genomics in microbial ecology and evolution[J]. Nature Reviews Microbiology, 3(6):489-498.
DOI URL |
[6] |
ANANTHARAMAN K, CHRISTOPHER B, LAURA H, et al., 2016. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system[J]. Nature Communications, 7(1): 13219.
DOI URL |
[7] |
ANGÉLIQUE D, CASIOT C, HÉRY M, 2016. Diversity and distribution of arsenic-related genes along a pollution gradient in a river affected by acid mine drainage[J]. Microbial Ecology, 71(3): 672-685.
DOI URL |
[8] |
AYORA C, MACÍAS F, TORRES E, et al., 2016. Recovery of rare earth elements and yttrium from passive remediation systems of acid mine drainage[J]. Environmental Science & Technology, 50(15): 8255-8262.
DOI URL |
[9] |
BAKER B J, BANFIELD J F, 2003. Microbial communities in acid mine drainage[J]. FEMS Microbiology Ecology, 44(2): 139-152.
DOI URL |
[10] |
BAKER B, TYSON G, GOOSHERST L, et al., 2009. Insights into the diversity of eukaryotes in acid mine drainage biofilm communities[J]. Applied and Environmental Microbiology, 75(7): 2192-2199.
DOI URL |
[11] |
BALEEIRO A, FIOL S, OTERO-FARIÑA A, et al., 2018. Surface chemistry of iron oxides formed by neutralization of acidic mine waters: Removal of trace metals[J]. Applied Geochemistry, 89: 129-137.
DOI URL |
[12] |
BANFIELD J F, WELCH S, ZHANG H Z, et al., 2000. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products[J]. Science (New York), 289: 751-754.
DOI URL |
[13] |
BAO Y P, GUO C L, LU G N, et al., 2018. Role of microbial activity in Fe(Ⅲ) hydroxysulfate mineral transformations in an acid mine drainage-impacted site from the Dabaoshan Mine[J]. Science of The Total Environment, 616-617: 647-657.
DOI URL |
[14] |
BARTSCH K, KNITTLER K, BOROWSKI C, et al., 2017. Absence of RNase H2 triggers generation of immunogenic micronuclei removed by autophagy[J]. Human molecular genetics, 26(20): 3960-3972.
DOI URL |
[15] |
BAUMGARTNER J, MORIN G, MENGUY N, et al., 2013. Magnetotactic bacteria form magnetite from a phosphate-rich ferric hydroxide via nanometric ferric (oxyhydr) oxide intermediates[J]. Proceedings of the National Academy of Sciences, 110(37): 14883.
DOI URL |
[16] |
BELNAP C, PAN C, DENEF V, et al., 2011. Quantitative proteomic analyses of the response of acidophilic microbial communities to different pH conditions[J]. The ISME Journal, 5(7): 1152-1161.
DOI URL |
[17] |
BELNAP C, PAN C, VERBERKMOES N, et al., 2010. Cultivation and quantitative proteomic analyses of acidophilic microbial communities[J]. The ISME Journal, 4(4): 520-530.
DOI URL |
[18] |
BENZERARA K, MIOT J, MORIN G, et al., 2011. Significance, mechanisms and environmental implications of microbial biomineralization[J]. Comptes Rendus Geoscience, 343(2): 160-167.
DOI URL |
[19] |
BURGOS W D, BORCH T, TROYER L D, et al., 2012. Schwertmannite and Fe oxides formed by biological low-pH Fe(Ⅱ) oxidation versus abiotic neutralization: Impact on trace metal sequestration[J]. Geochimica et Cosmochimica Acta, 76: 29-44.
DOI URL |
[20] |
BURTON E D, BUSH R T, SULLIVAN L A, et al., 2007. Reductive transformation of iron and sulfur in schwertmannite-rich accumulations associated with acidified coastal lowlands[J]. Geochimica et Cosmochimica Acta, 71(18): 4456-4473.
DOI URL |
[21] |
CARABALLO M A, WANTY R B, VERPLANCK P L, et al., 2019. Aluminum mobility in mildly acidic mine drainage: Interactions between hydrobasaluminite, silica and trace metals from the nano to the meso-scale[J]. Chemical Geology, 519: 1-10.
DOI URL |
[22] |
CARBONE C, DINELLI E, MARESCOTTI P, et al., 2013. The role of AMD secondary minerals in controlling environmental pollution: Indications from bulk leaching tests[J]. Journal of Geochemical Exploration, 132: 188-200.
DOI URL |
[23] |
CERÓN J, MARIA T, JOSÉ B, et al., 2014. Hydrochemical characterization of an acid mine drainage-affected reservoir: The Sancho Reservoir, Huelva, southwest Spain[J]. Hydrological Sciences Journal, 59(6): 1213-1224.
DOI URL |
[24] |
CHAN C, SIRINE F, DAVID E, et al., 2011. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: Implications for biosignature formation[J]. The ISME Journal, 5(4): 717-727.
DOI URL |
[25] |
CHEN L X, HUANG L N, MÉNDEZ-GARCÍA C, et al., 2016. Microbial communities, processes and functions in acid mine drainage ecosystems[J]. Current Opinion in Biotechnology, 38: 150-158.
DOI URL |
[26] |
CHEN LIN X, LI J T, CHEN Y T, et al., 2013. Shifts in microbial community composition and function in the acidification of a lead/zinc mine tailings[J]. Environmental Microbiology, 15(9): 2431-2444.
DOI URL |
[27] |
CHEN Y T, LI J T, CHEN L X, et al., 2014. Biogeochemical processes governing natural pyrite oxidation and release of acid metalliferous drainage[J]. Environmental Science & Technology, 48(10): 5537-5545.
DOI URL |
[28] |
CLARKE W A, KONHAUSER K O, JULIA C, et al., 1997. Ferric hydroxide and ferric hydroxysulfate precipitation by bacteria in an acid mine drainage lagoon[J]. FEMS Microbiology Reviews, 20(3): 351-361.
DOI URL |
[29] |
COGGON M, BECERRA C A, NÜSSLEIN K, et al., 2012. Bioavailability of jarosite for stimulating acid mine drainage attenuation[J]. Geochimica et Cosmochimica Acta, 78: 65-76.
DOI URL |
[30] |
CORAL T, MICHAËL D, HÉLÈNE D B, et al., 2018. Microbial communities associated with uranium in-situ recovery mining process are related to acid mine drainage assemblages[J]. Science of The Total Environment, 628-629: 26-35.
DOI URL |
[31] |
DEAN A P, ANTONI H, OWEN A, et al., 2019. Metabolic adaptation of a Chlamydomonas acidophila strain isolated from acid mine drainage ponds with low eukaryotic diversity[J]. Science of the Total Environment, 647: 75-87.
DOI URL |
[32] |
DENEF V, BANFIELD J, 2012. In situ evolutionary rate measurements show ecological success of recently emerged bacterial hybrids[J]. Science (New York), 336: 462-466.
DOI URL |
[33] |
DENEF V, MUELLER R, BANFIELD J, 2010. AMD biofilms: Using model communities to study microbial evolution and ecological complexity in nature[J]. The ISME Journal, 4(5): 599-610.
DOI URL |
[34] |
DENG D Y, WEIDHAAS J L, LIN L S, 2016. Kinetics and microbial ecology of batch sulfidogenic bioreactors for co-treatment of municipal wastewater and acid mine drainage[J]. Journal of Hazardous Materials, 305: 200-208.
DOI URL |
[35] |
DONEY S C, RUCKELSHAUS, DUFFY M J E, et al., 2012. Climate change impacts on marine ecosystems[J]. Annual Review of Marine Science, 4: 11-37.
DOI URL |
[36] |
DRENNAN D M, DINA M, ROBERT A, et al., 2017. Spatial impacts of inorganic ligand availability and localized microbial community structure on mitigation of zinc laden mine water in sulfate-reducing bioreactors[J]. Water Research, 115: 50-59.
DOI URL |
[37] |
DRURY W J, 1999. Treatment of acid mine drainage with anaerobic solid-substrate reactors[J]. Water Environment Research, 71(6): 1244-1250.
DOI URL |
[38] |
EDWARDS K J, BOND P L, GIHRING T M, et al., 2000. An archaeal iron-oxidizing extreme acidophile important in acid mine drainage[J]. Science, 287(5459): 1796-1799.
DOI URL |
[39] |
EDWARDS K J, GIHRING T M, BANFIELD J F, 1999. Seasonal variations in microbial populations and environmental conditions in an extreme acid mine drainage environment[J]. Applied and Environmental Microbiology, 65(8): 3627-3632.
DOI URL |
[40] |
ELGHALI A, MOSTAFA B, HASSAN B, et al., 2021. Role of secondary minerals in the acid generating potential of weathered mine tailings: crystal-chemistry characterization and closed mine site management involvement[J]. Science of the Total Environment, 784: 147105.
DOI URL |
[41] |
ESPAÑA J, PAMO E, DIEZ M, et al., 2009. Physicochemical gradients and meromictic stratification in Cueva de la Mora and other acidic pit lakes of the Iberian Pyrite Belt[J]. Mine Water and The Environment, 28: 15-29.
DOI URL |
[42] |
FONYUY E W, ATEKWANA E A, 2008. Effects of acid mine drainage on dissolved inorganic carbon and stable carbon isotopes in receiving streams[J]. Applied Geochemistry, 23(4): 743-764.
DOI URL |
[43] |
GARCIA-RIOS M, DE WINDT L, LUQUOT L, et al., 2021. Modeling of microbial kinetics and mass transfer in bioreactors simulating the natural attenuation of arsenic and iron in acid mine drainage[J]. Journal of Hazardous Materials, 405: 124133.
DOI URL |
[44] |
GEESEY G G, NEAL A L, SUCI P A, et al., 2002. A review of spectroscopic methods for characterizing microbial transformations of minerals[J]. Journal of Microbiological Methods, 51(2): 125-139.
DOI URL |
[45] | GILBERT P U P A, ABRECHT M, FRAZER B H, 2005. The organic-mineral interface in biominerals[J]. Reviews in Mineralogy & Geochemistry, 59: 157-185. |
[46] |
GILOTEAUX L, DURAN R, CASIOT C, et al., 2013. Three-year survey of sulfate-reducing bacteria community structure in Carnoulès acid mine drainage (France), highly contaminated by arsenic[J]. FEMS Microbiology Ecology, 83(3): 724-737.
DOI URL |
[47] |
GOLTSMAN D S A, DENEF V J, SINGER S W, et al., 2009. Community genomic and proteomic analyses of chemoautotrophic iron-oxidizing “Leptospirillum rubarum” (Group II) and “Leptospirillum ferrodiazotrophum” (Group Ⅲ) bacteria in acid mine drainage biofilms[J]. Applied and Environmental Microbiology, 75(13): 4599-4615.
DOI URL |
[48] |
GOLYSHINA O, PIVOVAROVA T A, KARAVAIKO G, et al., 2000. Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea[J]. International Journal of Systematic and Evolutionary Microbiology, 50(3): 997-1006.
DOI URL |
[49] |
GOMES M E P, FAVAS P J C, 2006. Mineralogical controls on mine drainage of the abandoned Ervedosa tin mine in north-eastern Portugal[J]. Applied Geochemistry, 21(8): 1322-1334.
DOI URL |
[50] | GONZALEZ-TORIL E, SANTOFIMIA E, LOPEZ-PAMO E, et al., 2013. Microbial ecology in extreme acidic pit lakes from the Iberian Pyrite Belt (SW Spain)[M]// Integration of Scientific and Industrial Knowledge on Biohydrometallurgy. Advanced Materials Research, 825: 23-27. |
[51] |
GUPTA A, DUTTA A, SARKAR J, et al., 2017. Metagenomic exploration of microbial community in mine tailings of Malanjkhand copper project, India[J]. Genomics Data, 12(1): 11-13.
DOI URL |
[52] |
HAJJI S, MONTES-HERNANDEZ G, SARRET G, et al., 2019. Arsenite and chromate sequestration onto ferrihydrite, siderite and goethite nanostructured minerals: Isotherms from flow-through reactor experiments and XAS measurements[J]. Journal of Hazardous Materials, 362(2): 358-367.
DOI URL |
[53] |
HALLBERG K B, COUPLAND KRIS, KIMURA S, et al., 2006. Macroscopic streamer growths in acidic, metal-rich mine waters in North Wales consist of novel and remarkably simple bacterial communities[J]. Applied and Environmental Microbiology, 72(3): 2022-2030.
DOI URL |
[54] |
HALLBERG K B, 2010. New perspectives in acid mine drainage microbiology[J]. Hydrometallurgy, 104(3-4): 448-453.
DOI URL |
[55] |
HANDELSMAN J, RONDON M R, BRADY S F, et al., 1998. Molecular biological access to the chemistry of unknown soil microbes: A new frontier for natural products[J]. Chemistry & Biology, 5(10): R245-R249.
DOI URL |
[56] |
HAO C, WEI P, PEI L, et al., 2017. Significant seasonal variations of microbial community in an acid mine drainage lake in Anhui Province, China[J]. Environmental Pollution, 223(5): 507-516.
DOI URL |
[57] |
HAO L, GUO Y, BYRNE J M, et al., 2016. Binding of heavy metal ions in aggregates of microbial cells, EPS and biogenic iron minerals measured in-situ using metal- and glycoconjugates-specific fluorophores[J]. Geochimica et Cosmochimica Acta, 180: 66-96.
DOI URL |
[58] |
HASIOTIS S T, BRAKE S S, 2019. Macroscopic and microscopic morphological features of stromatolites related to activity of eukaryote-dominated biofilms in an acid mine drainage environment: Biosignatures and understanding preservation of stromatolites as trace fossils[J]. Geomicrobiology Journal, 36(7): 651-671.
DOI URL |
[59] |
HAVIG J R, HAMILTON T L, BACHAN A, et al., 2017. Sulfur and carbon isotopic evidence for metabolic pathway evolution and a four-stepped earth system progression across the Archean and Paleoproterozoic[J]. Earth-Science Reviews, 174: 1-21.
DOI URL |
[60] | HIROOKA S, HIROSE Y, KANESAKI Y, et al., 2017. Acidophilic green algal genome provides insights into adaptation to an acidic environment[J]. Proceedings of the National Academy of Sciences of the United States of America, 114(39): E8304-E8313. |
[61] |
HOWARD L F, LEE T D, 2003. Temporal patterns of vascular plant diversity in southeastern New Hampshire forests[J]. Forest Ecology and Management, 185(1-2): 5-20.
DOI URL |
[62] |
HUA Z S, HAN Y J, CHEN L X, et al., 2015. Ecological roles of dominant and rare prokaryotes in acid mine drainage revealed by metagenomics and metatranscriptomics[J]. The ISME Journal, 9(6): 1280-1294.
DOI URL |
[63] |
HUANG L N, KUANG J L, SHU W S, 2016. Microbial ecology and evolution in the acid mine drainage model system[J]. Trends in microbiology, 24(7): 581-593.
DOI URL |
[64] |
HUANG L N, ZHOU W H, HALLBERG KEVIN B, et al., 2011. Spatial and temporal analysis of the microbial community in the tailings of a Pb-Zn mine generating acidic drainage[J]. Applied and Environmental Microbiology, 77(15): 5540-5544.
DOI URL |
[65] |
JIANG W, LV J, LUO L, et al., 2013. Arsenate and cadmium co-adsorption and co-precipitation on goethite[J]. Journal of Hazardous Materials, 262: 55-63.
DOI URL |
[66] |
JIN L, GERSON J R, ROCCA J D, et al., 2022. Alkaline mine drainage drives stream sediment microbial community structure and function[J]. Science of The Total Environment, 805: 150189.
DOI URL |
[67] |
JOHANNESSEN K C, VANDER ROOST J, DAHLE H, et al., 2017. Environmental controls on biomineralization and Fe-mound formation in a low-temperature hydrothermal system at the Jan Mayen Vent Fields[J]. Geochimica et Cosmochimica Acta, 202: 101-123.
DOI URL |
[68] |
JOHNSON D B, HALLBERG K B, 2003. The microbiology of acidic mine waters[J]. Research in Microbiology, 154: 466-473.
DOI URL |
[69] | JONES E, NADEAU T-L, VOYTEK M, et al., 2006. Role of microbial iron reduction in the dissolution of iron hydroxysulfate minerals[J]. Journal of Geophysical Research, 111(G1): G000089. |
[70] | JUSTICEN B, PANB C, MUELLERA R, et al., 2012. Heterotrophic archaea contribute to carbon cycling in low-pH, suboxic biofilm communities[J]. Appllied and Environmental Microbiology, 78: 8321-8330. |
[71] |
KAMIKA I, MOMBA M, 2014. Microbial diversity of emalahleni mine water in south Africa and tolerance ability of the predominant organism to vanadium and nickel[J]. PLoS One, 9(1): e86189.
DOI URL |
[72] | KIM D K, ZHANG W, HIRIART-BAER V, et al., 2014. Towards the development of integrated modelling systems in aquatic biogeochemistry: A Bayesian approach[J]. Journal of Great Lakes Research, 40(S): 73-87. |
[73] |
KIM H J, KIM Y, 2021. Schwertmannite transformation to goethite and the related mobility of trace metals in acid mine drainage[J]. Chemosphere, 269: 128720.
DOI URL |
[74] | KIPRY J, JWAIR R J, GELHAAR N, et al., 2013. Enrichment of “Ferrovum” spp. and Gallionella relatives using artificial mine water[C]. Advanced Materials Research, 825: 54-57. |
[75] |
KUANG J L, HUANG L N, CHEN L X, et al., 2013. Contemporary environmental variation determines microbial diversity patterns in acid mine drainage[J]. The ISME Journal, 7(5): 1038-1050.
DOI URL |
[76] |
KüGLER S, COOPER R E, WEGNER C E, et al., 2019. Iron-organic matter complexes accelerate microbial iron cycling in an iron-rich fen[J]. Science of The Total Environment, 646: 972-988.
DOI URL |
[77] |
LADAU J, ELOE-FADROSH E A, 2019. Spatial, temporal, and phylogenetic scales of microbial ecology[J]. Trends in microbiology, 27(8): 662-669.
DOI URL |
[78] |
LEAR G, NIYOGI D, HARDING J, et al., 2009. Biofilm bacterial community structure in streams affected by acid mine drainage[J]. Applied and Environmental Microbiology, 75(11): 3455-3460.
DOI URL |
[79] | LEE J S, LITTLE B J, 2022. Chapter 4-Biomineralization: Applied to biodeterioration and bioremediation[C]// AMJAD Z, DEMADIS K D. Water-Formed Deposits. Elsevier: 69-77. |
[80] | LI H, ZHA J, SUN Q, 2019. Effects of acid mine drainage on the abundance of functional genes involved in nitrogen cycle in soil profiles[J]. Biotechnology Bulletin, 35(9): 249-256. |
[81] |
LI Q, WANG Q, ZHU J, et al., 2016. Effect of extracellular polymeric substances on surface properties and attachment behavior of Acidithiobacillus ferrooxidans[J]. Minerals, 6(4): 100.
DOI URL |
[82] | LIANG J L, LI X J, SHU H Y, et al., 2017. Fine-scale spatial patterns in microbial community composition in an acid mine drainage[J]. FEMS Microbiology Ecology, 93(10): 124. |
[83] |
LIN Y, GREMBI J A, GOOTS S S, et al., 2021. Advantageous microbial community development and improved performance of pilot-scale field systems treating high-risk acid mine drainage with crab shell[J]. Journal of Hazardous Materials, 420: 126665.
DOI URL |
[84] |
LIU J L, YAO J, DURAN R, et al., 2019a. Bacterial shifts during in-situ mineralization bio-treatment to non-ferrous metal (loid) tailings[J]. Environmental Pollution, 255: 113165.
DOI URL |
[85] |
LIU J L, YAO J, LU C, et al., 2019b. Microbial activity and biodiversity responding to contamination of metal (loid) in heterogeneous nonferrous mining and smelting areas[J]. Chemosphere, 226: 659-667.
DOI URL |
[86] |
LIU J L, YAO J, WANG F, et al., 2019c. Bacterial diversity in typical abandoned multi-contaminated nonferrous metal (loid) tailings during natural attenuation[J]. Environmental Pollution, 247: 98-107.
DOI URL |
[87] |
LIU J, HUA Z, CHEN L-X, et al., 2014. Correlating microbial diversity patterns with geochemistry in an extreme and heterogeneous environment of mine tailings[J]. Applied and Environmental Microbiology, 80(12): 3677-3686.
DOI URL |
[88] |
LIU L Z, NIE Z Y, YANG Y, et al., 2018. In situ characterization of change in superficial organic components of thermoacidophilic archaeon Acidianus manzaensis YN-25[J]. Research in Microbiology, 169(10): 590-597.
DOI URL |
[89] |
LIU Q, WANG J, HE R, et al., 2020. Bacterial assembly during the initial adhesion phase in wastewater treatment biofilms[J]. Water Research, 184: 116147.
DOI URL |
[90] |
LO I, DENEF V, VERBERKMOES N, et al., 2007. Strain-resolved community proteomics reveals recombining genomes of acidophilic bacteria[J]. Nature, 446(7135): 537-541.
DOI URL |
[91] |
LONG P E, WILLIAMS K H, HUBBARD S S, et al., 2016. Microbial metagenomics reveals climate-relevant subsurface biogeochemical processes[J]. Trends in microbiology, 24(8): 600-610.
DOI URL |
[92] |
LOVLEY D, 2008. Extracellular electron transfer: Wires, capacitors, iron lungs, and more[J]. Geobiology, 6(3): 225-231.
DOI URL |
[93] |
LOWER S, TADANIER C, HOCHELLA M, 2001. Dynamics of the mineral-microbe interface: Use of biological force microscopy in biogeochemistry and geomicrobiology[J]. Geomicrobiology Journal, 18(1): 63-76.
DOI URL |
[94] | LOZUPONE C, KNIGHT R, 2007. Global pattern in bacterial diversity[J]. Proceedings of the National Academy of Sciences of the United States of America, 104(27): 11436-11440. |
[95] |
LU C, YANG B, CUI X, et al., 2021. Characteristics and environmental response of white secondary mineral precipitate in the acid mine drainage from Jinduicheng Mine, Shaanxi, China[J]. Bulletin of Environmental Contamination and Toxicology, 107(6): 1012-1021.
DOI URL |
[96] |
LUEF B, FAKRA S, CSENCSITS R, et al., 2013. Iron-reducing bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth[J]. The ISME Journal, 7(2): 338-350.
DOI URL |
[97] |
MACALADY J L, VESTLING M M, BAUMLER D, et al., 2004. Tetraether-linked membrane monolayers in Ferroplasma spp: A key to survival in acid[J]. Extremophiles, 8(5): 411-419.
DOI URL |
[98] |
MALVANKAR N S, YALCIN S E, TUOMINEN M T, et al., 2014. Visualization of charge propagation along individual pili proteins using ambient electrostatic force microscopy[J]. Nature nanotechnology, 9(12): 1012-1017.
DOI URL |
[99] | MANN S, 1987. The study of biominerals by high resolution transmission electron microscopy[J]. Scanning Electron Microscopy, 1986(2): 393-413. |
[100] |
MCGUIRE M M, EDWARDS K J, BANFIELD J F, et al., 2001. Kinetics, surface chemistry, and structural evolution of microbially mediated sulfide mineral dissolution[J]. Geochimica et Cosmochimica Acta, 65(8): 1243-1258.
DOI URL |
[101] | MCLAREN A C, 1991. Transmission electron microscopy of minerals and rocks[M]// Cambridge Topics in Mineral Physics and Chemistry. Cambridge: Cambridge University Press. |
[102] |
MELTON E D, SWANNER E, BEHRENS S, et al., 2014. The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle[J]. Nature Reviews Microbiology, 12: 797-808.
DOI URL |
[103] | MÉNDEZ-GARCÍA C, PELAEZ A, MESA V, et al., 2015. Microbial diversity and metabolic networks in acid mine drainage habitats[J]. Frontiers in microbiology, 6: 00475. |
[104] |
MENG S, WANG H, LIU H, et al., 2014. Evaluation of the ability of ferrihydrite to bind heavy metal ions: Based on formation environment, adsorption reversibility and ageing[J]. Applied Geochemistry, 45: 114-119.
DOI URL |
[105] |
MIELKE R, PACE D, PORTER T, et al., 2003. A critical stage in the formation of acid mine drainage: Colonization of pyrite by Acidithiobacillus ferrooxidans under pH-neutral conditions[J]. Geobiology, 1(1): 81-90.
DOI URL |
[106] |
MONCUR M C, JAMBOR J L, PTACEK C J, et al., 2009. Mine drainage from the weathering of sulfide minerals and magnetite[J]. Applied Geochemistry, 24(12): 2362-2373.
DOI URL |
[107] |
MOREAU J W, ZIERENBERG R A, BANFIELD J F, 2010. Diversity of dissimilatory sulfite reductase genes (dsrAB) in a salt marsh impacted by long-term acid mine drainage[J]. Applied and Environmental Microbiology, 76(14): 4819-4828.
DOI URL |
[108] |
MUELLER R S, DENEF V J, KALNEJAIS L H, et al., 2010. Ecological distribution and population physiology defined by proteomics in a natural microbial community[J]. Molecular Systems Biology, 6: 374.
DOI URL |
[109] |
NI G, SIMONE D, PAMLA D, et al., 2018. A novel inorganic sulfur compound metabolizing Ferroplasma-like population is suggested to mediate extracellular electron transfer[J]. Frontiers in microbiology, 9: 2945.
DOI URL |
[110] |
NORDSTROM D K, BLOWES D W, PTACEK C J, 2015. Hydrogeochemistry and microbiology of mine drainage: An update[J]. Applied Geochemistry, 57: 3-16.
DOI URL |
[111] | NORDSTROM D K, SOUTHAM G, 2018. Chapter 11. Geomicrobiology of sulfide mineral oxidation Geomicrobiology: Interactions between microbes and minerals[M]// Geomicrobiology. Berlin: De Gruyter: 361-390. |
[112] |
OLSSON S, PENACHO V, PUENTE-SáNCHEZ F, et al., 2017. Horizontal gene transfer of phytochelatin synthases from bacteria to extremophilic green algae[J]. Microbial Ecology, 73: 50-60.
DOI URL |
[113] |
OLSSON S, PUENTE-SÁNCHEZ F, GóMEZ M J, et al., 2015. Transcriptional response to copper excess and identification of genes involved in heavy metal tolerance in the extremophilic microalga Chlamydomonas acidophila[J]. Extremophiles, 19(3): 657-672.
DOI URL |
[114] |
OUYANG B J, LIU HUAN, LI JUAN, et al., 2014. Reduction of jarosite by Shewanella oneidensis MR-1 and secondary mineralization[J]. Geochimica et Cosmochimica Acta, 124: 54-71.
DOI URL |
[115] |
PAN Y, YE H, LI X, et al., 2021. Spatial distribution characteristics of the microbial community and multi-phase distribution of toxic metals in the geochemical gradients caused by acid mine drainage, South China[J]. Science of The Total Environment, 774: 145660.
DOI URL |
[116] |
PACELLA M S, GRAY J J, 2018. A benchmarking study of peptide- biomineral interactions[J]. Crystal Growth & Design, 18(2): 607-616.
DOI URL |
[117] |
PANDEY S, FOSSO-KANKEU E, REDELINGHUYS J, et al., 2021. Implication of biofilms in the sustainability of acid mine drainage and metal dispersion near coal tailings[J]. Science of The Total Environment, 788: 147851.
DOI URL |
[118] |
PUENTE-SÁNCHEZ F, OLSSON S, AGUILERA A, 2016. Comparative transcriptomic analysis of the response of Dunaliella acidophila (Chlorophyta) to short-term cadmium and chronic natural metal-rich water exposures[J]. Microbial Ecology, 72(3): 595-607.
DOI URL |
[119] |
QIAN G, FAN R, HUANG J, et al., 2021. Oxidative dissolution of sulfide minerals in single and mixed sulfide systems under simulated acid and metalliferous drainage conditions[J]. Environmental Science & Technology, 55(4): 2369-2380.
DOI URL |
[120] | QUATRINI R, JOHNSON D B, 2018. Microbiomes in extremely acidic environments: Functionalities and interactions that allow survival and growth of prokaryotes at low pH[J]. Current Opinion in Microbiology, 43: 139-147. |
[121] | RAM R J, VERBERKMOES N C, THELEN M P, et al., 2005. Community proteomics of a natural microbial biofilm[J]. Science, 308(5730): 1915-1920. |
[122] | REN K, ZENG J, LIANG J, et al., 2021. Impacts of acid mine drainage on karst aquifers: Evidence from hydrogeochemistry, stable sulfur and oxygen isotopes[J]. Science of The Total Environment, 761: 143223. |
[123] | RøDER H L, LIU W, SØRENSEN S J, et al., 2019. Interspecies interactions reduce selection for a biofilm-optimized variant in a four-species biofilm model[J]. Environmental Microbiology Reports, 11(6): 835-839. |
[124] | RODRIGUEZ-NAVARRO C, JIMENEZ-LOPEZ C, RODRIGUEZ-NAVARRO A, et al., 2007. Bacterially mediated mineralization of vaterite[J]. Geochimica et Cosmochimica Acta, 71(5): 1197-1213. |
[125] | ROZENDAL R, HAMELERS H V M, RABAEY K, et al., 2008. Towards practical implementation of bioelectrochemical wastewater treatment[J]. Trends in biotechnology, 26(8): 450-459. |
[126] | SAHOO H, KISKU K, NAIK U C, 2021. Chapter 21-Application of omics tools for microbial community structure and function analysis [B]// Wastewater Treatment. Elsevier.. |
[127] | SALMON S U, HIPSEY M R, WAKE G W, et al., 2017. Quantifying lake water quality evolution: Coupled geochemistry, hydrodynamics, and aquatic ecology in an acidic pit lake[J]. Environmental Science & Technology, 51(17): 9864-9875. |
[128] | SAMBORSKA K, SITEK S, BOTTRELL S, et al., 2013. Modified multi-phase stability diagrams: An AMD case study at a site in Northumberland, UK[J]. Mine Water and the Environment, 32: 185-194. |
[129] | SANCHEZ-ESPANA J, YUSTA I, DIEZ-ERCILLA M, 2011. Schwertmannite and hydrobasaluminite: Are-evaluation of their solubility and control on the iron and aluminium concentration in acidic pit lakes[J]. Applied Geochemistry, 26(9-10): 1752-1774. |
[130] | SAND W, GEHRKE T, 2006. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria[J]. Research in Microbiology, 157(1): 49-56. |
[131] | SCHIPPERS A, BREUKER A, BLAZEJAK A, et al., 2010. The biogeochemistry and microbiology of sulfidic mine waste and bioleaching dumps and heaps, and novel Fe(Ⅱ)-oxidizing bacteria[J]. Hydrometallurgy, 104: 342-350. |
[132] | SCHLOSS P D, HANDELSMAN J, 2005. Metagenomics for studying unculturable microorganisms: Cutting the Gordian knot[J]. Genome Biology, 6(8): 229. |
[133] | SCHöNKNECHT G, CHEN W H, TERNES C M, et al., 2013. Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote[J]. Science, 339(6124): 1207-1210. |
[134] | SENKO J, ZHANGF G, MCDONOUGH J, et al., 2009. Metal reduction at low pH by a Desulfosporosinus species: Implications for the biological treatment of acidic mine drainage[J]. Geomicrobiology Journal, 26(2): 71-82. |
[135] | SHE Z, WANG J, HE C, et al., 2021. The stratified distribution of dissolved organic matter in an AMD lake revealed by multi-sample evaluation pro-cedure[J]. Science of The Total Environment, 55(12): 8401-8409. |
[136] | SHI L, DONG H, REGUERA G, et al., 2016. Extracellular electron transfer mechanisms between microorganisms and minerals[J]. Nature Reviews Microbiology, 14(10): 651-662. |
[137] | SIMATE G S, NDLOVU S, 2014. Acid mine drainage: Challenges and opportunities[J]. Journal of Environmental Chemical Engineering, 2(3): 1785-1803. |
[138] | SIMMONS S, DIBARTOLO G, DENEF V, et al., 2008. Population genomic analysis of strain variation in Leptospirillum group II bacteria involved in acid mine drainage formation[J]. PLoS biology 6(7): 1427-1442. |
[139] | SINGH S, CHAKRABORTY S, 2022. Biochemical treatment of coal mine drainage in constructed wetlands: Influence of electron donor, biotic-abiotic pathways and microbial diversity[J]. Chemical Engineering Journal, 440: 135986. |
[140] | STOCKER R, 2012. Marine microbes see a sea of gradients[J]. Science, 338(6107): 628-633. |
[141] | STULBERG E, FRAVEL D, PROCTOR L M, et al., 2016. An assessment of US microbiome research[J]. Nature Microbiology, 1: 15015. |
[142] | SU G, DENG X, HU L, et al., 2020. Comparative analysis of early-stage adsorption and biofilm formation of thermoacidophilic archaeon Acidianus manzaensis YN-25 on chalcopyrite and pyrite surfaces[J]. Biochemical engineering journal, 163: 107744. |
[143] | SUL W J, COLE J R, JESUS E da C, et al., 2011. Bacterial community comparisons by taxonomy-supervised analysis independent of sequence alignment and clustering[J]. Proceedings of the National Academy of Sciences of the United States of America, 108(35): 14637-14642. |
[144] | SUN R, ZHANG L, WANG X, et al., 2020a. Elemental sulfur-driven sulfidogenic process under highly acidic conditions for sulfate-rich acid mine drainage treatment: Performance and microbial community analysis[J]. Water Research, 185: 116230. |
[145] | SUN W, SUN X, LI B, et al., 2020b. Bacterial response to sharp geochemical gradients caused by acid mine drainage intrusion in a terrace: Relevance of C, N, and S cycling and metal resistance[J]. Environment International, 138: 105601. |
[146] | TAN G L, SHU W, LI F, et al., 2008. Culturable and molecular phylogenetic diversity of microorganisms in an open-dumped, extremely acidic Pb/Zn mine tailings[J]. Extremophiles: life under extreme conditions, 12: 657-664. |
[147] | TAN G L, SHU W, ZHOU W H, et al., 2009. Seasonal and spatial variations in microbial community structure and diversity in the acid stream draining across an ongoing surface mining site[J]. FEMS Microbiology Ecology, 70(2): 121-129. |
[148] | TAN S, LIU J, FANG Y, et al., 2019. Insights into ecological role of a new deltaproteobacterial order Candidatus Acidulode sulfobacterales by metagenomics and metatranscriptomics[J]. The ISME Journal, 13(8): 2044-2057. |
[149] | TENG W, KUANG J, LUO Z, et al., 2017. Microbial diversity and community assembly across environmental gradients in acid mine drainage[J]. Minerals, 7(6): 106. |
[150] | TORRES E, COUTURE R M, SHAFEI B, et al., 2015. Reactive transport modeling of early diagenesis in a reservoir lake affected by acid mine drainage: Trace metals, lake overturn, benthic fluxes and remediation[J]. Chemical Geology, 419: 75-91. |
[151] | TRIPATHI S, POLURI K M, 2021. Heavy metal detoxification mechanisms by microalgae: Insights from transcriptomics analysis[J]. Environmental Pollution, 285: 117443. |
[152] | TYSON G W, CHAPMAN J, HUGENHOLTZ P, et al., 2004. Community structure and metabolism through reconstruction of microbial genomes from the environment[J]. Nature, 428: 37-43. |
[153] | VALENTE T, GOMES C, 2008. Fuzzy modelling of acid mine drainage environments using geochemical, ecological and mineralogical indicators[J]. Environmental Geology, 57: 653-663. |
[154] | VALENTE T, GRANDE J A, DE LA TORRE M L, et al., 2013. Mineralogy and environmental relevance of AMD-precipitates from the Tharsis mines, Iberian Pyrite Belt (SW, Spain)[J]. Applied Geochemistry, 39: 11-25. |
[155] | VALENTE T M, LEAL GOMES C, 2009. Occurrence, properties and pollution potential of environmental minerals in acid mine drainage[J]. Science of The Total Environment, 407(3): 1135-1152. |
[156] | VILLEGAS-PLAZAS M, SANABRIA J, JUNCA H, 2019. A composite taxonomical and functional framework of microbiomes under acid mine drainage bioremediation systems[J]. Journal of Environmental Management, 251: 109581. |
[157] | VITHANA C L, SULLIVAN L A, BURTON E D, et al., 2015. Stability of schwertmannite and jarosite in an acidic landscape: Prolonged field incubation[J]. Geoderma, 239-240: 47-57. |
[158] | WHITAKER R, BANFIELD J, 2006. Population genomics in natural microbial communities[J]. Trends in ecology & evolution, 21(9): 508-516. |
[159] | WILLIAMS A G B, SCHERER M M, 2004. Spectroscopic evidence for Fe(II)-Fe(Ⅲ) electron transfer at the iron oxide-water interface[J]. Environmental Science & Technology, 38(18): 4782-4790. |
[160] | WILMES P, BOND P L, 2009a. Microbial community proteomics: elucidating the catalysts and metabolic mechanisms that drive the Earth's biogeochemical cycles[J]. Current opinion in microbiology, 12(3): 310-317. |
[161] | WILMES P, REMIS J P, HWANG M, et al., 2009b. Natural acidophilic biofilm communities reflect distinct organismal and functional organization[J]. The ISME Journal, 3: 266-270. |
[162] | XIA J, LIU H, NIE Z, et al., 2020. Taking insights into phenomics of microbe-mineral interaction in bioleaching and acid mine drainage: Concepts and methodology[J]. Science of The Total Environment, 729: 139005. |
[163] | XIE J, HE Z, LIU X, et al., 2011. GeoChip-based analysis of the functional gene diversity and metabolic potential of microbial communities in acid mine drainage[J]. Applied and Environmental Microbiology, 77(3): 991-999. |
[164] | XIN R, BANDA J F, HAO C, et al., 2021. Contrasting seasonal variations of geochemistry and microbial community in two adjacent acid mine drainage lakes in Anhui Province, China[J]. Environmental Pollution, 268: 115826. |
[165] | XU R, LI B, XIAO E, et al., 2020. Uncovering microbial responses to sharp geochemical gradients in a terrace contaminated by acid mine drainage[J]. Environmental Pollution, 261: 114226. |
[166] | YANNARELL A, TRIPLETT E, 2004. Within- and between-lake variability in the composition of bacterioplankton communities: Investigations using multiple spatial scales[J]. Applied and Environmental Microbiology, 70(1): 214-223. |
[167] | YANNARELL A C, TRIPLETT E W, 2005. Geographic and environmental sources of variation in lake bacterial community composition[J]. Applied and Environmental Microbiology, 71(1): 227-239. |
[168] | YELTON A P, COMOLLI L R, JUSTICE N B, et al., 2013. Comparative genomics in acid mine drainage biofilm communities reveals metabolic and structural differentiation of co-occurring archaea[J]. BMC Genomics, 14: 485. |
[169] | ZHANG C, SLATER L, REDDEN G, et al., 2012. Spectral induced polarization signatures of hydroxide adsorption and mineral precipitation in porous media[J]. Environmental Science & Technology, 46(8): 4357-4364. |
[170] | ZHANG P, CHEN Y P, GUO J S, et al., 2014. Adsorption behavior of tightly bound extracellular polymeric substances on model organic surfaces under different pH and cations with surface plasmon resonance[J]. Water Research, 57: 31-39. |
[171] | ZHANG X, TANG S, WANG M, et al., 2019. Acid mine drainage affects the diversity and metal resistance gene profile of sediment bacterial community along a river[J]. Chemosphere, 217: 790-799. |
[172] | ZHANG Z, WANG L, ZHOU B, et al., 2021. Adsorption performance and mechanism of synthetic schwertmannite to remove low-concentration fluorine in water[J]. Bulletin of Environmental Contamination and Toxicology, 107(5): 1191-1201. |
[173] | ZHU J, WANG Q, ZHOU S, et al., 2015a. Insights into the relation between adhesion force and chalcopyrite-bioleaching by Acidithiobacillus ferrooxidans[J]. Colloids Surf B Biointerfaces, 126: 351-357. |
[174] | ZHU M, LEGG B, ZHANG H, et al., 2012. Early stage formation of iron oxyhydroxides during neutralization of simulated acid mine drainage solutions[J]. Environmental Science & Technology, 46(15): 8140-8147. |
[175] | ZHU T, LU X, LIU H, et al., 2014. Quantitative X-ray photoelectron spectroscopy-based depth profiling of bioleached arsenopyrite surface by Acidithiobacillus ferrooxidans[J]. Geochimica et Cosmochimica Acta, 127: 120-139. |
[176] | ZHU X, WANG R, LU X, et al., 2015b. Secondary minerals of weathered orpiment-realgar-bearing tailings in Shimen carbonate-type realgar mine, Changde, Central China[J]. Mineralogy and Petrology, 109: 1-15. |
[177] | 曹子敏, BANDA J F, 裴理鑫, 等, 2019. 安徽某铁矿不同矿山废水库中微生物群落结构特征[J]. 微生物学报, 59(6): 1076-1088. |
CAO Z M, BANDA J F, PEI L X, 2019. Microbial community structure characteristics in different mine drainage lakes of an iron mine in Anhui Province[J]. Acta Microbiologica Sinica, 59(6): 1076-1088. | |
[178] | 陈丹丹, 罗小波, 李芳柏, 2017. 穿梭体影响微生物群落胞外电子传递过程的研究[J]. 生态环境学报, 26(8): 1419-1425. |
CHEN D D, LUO X B, LI F B, 2017. Effects of shuttles on extracellular electron transfer of microbial community[J]. Ecology and Environmental Sciences, 26(8): 1419-1425. | |
[179] | 方迪, 王方, 单红仙, 等, 2010. 硫酸盐还原菌对酸性废水中重金属的生物沉淀作用研究[J]. 生态环境学报, 19(3): 562-565. |
FANG D, WANG F, SHAN H X, et al., 2010. Bio-precipitation of heavy metals from a synthetic acidic wastewater by sulfate-reducing bacteria in a bench scale continuous-flow stirred tank reactor[J]. Ecology and Environmental Sciences, 19(3): 562-565. | |
[180] | 贾蓉芬, 高梅影, 彭先芝, 等, 2009. 微生物成矿[M]. 北京: 科学出版社. |
JIA R F, GAO M Y, PENG X Z, 2009. Microbial mineralization[M]. Beijing: Science Press. | |
[181] | 姜梦戈, 2020. 柠檬酸杆菌Citrobacter sp.对铁氧化物和铁硫次生矿物还原转化机制研究 [D]. 广州: 华南理工大学. |
JIANG M Y, 2020. Reduction and transformation mechanism of Fe-oxides and Fe(III)-oxyhydroxysulfate minerals by Citrobacter sp.[D]. Guangzhou: South China University of Technology. | |
[182] | 刘帆, 张晓辉, 唐宋, 等, 2019. 酸性矿山废水对沉积物真核微生物群落的影响[J]. 中国环境科学, 39(12): 5285-5292. |
LIU F, ZHANG X H, TANG S, et al., 2019. Effects of acid mine drainage on eukaryotic community in river sediments[J]. China Environmental Science, 39(12): 5285-5292. | |
[183] | 刘奇缘, 陈炳辉, 周永章, 等, 2017. 粤北大宝山槽对坑酸性矿山废水中不同沉积层次生矿物研究[J]. 地球与环境, 45(3): 259-266. |
LIU Q Y, CHEN B H, ZHOU Y Z, et al., 2017. A study on secondary minerals in different sediments of Caoduikeng acid mine drainage, Dabaoshan Mine, North Guangdong Province, China[J]. Earth and Environment, 5(3): 259-266. | |
[184] | 陆现彩, 李娟, 刘欢, 等, 2019. 金属硫化物微生物氧化的机制和效应[J]. 岩石学报, 35(1): 153-163. |
LU X C, LI J, LIU H, et al., 2019. Microbial oxidation of metal sulfides and its consequences[J]. Acta Petrologica Sinica, 35(1): 153-163. | |
[185] | 裴理鑫, 鲁青原, 郝春博, 等, 2016. 安徽某铁矿酸性矿山废水夏季和秋季微生物群落结构特征[J]. 环境科学学报, 36(7): 2397-2407. |
PEI L X, LU Q Y, HAO C B, et al., 2016. Shifts of the microbial community structure of an acid mine drainage from summer to autumn in Anhui Province[J]. Acta Scientiae Circumstantiae, 36(7): 2397-2407. | |
[186] | 彭玙萍, 曾伟民, 2020. 紫金山铜矿酸性矿山废水微生物群落多样性[J]. 微生物学通报, 47(9): 2887-2896. |
PENG Y P, ZENG W M, 2020. Diversity of microbial community in acid mine drainage from Zijinshan copper mine[J]. Microbiology China, 47(9): 2887-2896. | |
[187] | 汪涵, 2018. 酸性矿山废水长期灌溉稻田土壤中微生物群落结构时空变化特征及其响应机制[D]. 广州: 华南理工大学. |
WANG H, 2018. Characteristics of microbial community spatial and temporal change in paddy soil under long-term acid mine drainage irrigation and its response mechanism[D]. Guangzhou: South China University of Technology. | |
[188] | 谢学辉, 肖升木, 柳建设, 2009. 矿山废水中微生物生态多样性研究[J]. 微生物学通报, 36(4): 528-537. |
XIE X H, XIAO S M, LIU J S, 2009. Diversity of microbial communities in waste mining water[J]. Microbiology China, 36(4): 528-537. | |
[189] | 徐轶群, 顾园园, 姚婷, 等, 2013. 铁细菌胞外多聚物对铁矿物的调控形成及其环境意义[J]. 岩石矿物学杂志, 32(6): 782-788. |
XU Y Q, GU Y Y, YAO T, et al., 2013. Regulating formation of iron minerals by iron bacteria/EPS and its environmental significance[J]. Acta Petrologica et Mineralogica, 32(6): 782-788. | |
[190] | 张多瑞, 聂珍媛, 刘李柱, 等, 2018. 微生物胞外电子传递过程及其应用研究进展[J]. 生命科学, 30(6): 680-689. |
ZHANG D R, NIE Z Y, LIU L Z, et al., 2018. Mechanisms of microbial extracellular electron transfer and its application[J]. Chinese Bulletin of Life Sciences, 30(6): 680-689. | |
[191] | 张玉龙, 陈雪丽, 吴云当, 2021. 电子穿梭体及其介导的环境与地球化学过程研究进展[J]. 生态环境学报, 30(1): 213-222. |
ZHANG Y L, CHEN X L, WU Y D, 2021. Electron shuttle-mediated microbial extracellular electron transfer: Mechanisms and geochemical implications[J]. Ecology and Environmental Sciences, 30(1): 213-222. | |
[192] | 周立祥, 2008. 酸性矿山废水中生物成因次生高铁矿物的形成及环境工程意义[J]. 地学前缘, 15(6): 74-82. |
ZHOU L X, 2008. Biogenic iron oxyhydrosulfate and iron oxyhydroxide occurring in acid mine drainage and their environmental engineering implications[J]. Earth Science Frontiers, 15(6): 74-82. |
[1] | 韩翠, 康扬眉, 余海龙, 李冰, 黄菊莹. 荒漠草原凋落物分解过程中降水量对土壤酶活性的影响[J]. 生态环境学报, 2022, 31(9): 1802-1812. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||