生态环境学报 ›› 2023, Vol. 32 ›› Issue (2): 331-340.DOI: 10.16258/j.cnki.1674-5906.2023.02.013
符传博1,3(), 丹利2,*(
), 佟金鹤1,3, 陈红4
收稿日期:
2022-05-28
出版日期:
2023-02-18
发布日期:
2023-05-11
通讯作者:
*丹利,研究员,博士研究生导师。E-mail: danli@tea.ac.cn作者简介:
符传博(1985年生),男,正高级工程师,主要从事大气环境与大气污染方面的研究。E-mail: hnfuchuanbo@163.com
基金资助:
FU Chuanbo1,3(), DAN Li2,*(
), TONG Jinhe1,3, CHEN Hong4
Received:
2022-05-28
Online:
2023-02-18
Published:
2023-05-11
摘要:
海口市作为我国著名的热带滨海城市之一,地理环境特殊,气候资源独特。为深入认识海口市臭氧(O3)污染变化规律及污染物潜在贡献源区,也为进一步开展O3污染预报预警和区域联防联控提供技术支撑,利用海口市区4个环境监测数据,结合气象观测资料,采用后向轨迹模拟、聚类分析、多元回归分析法、潜在源区贡献因子算法和权重轨迹方法分析了海口市最大8 h平均(O3-8h)质量浓度年际变化、月际变化、日变化及与气象影响因子的关系,影响O3-8h质量浓度的主控因子,并探讨了O3传输路径和潜在贡献源区。结果表明,2013-2020年海口市区4个站点O3-8h质量浓度均出现不同程度的上升,其中龙华站的趋势系数达到了0.929,通过了99.9 %的信度检验;O3-8h质量浓度月际变化呈“V”型分布,最大值出现在10月;日变化呈单峰型,峰值出现在15:00附近;平均气温在18-28 ℃之间,相对湿度位于65%-80%,太阳辐射日总量在6-23 MJ·m-2之间,日照时数位于4-10 h·d-1,受4-6 m·s-1之间的东北风影响时,海口市O3-8h质量浓度容易超标。多元回归分析表明,10 m平均风速、相对湿度和大气压是主控因子;后向轨迹和潜在源区分析发现,秋季的内陆中短距离气流和沿海长距离气流,春季的沿海中短距离气流和冬季内陆短距离气流容易造成O3-8h质量浓度超标,其中江西省、浙江省、福建省和广东省是O3污染的主要贡献源区。
中图分类号:
符传博, 丹利, 佟金鹤, 陈红. 海口市区臭氧污染变化特征及潜在源区分析[J]. 生态环境学报, 2023, 32(2): 331-340.
FU Chuanbo, DAN Li, TONG Jinhe, CHEN Hong. Characteristics and Potential Source Analysis of Ozone pollution in Haikou City[J]. Ecology and Environment, 2023, 32(2): 331-340.
年份 | 小时数据个数 | 小时数据有效率/% | |||||||
---|---|---|---|---|---|---|---|---|---|
海大站 | 海师站 | 龙华站 | 秀英站 | 海大站 | 海师站 | 龙华站 | 秀英站 | ||
2013 | 7799 | 8440 | 8153 | 7688 | 89.03 | 96.35 | 93.07 | 87.76 | |
2014 | 8124 | 8151 | 8074 | 8243 | 92.74 | 93.05 | 92.17 | 94.10 | |
2015 | 8681 | 8631 | 8595 | 8720 | 99.10 | 98.53 | 98.12 | 99.54 | |
2016 | 8716 | 8712 | 8696 | 8727 | 99.23 | 99.18 | 99.00 | 99.35 | |
2017 | 8671 | 8603 | 8757 | 8666 | 98.98 | 98.21 | 99.97 | 98.93 | |
2018 | 8600 | 8642 | 8748 | 8634 | 98.17 | 98.65 | 99.86 | 98.56 | |
2019 | 8521 | 8452 | 8495 | 8534 | 97.27 | 96.48 | 96.97 | 97.42 | |
2020 | 8089 | 8667 | 8486 | 8541 | 92.09 | 98.67 | 96.61 | 97.23 |
表1 各个站点O3监测数据个数及有效率
Table 1 Values and the effective rates of O3 concentrations at the monitoring sites
年份 | 小时数据个数 | 小时数据有效率/% | |||||||
---|---|---|---|---|---|---|---|---|---|
海大站 | 海师站 | 龙华站 | 秀英站 | 海大站 | 海师站 | 龙华站 | 秀英站 | ||
2013 | 7799 | 8440 | 8153 | 7688 | 89.03 | 96.35 | 93.07 | 87.76 | |
2014 | 8124 | 8151 | 8074 | 8243 | 92.74 | 93.05 | 92.17 | 94.10 | |
2015 | 8681 | 8631 | 8595 | 8720 | 99.10 | 98.53 | 98.12 | 99.54 | |
2016 | 8716 | 8712 | 8696 | 8727 | 99.23 | 99.18 | 99.00 | 99.35 | |
2017 | 8671 | 8603 | 8757 | 8666 | 98.98 | 98.21 | 99.97 | 98.93 | |
2018 | 8600 | 8642 | 8748 | 8634 | 98.17 | 98.65 | 99.86 | 98.56 | |
2019 | 8521 | 8452 | 8495 | 8534 | 97.27 | 96.48 | 96.97 | 97.42 | |
2020 | 8089 | 8667 | 8486 | 8541 | 92.09 | 98.67 | 96.61 | 97.23 |
站名 | 纬度/(°) | 经度/(°) | 平均值/(μg·m-3) | 标准差/(μg·m-3) | 趋势系数 | 气候倾向率/(μg·m-3·a-1) | 信度/% |
---|---|---|---|---|---|---|---|
海大站 | 20.0596 | 110.3190 | 80.08 | 6.46 | 0.509 | 1.43 | 不显著 |
海师站 | 19.9969 | 110.3376 | 68.87 | 12.15 | 0.785 | 4.16 | 90 |
龙华站 | 20.0357 | 110.3303 | 68.46 | 9.92 | 0.929 | 4.02 | 99.9 |
秀英站 | 20.0053 | 110.2832 | 66.25 | 10.09 | 0.834 | 3.67 | 99 |
表2 2013-2020年各站点O3-8h质量浓度的平均值、标准差、趋势系数及气候倾向率
Table 2 Average value, Standard deviation, trend coefficient and climate propensity of O3-8h during 2013 to 2020
站名 | 纬度/(°) | 经度/(°) | 平均值/(μg·m-3) | 标准差/(μg·m-3) | 趋势系数 | 气候倾向率/(μg·m-3·a-1) | 信度/% |
---|---|---|---|---|---|---|---|
海大站 | 20.0596 | 110.3190 | 80.08 | 6.46 | 0.509 | 1.43 | 不显著 |
海师站 | 19.9969 | 110.3376 | 68.87 | 12.15 | 0.785 | 4.16 | 90 |
龙华站 | 20.0357 | 110.3303 | 68.46 | 9.92 | 0.929 | 4.02 | 99.9 |
秀英站 | 20.0053 | 110.2832 | 66.25 | 10.09 | 0.834 | 3.67 | 99 |
站点 | O3-8h与NO2及气象因子的拟合关系 | 相关系数 | 信度/% |
---|---|---|---|
海大站 | ρ(O3-8h)=0.18ρ(NO2)+0.14φ(P)+1.80φ(Pr)- 2.13φ(RH)-4.15φ(W10)+1.06φ(SD)- 0.06φ(t)-1.36φ(Tr)-1533.28 | 0.557 | 99.9 |
海师站 | ρ(O3-8h)=0.56ρ(NO2)+0.14φ(P)+2.54φ(Pr)- 2.16φ(RH)-3.32φ(W10)+1.44φ(SD)+ 1.88φ(t)-2.16φ(Tr)-2323.14 | 0.575 | 99.9 |
龙华站 | ρ(O3-8h)=0.28ρ(NO2)+0.19φ(P)+2.46φ(Pr)- 2.12φ(RH)-4.66φ(W10)-0.55φ(SD)+ 1.59φ(t)-0.54φ(Tr)-2247.42 | 0.527 | 99.9 |
秀英站 | ρ(O3-8h)=0.43ρ(NO2)+0.12φ(P)+2.25φ(Pr)- 2.11φ(RH)-2.66φ(W10)+0.19φ(SD)+ 1.37φ(t)-1.18φ(Tr)-2037.06 | 0.566 | 99.9 |
表3 不同站点O3-8h质量浓度与NO2及气象要素的拟合关系
Table 3 Fitting relationships between O3-8h and NO2 and various meteorological elements at different stations
站点 | O3-8h与NO2及气象因子的拟合关系 | 相关系数 | 信度/% |
---|---|---|---|
海大站 | ρ(O3-8h)=0.18ρ(NO2)+0.14φ(P)+1.80φ(Pr)- 2.13φ(RH)-4.15φ(W10)+1.06φ(SD)- 0.06φ(t)-1.36φ(Tr)-1533.28 | 0.557 | 99.9 |
海师站 | ρ(O3-8h)=0.56ρ(NO2)+0.14φ(P)+2.54φ(Pr)- 2.16φ(RH)-3.32φ(W10)+1.44φ(SD)+ 1.88φ(t)-2.16φ(Tr)-2323.14 | 0.575 | 99.9 |
龙华站 | ρ(O3-8h)=0.28ρ(NO2)+0.19φ(P)+2.46φ(Pr)- 2.12φ(RH)-4.66φ(W10)-0.55φ(SD)+ 1.59φ(t)-0.54φ(Tr)-2247.42 | 0.527 | 99.9 |
秀英站 | ρ(O3-8h)=0.43ρ(NO2)+0.12φ(P)+2.25φ(Pr)- 2.11φ(RH)-2.66φ(W10)+0.19φ(SD)+ 1.37φ(t)-1.18φ(Tr)-2037.06 | 0.566 | 99.9 |
季节 | 轨迹 编号 | 比例/ % | O3-8h质量 浓度/(μg·m-3) | O3-8h超标 频率/% | 超标时段O3-8h 质量浓度/(μg·m-3) |
---|---|---|---|---|---|
春季 | 1 | 39 | 56.10 | 0.00 | - |
2 | 37 | 76.31 | 1.49 | 162.72 | |
3 | 24 | 66.11 | 0.00 | - | |
夏季 | 1 | 31 | 50.50 | 0.00 | - |
2 | 49 | 56.60 | 0.00 | - | |
3 | 20 | 58.14 | 0.00 | - | |
秋季 | 1 | 18 | 53.33 | 0.00 | - |
2 | 24 | 60.19 | 0.00 | - | |
3 | 21 | 87.88 | 3.85 | 169.70 | |
4 | 37 | 113.47 | 14.29 | 176.00 | |
冬季 | 1 | 47 | 85.23 | 1.19 | 177.95 |
2 | 14 | 52.25 | 0.00 | - | |
3 | 34 | 76.08 | 0.00 | - | |
4 | 6 | 97.60 | 0.00 | - |
表4 海口市后向轨迹分析结果
Table 4 Statistical results of backward trajectory analysis in different seasons in Haikou City
季节 | 轨迹 编号 | 比例/ % | O3-8h质量 浓度/(μg·m-3) | O3-8h超标 频率/% | 超标时段O3-8h 质量浓度/(μg·m-3) |
---|---|---|---|---|---|
春季 | 1 | 39 | 56.10 | 0.00 | - |
2 | 37 | 76.31 | 1.49 | 162.72 | |
3 | 24 | 66.11 | 0.00 | - | |
夏季 | 1 | 31 | 50.50 | 0.00 | - |
2 | 49 | 56.60 | 0.00 | - | |
3 | 20 | 58.14 | 0.00 | - | |
秋季 | 1 | 18 | 53.33 | 0.00 | - |
2 | 24 | 60.19 | 0.00 | - | |
3 | 21 | 87.88 | 3.85 | 169.70 | |
4 | 37 | 113.47 | 14.29 | 176.00 | |
冬季 | 1 | 47 | 85.23 | 1.19 | 177.95 |
2 | 14 | 52.25 | 0.00 | - | |
3 | 34 | 76.08 | 0.00 | - | |
4 | 6 | 97.60 | 0.00 | - |
[1] |
AWANG N R, RAMLI N A, YAHAYA A S, et al., 2015. Multivariate methods to predict ground level ozone during daytime, nighttime, and critical conversion time in urban areas[J]. Atmospheric Pollution Research, 6(5): 726-734.
DOI URL |
[2] |
FENG Z Z, HU E Z, WANG X K, et al., 2015. Ground-level O3 pollution and its impacts on food crops in China: A review[J]. Environment Pollution, 199: 42-48.
DOI URL |
[3] |
HE J J, GONG S L, YU Y, et al., 2017. Air pollution characteristics and their relation to meteorological conditions during 2014-2015 in major Chinese cities[J]. Environmental Pollution, 223: 484-496.
DOI PMID |
[4] | HU J, LI Y, ZHAO T, et al., 2018. An important mechanism of regional O3 transport for summer smog over the Yangtze River Delta in eastern China[J]. Atmospheric Chemistry and Physics, 18: 16239-16251. |
[5] |
LI J, HUANG J, CAO R, et al., 2020. The association between ozone and years of life lost from stroke, 2013-2017: A retrospective regression analysis in 48 major Chinese cities[J]. Journal Hazardous Materials, 405: 124220.
DOI URL |
[6] |
NI Z Z, LUO K, GAO X, et al., 2019. Exploring the stratospheric source of ozone pollution over China during the 2016 Group of Twenty summit[J]. Atmospheric Pollution Research, 10(4): 1267-1275.
DOI URL |
[7] |
WANG L L, LI W J, SUN Y, et al., 2018. PM2.5 Characteristics and regional transport contribution in five cities in Southern North China Plain, During 2013-2015[J]. Atmosphere, 9(4): 157-177.
DOI URL |
[8] |
WANG T, XUE L K, PETER B, et al., 2016. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects[J]. Science of the Total Environment, 575: 1582-1596.
DOI URL |
[9] | ZHAN C C, XIE M, HUANG C W, et al., 2020. Ozone affected by succession of four landfall typhoons in the Yangtze River Delta, China: major processes and health impacts[J]. Atmospheric Pollution Research, 20(22): 13781-13799. |
[10] | ZHANG G, XU H H, QI B, et al., 2018. PM2.5 Characterization of atmospheric trace gases and particulate matter in Hangzhou, China[J]. Atmospheric Chemistry and Physics, 18(3): 1705-1728. |
[11] |
ZHAO S P, YIN D Y, YU Y, et al., 2020. PM2.5 and O3 pollution during 2015-2019 over 367 Chinese cities: Spatiotemporal variations, meteorological and topographical impacts[J]. Environment Pollution, 264: 114694.
DOI URL |
[12] | 崔虎雄, 吴迓名, 段玉森, 等, 2013. 上海市浦东城区二次气溶胶生成的估算[J]. 环境科学, 34(5): 2003-2009. |
CUI H X, WU Y M, DUAN Y S, et al., 2013. Secondary aerosol formation through photochemical reactions estimated by using air quality monitoring data in the downtown of Pudong, Shanghai[J]. Environmental Science, 34(5): 2003-2009. | |
[13] | 冯兆忠, 李品, 袁相洋, 等, 2018. 我国地表臭氧生态环境效应研究进展[J]. 生态学报, 38(5): 1530-1541. |
FENG Z Z, LI P, YUAN X Y, et al., 2018. Progress in ecological and environmental effects of ground-level O3 in China[J]. Acta Ecologica Sinica, 38(5): 1530-1541. | |
[14] | 符传博, 丹利, 唐家翔, 等, 2020b. 基于轨迹模式分析海口市大气污染的输送及潜在源区[J]. 环境科学学报, 40(1): 36-42. |
FU C B, DAN L, TANG J X, et al., 2020b. Analysis of air polluted transportation and potential source in Haikou City based on trajectory model[J]. Acta Scientiae Circumstantiae, 40(1): 36-42. | |
[15] | 符传博, 丹利, 唐家翔, 等, 2021b. 海南省城市臭氧污染特征及气象学成因[M]. 北京: 气象出版社. |
FU C B, DAN L, TANG J X, et al., 2021b. Characteristics of urban ozone pollution and its meteorological causes in Hainan province[M]. Beijing: Meteorology Press. | |
[16] | 符传博, 丹利, 佟金鹤, 2021c. 2017年秋季海口市一次持续空气污染过程特征及成因分析[J]. 环境化学, 40(4): 1048-1058. |
FU C B, DAN L, TONG J H, et al., 2021c. Characteristics and source analysis of a multi-day air pollution episode in Haikou City in autumn 2017[J]. Environmental Chemistry, 40(4): 1048-1058. | |
[17] | 符传博, 丹利, 佟金鹤, 等, 2020a. 2013-2018年海口市区臭氧浓度变化特征[J]. 中国环境监测, 36(5): 38-46. |
FU C B, DAN L, TONG J H, et al., 2020a. Variation of O3 concentration in Haikou City from 2013 to 2018[J]. Environmental Monitoring in China, 36(5): 38-46. | |
[18] | 符传博, 徐文帅, 丹利, 等, 2020c. 前体物与气象因子对海南省臭氧污染的影响[J]. 环境科学与技术, 43(7): 45-50. |
FU C B, XU W S, DAN L, et al., 2020c. Impacts of precursors and meteorological factors on ozone pollution in Hainan Province[J]. Environmental Science & Technology, 43(7): 45-50. | |
[19] | 符传博, 徐文帅, 丹利, 等, 2022. 2015-2020年海南省臭氧时空变化及其成因分析[J]. 环境科学, 43(2): 675-685. |
FU C B, XU W S, DAN L, et al., 2022. Temporal and spatial variations in ozone and its causes over Hainan Province from 2015 to 2020[J]. Environmental Science, 43(2): 675-685. | |
[20] | 符传博, 周航, 2021a. 中国城市臭氧的形成机理及污染影响因素研究进展[J]. 中国环境监测, 37(2): 33-43. |
FU C B, ZHOU H, 2021a. Research progress on the formation mechanism and impact factors of urban ozone pollution in China[J]. Environmental Monitoring in China, 37(2): 33-43. | |
[21] | 海南省生态环境厅, 2021. 2020年海南省生态环境状况公报[EB/OL]. [2021-06-07]. http://hnsthb.hainan.gov.cn/xxgk/0200/0202/hjzl/hjzkgb/202106/t20210607_2990105.html. |
Department of Ecological Environmental of Hainan province, 2021. Bulletin of ecological environment of Hainan Province in 2020[EB/OL]. [2021-06-07]. http://hnsthb.hainan.gov.cn/xxgk/0200/0202/hjzl/hjzkgb/202106/t20210607_2990105.html. . | |
[22] | 海南省统计局, 2021. 海南统计年鉴2020[M]. 北京: 中国统计出版社. |
Hainan Provincial Bureau of Statistics, 2021. Hainan statistical yearbook 2020[M]. Beijing: China Statistics Press. | |
[23] | 郝伟华, 王文勇, 张迎春, 等, 2018. 成都市臭氧生成敏感性分析及控制策略的制定[J]. 环境科学学报, 38(10): 3894-3899. |
HAO W H, WANG W Y, ZHANG Y C, et al., 2018. Analysis of ozone generation sensitivity in Chengdu and establishment of control strategy[J]. Acta Scientiae Circumstantiae, 38(10): 3894-3899. | |
[24] | 李红丽, 王杨君, 黄凌, 等, 2020. 中国典型城市臭氧与二次气溶胶的协同增长作用分析[J]. 环境科学学报, 40(12): 4368-4379. |
LI H L, WANG Y J, HUANG L, et al., 2020. Analysis of synergistc growth effects between ozone and secondary aerosol in typical cities in China[J]. Acta Scientiae Circumstantiae, 40(12): 4368-4379. | |
[25] | 李莉, 蔡鋆琳, 周敏, 2015. 2013年12月中国中东部地区严重灰霾期间上海市颗粒物的输送途径及潜在源区贡献分析[J]. 环境科学, 36(7): 2327-2336. |
LI L, CAI J L, ZHOU M, 2015. Potential source contribution analysis of the particulate matters in Shanghai during the heavy haze episode in eastern and middle China in December, 2013[J]. Environmental Science, 36(7): 2327-2336. | |
[26] | 黎煜满, 李磊, 王浩霖, 等, 2022. 粤北山地城市近地面臭氧污染特征及气象影响因素分析-以韶关为例[J]. 环境科学学报, 42(2): 258-270. |
LI Y M, LI L, WANG H L, et al., 2022. Analysis of characteristics of surface ozone pollution and meteorological factors in a mountain city of northern Guangdong: A case study in Shaoguan[J]. Acta Scientiae Circumstantiae, 42(2): 258-270. | |
[27] |
梁俊宁, 马启翔, 汪平, 等, 2019. 陕西省西咸新区空港新城夏季臭氧与气象因子关系分析[J]. 生态环境学报, 28(10): 2020-2026.
DOI |
LIANG J N, MA Q X, WANG P, et al., 2019. Analysis of the relationship between ozone and meteorological factors in summer at airport new city of Xixian New Area, China[J]. Ecology and environment Sciences, 28(10): 2020-2026. | |
[28] |
LIAO H, CHANG W Y, YANG Y, 2015. Climatic effects of air pollutants over China: A review[J]. Advances in Atmospheric Sciences, 32(1): 115-139.
DOI URL |
[29] | 廖志恒, 许欣祺, 谢洁岚, 等, 2019. 珠三角地区日最大混合层高度及其对区域空气质量的影响[J]. 气象与环境学报, 35(5): 85-92. |
LIAO Z H, XU X Q, XIE J L, et al., 2019. Daily maximum mixing height and its effects on air quality in the Pearl River Delta region[J]. Journal of Meteorology and Environment, 35(5): 85-92. | |
[30] | 刘桓嘉, 贾梦珂, 刘永丽, 等, 2022. 河南省2015-2019年大气污染时空变化特征研究[J]. 环境科学学报, 42(2): 271-282. |
LIU H J, JIA M K, LIU Y L, et al., 2022. Spatial and temporal variation analysis of air pollution in Henan Province during 2015-2019[J]. Acta Scientiae Circumstantiae, 42(2): 271-282. | |
[31] | 钱悦, 许彬, 夏玲君, 等, 2021. 2016-2019年江西省臭氧污染特征与气象因子影响分析[J]. 环境科学, 42(5): 2190-2201. |
QIAN Y, XU B, XIA L J, et al., 2021. Characteristics of ozone pollution and relationships with meteorological factors in Jiangxi Province[J]. Environmental Science, 42(5): 2190-2201. | |
[32] | 宋娜, 徐虹, 毕晓辉, 等, 2015. 海口市PM2.5和PM10来源解析[J]. 环境科学研究, 28(10): 1501-1509. |
SONG N, XU H, BI X H, et al., 2015. Source apportionment of PM2.5 and PM10 in Haikou[J]. Research of Environmental Sciences, 28(10): 1501-1509. | |
[33] | 孙晓艳, 赵敏, 申恒青, 等, 2022. 济南市城区夏季臭氧污染过程及来源分析[J]. 环境科学, 43(2): 686-695. |
SUN X Y, ZHAO M, SHEN H Q, et al., 2022. Ozone formation and key VOCs of a continuous summertime O3 pollution event in Ji’nan[J]. Environmental Science, 43(2): 686-695. | |
[34] | 涂小萍, 姚日升, 高爱臻, 等, 2019. 浙江北部一次爆发式发展重度大气污染的气象特点和成因[J]. 环境科学学报, 39(5): 1443-1451. |
TU X P, YAO R S, GAO A Z, et al., 2019. Meteorological characteristics and outbreak causes of a heavy air pollution episode in northern Zhejiang Province[J]. Acta Scientiae Circumstantiae, 39(5): 1443-1451. | |
[35] | 王春乙, 2014. 海南气候[M]. 北京: 气象出版社. |
WANG C Y, 2014. Hainan Climate[M]. Beijing: Meteorological Press. | |
[36] | 王旭东, 尹沙沙, 杨健, 等, 2021. 郑州市臭氧污染变化特征、气象影响及输送源分析[J]. 环境科学, 42(2): 604-615. |
WANG X D, YIN S S, YANG J, et al., 2021. Characteristics, meteorological influences and transport source of ozone pollution in Zhengzhou City[J]. Environmental Science, 42(2): 604-615. | |
[37] | 王雪梅, 符春, 梁桂熊, 等, 2001. 城市区域臭氧浓度变化的研究[J]. 环境科学研究, 14(5): 1-3. |
WANG X M, FU C, LIANG G X, et al., 2001. Study on the ozone concentration in urban areas[J]. Research of Environmental Sciences, 14(5): 1-3. | |
[38] | 吴蒙, 范绍佳, 吴兑, 2013. 台风过程珠江三角洲边界层特征及其对空气质量的影响[J]. 中国环境科学, 33(9): 1569-1576. |
WU M, FAN S J, WU D, et al., 2013. The characteristics of atmospheric boundary layer during tropical cyclone process and its influence on air quality over Pearl River Delta region[J]. China Environmental Science, 33(9): 1569-1576. | |
[39] | 谢放尖, 陆晓波, 杨峰, 等, 2021. 2017年春夏期间南京地区臭氧污染输送影响及潜在源区[J]. 环境科学, 42(1): 88-96. |
XIE F J, LU X B, YANG F, et al., 2021. Transport influence and potential sources of ozone pollution for Nanjing during spring and summer in 2017[J]. Environmental Science, 42(1): 88-96. | |
[40] | 徐锟, 刘志红, 何沐全, 等, 2018. 成都市夏季近地面臭氧污染气象特征[J]. 中国环境监测. 34(5): 36-45. |
XU K, LIU Z H, HE M Q, et al., 2018. Meteorological characteristics of O3 pollution near the ground in summer of Chengdu[J]. Environmental Monitoring in China, 34(5): 36-45. | |
[41] | 徐文帅, 邢巧, 孟鑫鑫, 等, 2017. 海口市臭氧污染特征[J]. 中国环境监测, 33(4): 186-193. |
XU W S, XING Q, MENG X X, et al., 2017. Characteristics of ozone pollution in Haikou[J]. Environmental Monitoring in China, 33(4): 186-193. | |
[42] | 杨健, 尹沙沙, 于世杰, 等, 2020. 安阳市近地面臭氧污染特征及气象影响因素分析[J]. 环境科学, 41(1): 115-124. |
YANG J, YIN S S, YU S J, et al., 2020. Characteristics of surface ozone and meteorological parameters analysis in Anyang City[J]. Environmental Science, 41(1): 115-124. | |
[43] | 严仁嫦, 叶辉, 林旭, 等, 2018. 杭州市臭氧污染特征及影响因素分析[J]. 环境科学学报, 38(3): 1128-1136. |
YANG R C, YE H, LIN X, et al., 2018. Characteristics and influence factors of ozone pollution in Hangzhou[J]. Acta Scientiae Circumstantiae, 38(3): 1128-1136. | |
[44] | 岳海燕, 顾桃峰, 王春林, 等, 2018. 台风 “妮妲” 过程对广州臭氧浓度的影响分析[J]. 环境科学学报, 38(12): 4565-4572. |
YUE H Y, GU T F, WANG C L, et al., 2018. Influence of typhoon Nida process on ozone concentration in Guangzhou[J]. Acta Scientiae Circumstantiae, 38(12): 4565-4572. | |
[45] | 张天岳, 沈楠驰, 赵雪, 等, 2021. 2015-2019年成渝城市群臭氧浓度时空变化特征及人口暴露风险评价[J]. 环境科学学报, 41(10): 4188-4199. |
ZHANG T Y, SHEN N C, ZHAO X, et al., 2021. Spatiotemporal variation characteristics of ozone and its population exposure risk assessment in Chengdu-Chongqing urban agglomeration during 2015 to 2019[J]. Acta Scientiae Circumstantiae, 41(10): 4188-4199. | |
[46] | 周沙, 刘宁, 刘朝顺, 2017. 2013-2015年上海市霾污染事件潜在源区贡献分析[J]. 环境科学学报, 37(5): 1835-1842. |
ZHOU S, LIU N, LIU C S, et al., 2017. Identification for potential sources for haze events in Shanghai from 2013 to 2015[J]. Acta Scientiae Circumstantiae, 37(5): 1835-1842. |
[1] | 杜彩艳, 杨鹏, 蜂述先, 毛妍婷, 陶琼, 此主拉姆, 彭慧娉, 和建美, 李卫林. 不同生态区维西糯山药品质与生态因子相关性研究[J]. 生态环境学报, 2023, 32(6): 1053-1061. |
[2] | 韩翠, 康扬眉, 余海龙, 李冰, 黄菊莹. 荒漠草原凋落物分解过程中降水量对土壤酶活性的影响[J]. 生态环境学报, 2022, 31(9): 1802-1812. |
[3] | 闫胜文, 刘加珍, 陈永金, 马笑丹, 张亚茹, 朱海勇. 聊城大气降水氢氧同位素特征及水汽来源分析[J]. 生态环境学报, 2022, 31(3): 546-555. |
[4] | 陈漾, 张金谱, 邱晓暖, 琚鸿, 黄俊. 2021年广州市臭氧污染特征及气象因子影响分析[J]. 生态环境学报, 2022, 31(10): 2028-2038. |
[5] | 邹旭东, 蔡福, 李荣平, 米娜, 赵胡笳, 王笑影, 张云海, 汪宏宇, 贾庆宇. 玉米农田水热通量及能量变化研究[J]. 生态环境学报, 2021, 30(8): 1642-1653. |
[6] | 邓慧颖, 陈立新, 余永江, 王宏. 武夷山市臭氧分布特征及其与气象要素关系分析[J]. 生态环境学报, 2021, 30(7): 1428-1435. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||