生态环境学报 ›› 2022, Vol. 31 ›› Issue (10): 1993-2001.DOI: 10.16258/j.cnki.1674-5906.2022.10.007
刘佩伶1(), 刘效东1, 冯英杰1, 苏宇乔2, 甘先华2, 张卫强2,*(
)
收稿日期:
2022-06-23
出版日期:
2022-10-18
发布日期:
2022-12-09
通讯作者:
*张卫强(1976年生),男,博士,主要从事森林水文与生态修复研究。E-mail: 584674651@qq.com作者简介:
刘佩伶(1996年生),女,硕士,主要从事森林生态水文研究。E-mail: liupl@scbg.ac.cn
基金资助:
LIU Peiling1(), LIU Xiaodong1, FENG Yingjie1, SU Yuqiao2, GAN Xianhua2, ZHANG Weiqiang2,*(
)
Received:
2022-06-23
Online:
2022-10-18
Published:
2022-12-09
摘要:
饱和导水率近似于土壤稳定入渗速率,是评估森林生态系统土壤水文功能的重要参数。以新丰江水库库区3种不同水源涵养林即针叶林、针阔叶混交林和常绿阔叶林为研究对象,采用恒定水头法测定水源涵养林不同层次土壤饱和导水率大小,同时测定土壤理化性质,利用相关分析和多元线性回归分析的方法,探讨了土壤饱和导水率的变化特征及其主要影响因素。结果表明,随着森林植被组成的复杂化,土壤饱和导水率呈上升趋势。0—100 cm土层范围内,常绿阔叶林饱和导水率的算术平均值[(0.24±0.06) mm·min-1]大于针阔混交林[(0.18±0.04) mm·min-1]和针叶林[(0.18±0.05) mm·min-1]的相应值。各林型土壤剖面上饱和导水率随着土层深度增加大致呈下降趋势,介于(0.05±0.02)—(0.41±0.13) mm·min-1之间。常绿阔叶林0—20 cm土壤饱和导水率达 (0.34±0.05) mm·min-1,是针阔混交林1.3倍[(0.26±0.06) mm·min-1]和针叶林的1.2倍[(0.29±0.09) mm·min-1]。Pearson相关性分析结果显示,土壤饱和导水率与容重(P=0.000)、非毛管孔隙度(P=0.009)、土壤有机质(P=0.000)和>0.25 mm水稳性团聚体质量分数(P=0.001)呈极显著相关关系。多元线性回归分析结果表明,土壤容重是影响土壤饱和导水率的主要因素,土壤饱和导水率随着土壤容重的增加而下降。总体上,森林植被结构的复杂化有利于土壤饱和导水率的提升并促进水分入渗。该研究揭示了新丰江水库库区水源涵养林土壤层的水分入渗能力,为森林生态系统水源涵养功能评估以及高质量水源涵养林建设提供参考。
中图分类号:
刘佩伶, 刘效东, 冯英杰, 苏宇乔, 甘先华, 张卫强. 新丰江水库库区水源涵养林土壤饱和导水率特征[J]. 生态环境学报, 2022, 31(10): 1993-2001.
LIU Peiling, LIU Xiaodong, FENG Yingjie, SU Yuqiao, GAN Xianhua, ZHANG Weiqiang. Characteristics of Soil Saturated Hydraulic Conductivity of Water Conservation Forests in the Xinfengjiang Reservoir Area[J]. Ecology and Environment, 2022, 31(10): 1993-2001.
森林类型 Forest type | 林分密度 Stand density/ (plant·hm-2) | 郁闭度 Canopy density/% | 坡度Slope/ (o) | 坡向Aspect | 优势树种 Dominant tree species | 主要林下植被 Main undergrowth vegetation |
---|---|---|---|---|---|---|
针叶林 Coniferous forest | 4476 | 80 | 30 | 北 | 杉木 (Cunninghamia lanceolata) | 九节 (Psychotria asiatica)、 白花苦灯笼 (Tarenna mollissima)、小叶红叶藤 (Rourea microphylla) 等 |
针阔混交林 Coniferous broad-leaved mixed forest | 6192 | 70 | 30 | 北 | 杉木、木荷 (Schima superba)、五列木 (Pentaphylax euryoides)、马尾松 (Pinus massoniana)、 浙江润楠、细齿叶柃、罗浮柿、黄樟 | 山血丹 (Ardisia lindleyana)、毛冬青 (Ilex pubescens)、 九节等 |
常绿阔叶林 Broad-leaved evergreen forest | 6520 | 82 | 27 | 西北 | 红锥 (Castanopsis hystrix)、黄果厚壳桂 (Cryptocarya concinna)、厚壳桂 (Cryptocarya chinensis)、鹿角锥 (Castanopsis lamontii)、橄榄 (Canarium album)、木荷、罗浮柿、华润楠 (Machilus chinensis) | 九节、小叶红叶藤、 毛冬青等 |
表1 试验样地概况
Table 1 Summary of the sample plot
森林类型 Forest type | 林分密度 Stand density/ (plant·hm-2) | 郁闭度 Canopy density/% | 坡度Slope/ (o) | 坡向Aspect | 优势树种 Dominant tree species | 主要林下植被 Main undergrowth vegetation |
---|---|---|---|---|---|---|
针叶林 Coniferous forest | 4476 | 80 | 30 | 北 | 杉木 (Cunninghamia lanceolata) | 九节 (Psychotria asiatica)、 白花苦灯笼 (Tarenna mollissima)、小叶红叶藤 (Rourea microphylla) 等 |
针阔混交林 Coniferous broad-leaved mixed forest | 6192 | 70 | 30 | 北 | 杉木、木荷 (Schima superba)、五列木 (Pentaphylax euryoides)、马尾松 (Pinus massoniana)、 浙江润楠、细齿叶柃、罗浮柿、黄樟 | 山血丹 (Ardisia lindleyana)、毛冬青 (Ilex pubescens)、 九节等 |
常绿阔叶林 Broad-leaved evergreen forest | 6520 | 82 | 27 | 西北 | 红锥 (Castanopsis hystrix)、黄果厚壳桂 (Cryptocarya concinna)、厚壳桂 (Cryptocarya chinensis)、鹿角锥 (Castanopsis lamontii)、橄榄 (Canarium album)、木荷、罗浮柿、华润楠 (Machilus chinensis) | 九节、小叶红叶藤、 毛冬青等 |
土层深度 Soil depth/cm | 土壤饱和导水率 Soil saturated hydraulic conductivity/(mm·min-1) | ||
---|---|---|---|
针叶林 Coniferous forest | 针阔叶混交林 Coniferous and broad-leaved mixed forest | 常绿阔叶林 Broad-leaved evergreen forest | |
0-20 | 0.29±0.09A | 0.26±0.06A | 0.34±0.05AB |
20-40 | 0.30±0.06A | 0.25±0.20AB | 0.41±0.13A |
40-60 | 0.08±0.03B | 0.13±0.04AB | 0.18±0.04ABC |
60-80 | 0.07±0.03B | 0.05±0.02B | 0.08±0.02C |
80-100 | 0.14±0.08AB | 0.20±0.07AB | 0.16±0.04BC |
平均值 Average | 0.18±0.05 | 0.18±0.04 | 0.24±0.06 |
表2 不同林分的土壤饱和导水率特征
Table 2 The characteristics of soil saturated hydraulic conductivity in different stands
土层深度 Soil depth/cm | 土壤饱和导水率 Soil saturated hydraulic conductivity/(mm·min-1) | ||
---|---|---|---|
针叶林 Coniferous forest | 针阔叶混交林 Coniferous and broad-leaved mixed forest | 常绿阔叶林 Broad-leaved evergreen forest | |
0-20 | 0.29±0.09A | 0.26±0.06A | 0.34±0.05AB |
20-40 | 0.30±0.06A | 0.25±0.20AB | 0.41±0.13A |
40-60 | 0.08±0.03B | 0.13±0.04AB | 0.18±0.04ABC |
60-80 | 0.07±0.03B | 0.05±0.02B | 0.08±0.02C |
80-100 | 0.14±0.08AB | 0.20±0.07AB | 0.16±0.04BC |
平均值 Average | 0.18±0.05 | 0.18±0.04 | 0.24±0.06 |
林型 Forest type | 土层深度 Soil depth/ cm | 土壤有机质 Soil organic matter/ (g·kg-1) | 土壤容重 Soil bulk density/ (g·cm-3) | >0.25 mm水稳性团聚体质量分数 >0.25 mm mass fraction of water stable aggregates/% |
---|---|---|---|---|
针叶林 Coniferous forest | 0-20 | 23.2±1.8A | 1.1±0.1B | 53.4±3.3A |
20-40 | 18.3±3.5A | 1.3±0.1AB | 23.2±5.2B | |
40-60 | 10.9±1.1B | 1.3±0.0AB | 17.2±2.4BC | |
60-80 | 9.5±1.5B | 1.4±0.1A | 9.0±1.6C | |
80-100 | 6.8±1.9B | 1.3±0.1AB | 11.6±2.2C | |
平均值 Average | 13.7±3.0 | 1.3±0.0 | 22.9±8.0 | |
针阔叶混交林 Coniferous and broad-leaved mixed forest | 0-20 | 32.5±2.8A | 1.0±0.1B | 55.4±3.2A |
20-40 | 18.4±3.4B | 1.3±0.1A | 27.4±5.6B | |
40-60 | 10.7±2.9C | 1.4±0.1A | 18.0±1.6BC | |
60-80 | 8.8±1.9C | 1.4±0.0A | 7.4±1.3C | |
80-100 | 8.4±1.2C | 1.3±0.0A | 15.3±3.7BC | |
平均值 Average | 15.8±4.6 | 1.3±0.1 | 24.7±8.3 | |
常绿阔叶林 Broad-leaved evergreen forest | 0-20 | 38.8±2.3A | 1.0±0.1B | 59.3±5.3A |
20-40 | 29.3±2.6B | 1.1±0.0B | 34.8±4.0B | |
40-60 | 18.4±2.6C | 1.3±0.0A | 19.6±4.3C | |
60-80 | 12.2±1.6D | 1.3±0.0A | 10.0±0.8C | |
80-100 | 9.8±0.6D | 1.3±0.0A | 9.7±1.0C | |
平均值 Average | 21.7±5.4 | 1.2±0.1 | 26.7±9.3 |
表3 不同林型各土层土壤有机质、土壤容重和>0.25 mm水稳性团聚体质量分数变化
Table 3 Changes of soil organic matter, bulk density and mass fraction of >0.25 mm water stable aggregates in different forest types
林型 Forest type | 土层深度 Soil depth/ cm | 土壤有机质 Soil organic matter/ (g·kg-1) | 土壤容重 Soil bulk density/ (g·cm-3) | >0.25 mm水稳性团聚体质量分数 >0.25 mm mass fraction of water stable aggregates/% |
---|---|---|---|---|
针叶林 Coniferous forest | 0-20 | 23.2±1.8A | 1.1±0.1B | 53.4±3.3A |
20-40 | 18.3±3.5A | 1.3±0.1AB | 23.2±5.2B | |
40-60 | 10.9±1.1B | 1.3±0.0AB | 17.2±2.4BC | |
60-80 | 9.5±1.5B | 1.4±0.1A | 9.0±1.6C | |
80-100 | 6.8±1.9B | 1.3±0.1AB | 11.6±2.2C | |
平均值 Average | 13.7±3.0 | 1.3±0.0 | 22.9±8.0 | |
针阔叶混交林 Coniferous and broad-leaved mixed forest | 0-20 | 32.5±2.8A | 1.0±0.1B | 55.4±3.2A |
20-40 | 18.4±3.4B | 1.3±0.1A | 27.4±5.6B | |
40-60 | 10.7±2.9C | 1.4±0.1A | 18.0±1.6BC | |
60-80 | 8.8±1.9C | 1.4±0.0A | 7.4±1.3C | |
80-100 | 8.4±1.2C | 1.3±0.0A | 15.3±3.7BC | |
平均值 Average | 15.8±4.6 | 1.3±0.1 | 24.7±8.3 | |
常绿阔叶林 Broad-leaved evergreen forest | 0-20 | 38.8±2.3A | 1.0±0.1B | 59.3±5.3A |
20-40 | 29.3±2.6B | 1.1±0.0B | 34.8±4.0B | |
40-60 | 18.4±2.6C | 1.3±0.0A | 19.6±4.3C | |
60-80 | 12.2±1.6D | 1.3±0.0A | 10.0±0.8C | |
80-100 | 9.8±0.6D | 1.3±0.0A | 9.7±1.0C | |
平均值 Average | 21.7±5.4 | 1.2±0.1 | 26.7±9.3 |
图4 土壤饱和导水率和土壤理化性质间的相关系数 圆圈大小表示相关性的强弱,红色越深表示正相关越大,蓝色越深表示负相关越大
Figure 4 The correlation coefficient between soil saturated hydraulic conductivity and soil physico-chemical properties The circle size indicates the strength of the correlation, the darker the red, the greater the positive correlation, and the daker the blue, the greater the negative correlation
[1] |
BECKER R, GEBREMICHAEL M, MÄRKER M, 2018. Impact of soil surface and subsurface properties on soil saturated hydraulic conductivity in the semi-arid Walnut Gulch Experimental Watershed, Arizona, USA[J]. Geoderma, 322: 112-120.
DOI URL |
[2] | BITTELLI M, CAMPBELL G S, TOMEI F, 2015. Soil Physics with python: transport in the soil-plant-atmosphere system[M]. Oxford, England: Oxford University Press: 128-136. |
[3] |
DENG J J, BAI X J, ZHOU Y B, et al., 2020. Variations of soil microbial communities accompanied by different vegetation restoration in an open-cut iron mining area[J]. Science of the Total Environment, 704: 135243.
DOI URL |
[4] |
ELLIOTT E T, 1986. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils[J]. Soil Science Society of America Journal, 50(3): 627-633.
DOI URL |
[5] |
FAUCON M P, 2020. Plant-soil interactions as drivers of the structure and functions of plant communities[J]. Diversity, 12(12): 452.
DOI URL |
[6] |
GU C J, MU X M, GAO P, et al., 2019. Influence of vegetation restoration on soil physical properties in the Loess Plateau, China[J]. Journal of Soils and Sediments, 19(2): 716-728.
DOI URL |
[7] |
HAO M Z, ZHANG J C, MENG M J, et al., 2019. Impacts of changes in vegetation on saturated hydraulic conductivity of soil in subtropical forests[J]. Scientific Reports, 9(1): 8372-8379.
DOI PMID |
[8] |
HUANG F F, ZHANG W Q, GAN X H, et al., 2018. Changes in vegetation and soil properties during recovery of a subtropical forest in South China[J]. Journal of Mountain Science, 15(1): 46-58.
DOI URL |
[9] | KHLOSI M, CORNELIS W M, DOUAIK A, et al., 2013. Exploration of the interaction between hydraulic and physicochemical properties of Syrian soils[J]. Vadose Zone Journal, 12(4): 1-11. |
[10] |
LADO M, PAZ A, BENHUR M, 2004. Organic matter and aggregate size interactions in infiltration, seal formation, and soil loss[J]. Soil Science Society of America Journal, 68(3): 935-942.
DOI URL |
[11] |
LI H Q, LIAO X L, ZHU H S, et al., 2019a. Soil physical and hydraulic properties under different land uses in the black soil region of Northeast China[J]. Canadian Journal of Soil Science, 99(4): 406-419.
DOI URL |
[12] |
LI W, YAN M, ZHANG Q F, et al., 2012. Effects of vegetation restoration on soil physical properties in the wind-water erosion region of the northern Loess Plateau of China[J]. Clean-Soil, Air, Water, 40(1): 7-15.
DOI URL |
[13] |
LI X D, SHAO M A, ZHAO C L, et al., 2019b. Spatial variability of soil water content and related factors across the Hexi Corridor of China[J]. Journal of Arid Land, 11(1): 123-134.
DOI URL |
[14] |
LI Y L, YANG F F, OU Y X, et al., 2013. Changes in forest soil properties in different successional stages in lower tropical China[J]. PLoS One, 8(11): e81359.
DOI URL |
[15] |
LIU P L, LIU X D, DAI Y H, et al., 2020. Influence of vegetation restoration on soil hydraulic properties in south China[J]. Forests, 11(10): 1111.
DOI URL |
[16] |
LIU X J, TAN N D, ZHOU G Y, et al., 2021. Plant diversity and species turnover co-regulate soil nitrogen and phosphorus availability in Dinghushan forests, southern China[J]. Plant and Soil, 464(1-2): 257-272.
DOI URL |
[17] |
NERIS J, JIMÉNEZ C, FUENTES J, et al., 2012. Vegetation and land-use effects on soil properties and water infiltration of Andisols in Tenerife (Canary Islands, Spain)[J]. Catena, 98: 55-62.
DOI URL |
[18] |
OTTONI M V, FILHO T B O, LOPES-ASSAD M L R C, et al., 2019. Pedotransfer functions for saturated hydraulic conductivity using a database with temperate and tropical climate soils[J]. Journal of Hydrology, 575: 1345-1358.
DOI URL |
[19] |
PIASZCZYK W, LASOTA J, BłONSKA E, 2020. Effect of organic matter released from deadwood at different decomposition stages on physical properties of forest soil[J]. Forests, 11(1): 24.
DOI URL |
[20] |
SOKOłOWSKA J, JÓZEFOWSKA A, WOŹNICA K, et al., 2020. Succession from meadow to mature forest: Impacts on soil biological, chemical and physical properties-Evidence from the Pieniny Mountains, Poland[J]. Catena, 189: 104503.
DOI URL |
[21] |
TIAN J, ZHANG B Q, HE C S, et al., 2016. Variability in soil hydraulic conductivity and soil hydrological response under different land covers in the mountainous area of the heihe river watershed, northwest China[J]. Land Degradation & Development, 28(4): 1437-1449.
DOI URL |
[22] |
USOWICZ B, LIPIEC J, 2021. Spatial variability of saturated hydraulic conductivity and its links with other soil properties at the regional scale[J]. Scientific Reports, 11(1): 8293.
DOI PMID |
[23] |
WANG C, ZHAO C Y, XU Z L, et al., 2013. Effect of vegetation on soil water retention and storage in a semi-arid alpine forest catchment[J]. Journal of Arid Land, 5(2): 207-219.
DOI |
[24] |
WANG L, MU Y, ZHANG Q F, et al., 2012. Effects of vegetation restoration on soil physical properties in the Wind-Water erosion region of the Northern Loess Plateau of China[J]. CLEAN Soil Air Water, 40(1): 7-15.
DOI URL |
[25] |
ZEMA D A, PLAZA-ALVAREZ P A, XU X, et al., 2021. Influence of forest stand age on soil water repellency and hydraulic conductivity in the Mediterranean environment[J]. Science of the Total Environment, 753: 142006.
DOI URL |
[26] |
ZHAO X Y, LIU P L, FENG Y J, et al., 2022. Changes in soil physico-chemical and microbiological properties during natural succession: A case study in lower subtropical China[J]. Frontiers in Plant Science, 13: 878908.
DOI URL |
[27] |
ZHOU G Y, WEI X H, WU Y P, et al., 2011. Quantifying the hydrological responses to climate change in an intact forested small watershed in Southern China[J]. Global Change Biology, 17(12): 3736-3746.
DOI URL |
[28] | 鲍士旦, 2000. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社: 25-30. |
BAO S D, 2000. Soil agricultural chemistry analysis[M]. The third edition. Beijing: China Agriculture Press. | |
[29] | 柴华, 何念鹏, 2016. 中国土壤容重特征及其对区域碳贮量估算的意义[J]. 生态学报, 36(13): 3903-3910. |
CHAI H, HE N P, 2016. Evaluation of soil bulk density in Chinese terrestrial ecosystems for determination of soil carbon storage on a regional scale[J]. Acta Ecologica Sinica, 36(13): 3903-3910. | |
[30] | 李文娟, 甘先华, 张卫强, 等, 2022. 新丰江库区不同森林类型的物种多样性分析[J]. 广东农业科学, 49(4): 35-45. |
LI W J, GAN X H, ZHANG W Q, et al., 2022. Analysis of species diversity of different forest types in Xinfengjiang Reservoir Area[J]. Guangdong Agricultural Sciences, 49(4): 35-45. | |
[31] | 梁向锋, 赵世伟, 张扬, 等, 2009. 子午岭植被恢复对土壤饱和导水率的影响[J]. 生态学报, 29(2): 636-642. |
LIANG X F, ZHAO S W, ZHANG Y, et al., 2009. Effects of vegetation rehabilitation on soil saturated hydraulic conductivity in Ziwuling Forest Area[J]. Acta Ecologica Sinica, 29(2): 636-642. | |
[32] |
刘效东, 乔玉娜, 周国逸, 2011. 土壤有机质对土壤水分保持及其有效性的控制作用[J]. 植物生态学报, 35(12): 1209-1218.
DOI |
LIU X D, QIAO Y N, ZHOU G Y, 2011. Controlling action of soil organic matter on soil moisture retention and its availability[J]. Chinese Journal of Plant Ecology, 35(12): 1209-1218.
DOI URL |
|
[33] | 吕一河, 胡健, 孙飞翔, 等, 2015. 水源涵养与水文调节: 和而不同的陆地生态系统水文服务[J]. 生态学报, 35(15): 5191-5196. |
LÜ Y H, HU J, SUN F X, et al., 2015. Water retention and hydrological regulation: harmony but not the same in terrestrial hydrological ecosystem services[J]. Acta Ecologica Sinica, 35(15): 5191-5196. | |
[34] | 吕贻忠, 李保国, 2006. 土壤学[M]. 第1版. 北京: 中国农业出版社: 30-37. |
LÜ Y Z, LI B G, 2006. Pedology[M]. The first edition. Beijing: China Agriculture Press: 30-37. | |
[35] | 潘春翔, 李裕元, 彭亿, 等, 2012. 湖南乌云界自然保护区典型生态系统的土壤持水性能[J]. 生态学报, 32(2): 538-547. |
PAN C X, LI Y Y, PENG Y, et al., 2012. Soil water holding capacity under four typical ecosystems in Wuyunjie Nature Reserve of Hunan Province[J]. Acta Ecologica Sinica, 32(2): 538-547.
DOI URL |
|
[36] | 彭舜磊, 由文辉, 沈会涛, 2010. 植被群落演替对土壤饱和导水率的影响[J]. 农业工程学报, 26(11): 78-84. |
PENG S L, YOU W H, SHEN H T, 2010. Effect of syndynamic on soil saturated hydraulic conductivity[J]. Transactions of the Chinese Society of Agricultural Engineering, 26(11): 78-84. | |
[37] | 石培礼, 吴波, 程根伟, 等, 2004. 长江上游地区主要森林植被类型蓄水能力的初步研究[J]. 自然资源学报, 19(3): 351-360. |
SHI P L, WU B, CHENG G W, et al., 2004. Water retention capacity evaluation of main forest vegetation types in the upper Yangtze River[J]. Journal of Natural Resources, 19(3): 351-360. | |
[38] | 涂缦缦, 左畅航, 2019. 水资源保护的地方立法探讨——以广东省河源市新丰江水库为例[J]. 南方论刊 (8): 81-84. |
TU M M, ZUO C H, 2019. Discussion on local legislation of water resources protection: Taking Xinfengjiang Reservoir in Heyuan City, Guangdong Province as an example[J]. Southern Journal (8): 81-84. | |
[39] | 王轶浩, 王彦辉, 谢双喜, 等, 2012. 六盘山小流域地形、植被特征与土壤水文物理性质的关系[J]. 生态学杂志, 31(1): 145-151. |
WANG Y H, WANG Y H, XIE S X, et al., 2012. Relationships of landform and vegetation characters with soil hydrophysical properties in a small watershed of Liupan Mountains, Northwest China[J]. Chinese Journal of Ecology, 31(1): 145-151. | |
[40] | 王紫薇, 黄来明, 邵明安, 等, 2021. 青海高寒区不同土地利用方式下土壤持水能力及影响因素[J]. 干旱区研究, 38(6): 1722-1730. |
WANG Z W, HUANG L M, SHAO M A, et al., 2021. Soil water holding capacity under different land use patterns in the Qinghai alpine region[J]. Arid Zone Research, 38(6): 1722-1730. | |
[41] | 文晓慧, 钟标城, 2016. 新丰江水库水质现状研究[J]. 环境与发展, 28(6): 55-57. |
WEN X H, ZHONG B C, 2016. Study on water quality of Xinfeng River Reservoir[J]. Environment and Development, 28(6): 55-57.
DOI URL |
|
[42] | 许振欣, 邓羽松, 林立文, 等, 2021. 南亚热带典型人工林土壤饱和导水率特征及其影响因素研究[J]. 北京林业大学学报, 43(4): 100-107. |
XU Z X, DENG Y S, LIN L W, et al., 2021. Characteristics of soil saturated hydraulic conductivity and its influencing factors of typical plantations in South Subtropical Zone[J]. Journal of Beijing Forestry University, 43(4): 100-107. | |
[43] | 姚淑霞, 赵传成, 张铜会, 2013. 科尔沁不同沙地土壤饱和导水率比较研究[J]. 土壤学报, 50(3): 469-477. |
YAO S X, ZHAO C C, ZHANG T H, 2013. A comparison of soil saturated hydraulic conductivity (kfs) in different horqin sand land[J]. Acta Pedologica Sinica, 50(3): 469-477. | |
[44] | 尹钊, 公博, 师忱, 等, 2021. 潮河源头不同水源涵养林的土壤饱和导水率[J]. 中国水土保持科学(中英文), 19(1): 43-51. |
YIN Z, GONG B, SHI C, et al., 2021. Soil saturated hydraulic conductivity of water conservation forests in Chaohe headwater[J]. Science of Soil and Water Conservation, 19(1): 43-51. | |
[45] | 于贵瑞, 高扬, 王秋凤, 等, 2013. 陆地生态系统碳氮水循环的关键耦合过程及其生物调控机制探讨[J]. 中国生态农业学报, 21(1): 1-13. |
YU G R, GAO Y, WANG Q F, et al., 2013. Discussion on the key processes of carbon-nitrogen-water coupling cycles and biological regulation mechanisms in terrestrial ecosystem[J]. Chinese Journal of Eco-Agriculture, 21(1): 1-13. | |
[46] | 曾建辉, 马波, 郭迎香, 等, 2022. 冻融条件下生物结皮覆盖对土壤饱和导水率的影响[J]. 生态学报, 42(1): 348-358. |
ZENG J H, MA B, GUO Y X, et al., 2022. Effect of biological crust cover on soil saturated hydraulic conductivity under freeze-thaw conditions[J]. Acta Ecologica Sinica, 42(1): 348-358.
DOI URL |
|
[47] | 张一璇, 史常青, 杨浩, 等, 2019. 永定河流域官厅水库南岸典型林分土壤饱和导水率研究[J]. 生态学报, 39(18): 6681-6689. |
ZHANG Y X, SHI C Q, YANG H, et al., 2019. Saturated hydraulic conductivity of soils of typical forests of the south coast of Guanting reservoir in Yongding River Watershed[J]. Acta Ecologica Sinica, 39(18): 6681-6689. |
[1] | 杜丹丹, 高瑞忠, 房丽晶, 谢龙梅. 旱区盐湖盆地土壤重金属空间变异及对土壤理化因子的响应[J]. 生态环境学报, 2023, 32(6): 1123-1132. |
[2] | 王礼霄, 刘晋仙, 柴宝峰. 华北亚高山土壤细菌群落及氮循环对退耕还草的响应[J]. 生态环境学报, 2022, 31(8): 1537-1546. |
[3] | 王磊, 温远光, 周晓果, 朱宏光, 孙冬婧. 尾巨桉与红锥混交对林下植被和土壤性质的影响[J]. 生态环境学报, 2022, 31(7): 1340-1349. |
[4] | 杨冲, 王春燕, 王文颖, 毛旭峰, 周华坤, 陈哲, 索南吉, 靳磊, 马华清. 青藏高原黄河源区高寒草地土壤营养特征变化及质量评价[J]. 生态环境学报, 2022, 31(5): 896-908. |
[5] | 夏开, 邓鹏飞, 马锐豪, 王斐, 温正宇, 徐小牛. 马尾松次生林转换为湿地松和杉木林对土壤细菌群落结构和多样性的影响[J]. 生态环境学报, 2022, 31(3): 460-469. |
[6] | 王瑞, 宋祥云, 柳新伟. 黄河三角洲不同植被类型土壤酶活性的季节变化[J]. 生态环境学报, 2022, 31(1): 62-69. |
[7] | 郑智恒, 熊康宁, 容丽, 池永宽. 两种等级喀斯特石漠化地区生物结皮对土壤养分恢复的影响[J]. 生态环境学报, 2021, 30(6): 1202-1212. |
[8] | 林丽, 代磊, 林泽北, 吴际通, 颜伟, 王志杰. 黔中城市森林群落植物多样性及其与土壤理化性质的关系[J]. 生态环境学报, 2021, 30(11): 2130-2141. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||