生态环境学报 ›› 2022, Vol. 31 ›› Issue (5): 896-908.DOI: 10.16258/j.cnki.1674-5906.2022.05.005
杨冲1,2(), 王春燕4, 王文颖1,*(
), 毛旭峰2, 周华坤3, 陈哲1, 索南吉1, 靳磊1, 马华清1
收稿日期:
2021-11-18
出版日期:
2022-05-18
发布日期:
2022-07-12
通讯作者:
* 王文颖,女,教授,博士,主要研究方向为青藏高原环境与生态。E-mail: wangwy0106@163.com作者简介:
杨冲(1983年生),男,博士研究生,主要研究方向为青藏高原生态环境保护。E-mail: vvvonion@163.com
基金资助:
YANG Chong1,2(), WANG Chunyan4, WANG Wenying1,*(
), MAO Xufeng2, ZHOU Huakun3, CHEN Zhe1, SUONANJi 1, JIN Lei1, MA Huaqing1
Received:
2021-11-18
Online:
2022-05-18
Published:
2022-07-12
摘要:
以黄河源区高寒草甸、高寒草原和沼泽草甸生态系统为研究对象,分析草地退化和人工植被恢复措施对土壤营养特征的影响程度,评价黄河源区高寒草地土壤质量的基本状况,以期为黄河源区高寒草地的管理和利用提供理论依据。结果表明,(1)高寒草原植被退化显著降低了土壤含水量(P<0.05),对土壤碳氮磷钾含量、土壤容重和土壤pH值均没有产生显著影响(P>0.05);高寒草甸植被退化显著降低了土壤全碳、有机碳、全氮、可溶性有机氮、铵态氮、全磷、速效磷含量和土壤含水量(P<0.05),显著增加了容重、pH和土壤硝态氮含量(P<0.05),对土壤全钾和速效钾没有显著影响(P>0.05)。(2)在退化的高寒草原上恢复植被,可显著增加土壤有机碳、全氮、可溶性有机氮、铵态氮、硝态氮、速效钾含量和土壤含水量(P<0.05),对土壤容重、pH、全碳、全磷、全钾和速效磷含量没有产生显著影响(P>0.05);在退化高寒草甸上恢复植被,可显著提升土壤含水量、可溶性有机氮、铵态氮、全钾和速效钾含量(P<0.05),对土壤全碳、有机碳、全氮、硝态氮、全磷、速效磷没有显著影响(P>0.05)。(3)在0—20 cm土层,土壤质量综合评价结果为:沼泽草甸>高寒草甸>人工草地 (5 a)>人工草地 (15 a)>退化高寒草甸>人工草地 (4 a)>高寒草原>退化高寒草原。综上,不同类型高寒草地生态系统土壤营养特征差异极大,高寒草甸的退化对土壤营养特征影响显著,植被恢复措施提高了退化草地的土壤质量。
中图分类号:
杨冲, 王春燕, 王文颖, 毛旭峰, 周华坤, 陈哲, 索南吉, 靳磊, 马华清. 青藏高原黄河源区高寒草地土壤营养特征变化及质量评价[J]. 生态环境学报, 2022, 31(5): 896-908.
YANG Chong, WANG Chunyan, WANG Wenying, MAO Xufeng, ZHOU Huakun, CHEN Zhe, SUONANJi , JIN Lei, MA Huaqing. Soil Nutrient Characteristics and Quality Evaluation of Alpine Grassland in the Source Area of the Yellow River on the Qinghai Tibet Plateau[J]. Ecology and Environment, 2022, 31(5): 896-908.
图2 不同类型高寒草地土壤理化性质特征 A为高寒草原;B为高寒草甸;C为沼泽草甸。SOC为有机碳;TC为全碳;SON为可溶性有机氮;NH4+-N为铵氮;NO3--N为硝氮;TN为全氮;AP为速效磷; TP为全磷; AK为速效钾;TK为全钾;小写字母不同代表不同处理之间差异显著(P<0.05);下同
Figure 2 Characteristics of soil physical and chemical properties in different types of alpine grassland A is alpine steppe; B is alpine meadow. C is swamp meadow. SOC is organic carbon; TC is total carbon. SON is soluble organic nitrogen; NH4+-N is ammonia nitrogen. NO3--N is nitrate nitrogen. TN is total nitrogen; AP is available phosphorus. TP is total phosphorus. AK is available potassium. TK is total potassium. Different lowercase letters represent significant differences between different treatments (P<0.05). The same below
图3 原生和退化高寒草原土壤理化性质特征 A为高寒草原;B为退化高寒草原
Figure 3 Physical and chemical properties of soil in native and degraded alpine grassland A is alpine steppe. B is degraded alpine grassland
图4 原生和退化高寒草甸土壤理化性质特征 A为高寒草甸;B为退化高寒草甸
Figure 4 Physical and chemical properties of native and degraded alpine meadow soil A is alpine meadow. B is degraded alpine meadow
图5 退化高寒草原建植人工草地对土壤质量的影响 A为退化高寒草原;B为人工草地(4 a)
Figure 5 Effects of artificial vegetation on soil quality in degraded alpine steppe A is degraded alpine steppe. B is artificial grassland (4 years old)
图6 退化高寒草甸建植人工草地对土壤质量的影响 A为退化高寒草甸;B为人工草地(5 a);C为人工草地(15 a)
Figure 6 Effects of artificial vegetation on soil quality in degraded alpine meadow A is degraded alpine meadow. B is artificial grassland (5 years old). C is artificial grassland (15 years old)
成份 Principal component | 初始特征值 Initial eigenvalue | 提取平方和载入 Extract sums of squared loadings | |||||
---|---|---|---|---|---|---|---|
合计 Total | 方差百分比 Percentage of variance/% | 累积 Accumulate/% | 合计 Total | 方差百分比 Percentage of variance/% | 累积 Accumulate/% | ||
1 | 10.414 | 80.105 | 80.105 | 10.414 | 80.105 | 80.105 | |
2 | 1.780 | 13.690 | 93.795 | 1.780 | 13.690 | 93.795 | |
3 | 0.575 | 4.424 | 98.220 | ||||
4 | 0.106 | 0.813 | 99.032 | ||||
5 | 0.071 | 0.549 | 99.581 | ||||
6 | 0.049 | 0.380 | 99.961 | ||||
7 | 0.005 | 0.039 | 100.000 | ||||
8 | 5.044×10-16 | 3.880×10-15 | 100.000 | ||||
9 | 1.717×10-16 | 1.320×10-15 | 100.000 | ||||
10 | 1.553×10-16 | 1.195×10-15 | 100.000 | ||||
11 | -1.150×10-16 | -8.847×10-16 | 100.000 | ||||
12 | -2.184×10-16 | -1.680×10-15 | 100.000 | ||||
13 | -4.145×10-16 | -3.188×10-15 | 100.000 |
表2 方差分解主成分提取分析
Table 2 Extraction analysis of principal components by variance decomposition
成份 Principal component | 初始特征值 Initial eigenvalue | 提取平方和载入 Extract sums of squared loadings | |||||
---|---|---|---|---|---|---|---|
合计 Total | 方差百分比 Percentage of variance/% | 累积 Accumulate/% | 合计 Total | 方差百分比 Percentage of variance/% | 累积 Accumulate/% | ||
1 | 10.414 | 80.105 | 80.105 | 10.414 | 80.105 | 80.105 | |
2 | 1.780 | 13.690 | 93.795 | 1.780 | 13.690 | 93.795 | |
3 | 0.575 | 4.424 | 98.220 | ||||
4 | 0.106 | 0.813 | 99.032 | ||||
5 | 0.071 | 0.549 | 99.581 | ||||
6 | 0.049 | 0.380 | 99.961 | ||||
7 | 0.005 | 0.039 | 100.000 | ||||
8 | 5.044×10-16 | 3.880×10-15 | 100.000 | ||||
9 | 1.717×10-16 | 1.320×10-15 | 100.000 | ||||
10 | 1.553×10-16 | 1.195×10-15 | 100.000 | ||||
11 | -1.150×10-16 | -8.847×10-16 | 100.000 | ||||
12 | -2.184×10-16 | -1.680×10-15 | 100.000 | ||||
13 | -4.145×10-16 | -3.188×10-15 | 100.000 |
草地类型 Grassland types | 因子1得分 Factor 1 score | 因子2得分 Factor 2 score | 主成分1得分 Principal component 1 score | 主成分2得分 Principal component 2 score | 综合得分 Comprehensive score | 排序 Ranking |
---|---|---|---|---|---|---|
高寒草原 Native alpine steppe | -0.70772 | -1.16499 | -2.28381 | -1.5541 | -2.08845 | 7 |
高寒草甸 Native alpine meadow | 0.92728 | -0.04611 | 2.99233 | -0.06151 | 2.73636 | 2 |
沼泽草甸 Swamp meadow | 2.09982 | -0.38872 | 6.77612 | -0.51855 | 6.19646 | 1 |
退化高寒草原 Degraded alpine steppe | -0.74861 | -1.51653 | -2.41576 | -2.02305 | -2.20911 | 8 |
退化高寒草甸 Degraded alpine meadow | -0.40689 | 0.16214 | -1.31303 | 0.21629 | -1.20071 | 5 |
退化高寒草原建植人工草地(4 a) Artificial grassland (4 years) in degraded alpine steppe | -0.57132 | 0.57405 | -1.84365 | 0.76578 | -1.68594 | 6 |
退化高寒草甸建植人工草地(5 a) Artificial grassland (5 years) in degraded alpine meadow | -0.26386 | 1.16494 | -0.85148 | 1.55403 | -0.77864 | 3 |
退化高寒草甸建植人工草地(15 a) Artificial grassland (15 years) in degraded alpine meadow | -0.3287 | 1.21523 | -1.06071 | 1.62112 | -0.96998 | 4 |
表3 不同高寒草地土壤理化成分综合得分及排序
Table 3 Scores and ranking of principal components
草地类型 Grassland types | 因子1得分 Factor 1 score | 因子2得分 Factor 2 score | 主成分1得分 Principal component 1 score | 主成分2得分 Principal component 2 score | 综合得分 Comprehensive score | 排序 Ranking |
---|---|---|---|---|---|---|
高寒草原 Native alpine steppe | -0.70772 | -1.16499 | -2.28381 | -1.5541 | -2.08845 | 7 |
高寒草甸 Native alpine meadow | 0.92728 | -0.04611 | 2.99233 | -0.06151 | 2.73636 | 2 |
沼泽草甸 Swamp meadow | 2.09982 | -0.38872 | 6.77612 | -0.51855 | 6.19646 | 1 |
退化高寒草原 Degraded alpine steppe | -0.74861 | -1.51653 | -2.41576 | -2.02305 | -2.20911 | 8 |
退化高寒草甸 Degraded alpine meadow | -0.40689 | 0.16214 | -1.31303 | 0.21629 | -1.20071 | 5 |
退化高寒草原建植人工草地(4 a) Artificial grassland (4 years) in degraded alpine steppe | -0.57132 | 0.57405 | -1.84365 | 0.76578 | -1.68594 | 6 |
退化高寒草甸建植人工草地(5 a) Artificial grassland (5 years) in degraded alpine meadow | -0.26386 | 1.16494 | -0.85148 | 1.55403 | -0.77864 | 3 |
退化高寒草甸建植人工草地(15 a) Artificial grassland (15 years) in degraded alpine meadow | -0.3287 | 1.21523 | -1.06071 | 1.62112 | -0.96998 | 4 |
[1] | DITZLER C A, TUGEL A J, 2002. Soil Quality Field Tools: Experiences of USDA-NRCS soil quality institute[J]. Agronomy Journal, 94(1): 33-38. |
[2] |
DONG L X, WANG W K, MA M G, et al., 2009. The change of land cover and land use and its impact factors in upriver key regions of the Yellow River[J]. International Journal of Remote Sensing, 30(5): 1251-1265.
DOI URL |
[3] |
DONG Q M, ZHAO X Q, WU G L, et al., 2013. A review of formation mechanism and restoration measures of “black-soil-type” degraded grassland in the Qinghai-Tibetan Plateau[J]. Environmental Earth Sciences, 70(5): 2359-2370.
DOI URL |
[4] | KARLEN D L, TOMER MD, NEPPEL J, et al., 2008. A preliminary watershed scale soil quality assessment in north central Iowa, USA[J]. Soil & Tillage Research, 99(2): 291-299. |
[5] |
LI X L, PERRY G L W, BRIERLEY G, et al., 2015. Quantitative assessment of degradation classifications for degraded alpine meadows (Heitutan), Sanjiangyuan, western China[J]. Land Degradation & Development, 25(5): 417-427.
DOI URL |
[6] |
LIU S L, TANG Y H, ZHANG F W, et al., 2017. Changes of soil organic and inorganic carbon in relation to grassland degradation in Northern Tibet[J]. Ecological Research, 32(3): 1-10.
DOI URL |
[7] | TADA A, ISHIZUKI K, SUGIMOTO N, et al., 2015. Determination of the plant origin of licorice oil extract, a natural food additive, by principal component analysis based on chemical components[J]. Food Hygiene & Safety Science, 6(5): 217-227. |
[8] |
WANG C T, LONG R J, WANG Q L, et al., 2009. Changes in plant diversity, biomass and soil C, in alpine meadows at different degradation stages in the headwater region of three rivers, China[J]. Land Degradation & Development, 20(2): 187-198.
DOI URL |
[9] |
WANG Y B, NIU F J, WU Q B, et al., 2014. Assessing soil erosion and control factors by radiometric technique in the source region of the Yellow River, Tibetan Plateau[J]. Quaternary Research, 81(3): 538-544.
DOI URL |
[10] | WU G L, LIU Z H, LEI Z, et al., 2010. Effects of artificial grassland establishment on soil nutrients and carbon properties in a Black-Soil- type degraded grassland[J]. Plant & Soil, 333(12): 469-479. |
[11] |
XUE Y J, LIU S G, HU Y M, et al., 2010. Soil quality assessment using weighted fuzzy association rules[J]. Pedosphere, 20(3): 334-341.
DOI URL |
[12] |
ZHU P, CHEN R S, SONG Y X, et al., 2015. Effects of land cover conversion on soil properties and soil microbial activity in an alpine meadow on the Tibetan Plateau[J]. Environmental Earth Sciences, 74(5): 4523-4533.
DOI URL |
[13] | 鲍士旦, 2005. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社. |
BAO S D, 2005. Soil agro-chemistrical analysis[M]. third edition. Beijing: China Agricultural Publishing House. | |
[14] | 曹建军, 王雪艳, 李梦天, 等, 2018. 青藏高原草地管理方式对土壤养分及其空间分布的影响[J]. 应用生态学报, 29(6): 1839-1845. |
CAO J J, WANG X Y, LI M T, et al., 2018. Effects of grassland management on soil nutrients and their spatial distribution on the Qinghai-Tibetan Plateau, China[J]. Chinese Journal of Applied Ecology, 29(6): 1839-1845. | |
[15] | 陈留美, 桂林国, 吕家珑, 等, 2008. 应用主成分分析和聚类分析评价不同施肥处理条件下新垦淡灰钙土土壤肥力质量[J]. 土壤, 40(6): 971-975. |
CHEN L M, GUI L G, LÜ J L, et al., 2008. Evaluation on soil fertility quality of newly cultivated light sierozem under different fertilization with methods of principal component and cluster analyses[J]. Soils, 40(6): 971-975. | |
[16] | 旦增塔庆, 旭日, 魏学红, 等, 2014. 西藏纳木错高寒草原, 高寒草甸和沼泽化草甸主要温室气体通量对比研究[J]. 草地学报, 22(3): 493-493. |
DANZENG T Q, XU R, WEI X H, et al., 2014. Research on key greenhouse gas fluxes across alpine steppe, alpine meadow and swamp meadow in Nam Co, Tibetan Plateau[J]. Acta Agrestia Sinica, 22(3): 493-493. | |
[17] | 董文斌, 马玉寿, 董全民, 等, 2010. 退耕还 (林) 草多年生栽培草地土壤养分特征研究[J]. 草业科学, 27(4): 46-50. |
DONG W B, MA Y S, DONG Q M, et al., 2010. Study on characters of soil nutrition of perennial pasture[J]. Pratacultural Science, 27(4): 46-50. | |
[18] | 樊博, 林丽, 曹广民, 等, 2020. 不同退化阶段高寒草原土壤物理性质与植物根系的相互关系[J]. 生态学报, 40(7): 2300-2309. |
FAN B, LIN L, CAO G M, et al., 2020. Relationship between plant roots and physical soil properties in alpine meadows at different degradation stages[J]. Acta Ecologica Sinica, 40(7): 2300-2309. | |
[19] | 高海峰, 白军红, 王庆改, 等, 2011. 霍林河下游典型洪泛区湿地土壤pH值和土壤含水量分布特征[J]. 水土保持研究, 18(1): 268-271. |
GAO H F, BAI J H, WANG Q G, et al., 2011. Distribution of soil pH values and soil water contents in floodplain wetlands in the dower reach of Huolin River[J]. Research of Soil and Water Conservation, 18(1): 268-271. | |
[20] | 郝爱华, 薛娴, 彭飞, 等, 2020. 青藏高原典型草地植被退化与土壤退化研究[J]. 生态学报, 40(3): 20-231. |
HAO A H, XUE X, PENG F, et al., 2020. Different vegetation and soil degradation characteristics of a typical grassland in the Qinghai- Tibetan Plateau[J]. Acta Ecologica Sinica, 40(3): 20-231. | |
[21] | 何方杰, 韩辉邦, 马学谦, 等, 2019. 隆宝滩沼泽湿地不同区域的甲烷通量特征及影响因素[J]. 生态环境学报, 28(4): 803-811. |
HE F J, HAN H B, MA X Q, et al., 2019. Characteristics and Influence Factors of CH4 Flux in Different Areas of Longbaotan Marsh Wetland[J]. Ecology and Environmental Sciences, 28(4): 803-811. | |
[22] | 侯宪宽, 董全民, 施建军, 等, 2015. 青海草地早熟禾单播人工草地群落结构特征及土壤理化性质研究[J]. 中国草地学报, 37(1): 5-69. |
HOU X K, DONG Q M, SHI J J, et al., 2015. Study on the community structure characteristics and soil physico-chemical property of Poa pratensis L. cv. Qinghai single artificial grasslands in different ages[J]. Chinese Journal of Grassland, 37(1): 5-69. | |
[23] | 胡光印, 董治宝, 逯军峰, 等, 2011. 黄河源区沙漠化及其景观格局的变化[J]. 生态学报, 31(14): 3872-3881. |
HU G Y, DONG Z B, LU J F, et al., 2011. Desertification and change of landscape pattern in the source region of Yellow River[J]. Acta Ecologica Sinica, 31(14): 3872-3881. | |
[24] | 李晓琴, 秦富仓, 郑硕, 等, 2019. 内蒙古黄土丘陵区土地利用与土壤肥力的关系[J]. 北方园艺 (24): 102-110. |
LI X Q, QIN F C, ZHENG S, et al., 2019. Relationship between Land Use and Soil Fertility in Loess Hilly Region of Inner Mongolia[J]. Northern Horticulture (24): 102-110. | |
[25] | 李艺妆, 赵敏, 赵一军, 等, 2020. 退化禾草/白三叶草地植被和土壤特征[J]. 草原与草坪, 40(1): 28-34. |
LI Y Z, ZHAO M, ZHAO Y J, et al., 2020. Vegetation and soil characteristics of degraded grass/Trifoliumrepens grassland[J]. Grassland and Turf, 40(1): 28-34. | |
[26] | 刘鑫, 王一博, 吕明侠, 等, 2018. 基于主成分分析的青藏高原多年冻土区高寒草地土壤质量评价[J]. 冰川冻土, 40(3): 469-479. |
LIU X, WANG Y B, LÜ M X, et al., 2018. Soil quality assessment of alpine grassland in permafrost regions of Tibetan Plateau based on principal component analysis[J]. Journal of Glaciology and Geocryology, 40(3): 469-479. | |
[27] | 刘江, 吕涛, 张立欣, 等, 2020. 基于主成分分析的不同种植年限甘草地土壤质量评价[J]. 草业学报, 29(6):162-171. |
LIU J, LVY T, ZHANG L X, et al., 2020. Soil quality assessment by principal component analysis in Glycyrrhiza uralensis stands of differing ages[J]. Acta Prataculturae Sinica, 29(6): 162-171. | |
[28] | 龙瑞军, 董世魁, 胡自治, 2005. 西部草地退化的原因分析与生态恢复措施探讨[J]. 草原与草坪, 6(1): 3-7. |
LONG R J, DONG S K, HU Z Z, 2005. Grassland degradation and ecological restoration in Western China[J]. Grassland and Turf, 6(1): 3-7. | |
[29] | 鲁如坤, 2000. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社. |
LU R K, 2000. Soil and agricultural chemistry analysis method[M]. Beijing: China Agriculture Science and Technique Press. | |
[30] | 吕金林, 闫美杰, 宋变兰, 等, 2017. 黄土丘陵区刺槐、辽东栎林地土壤碳、氮、磷生态化学计量特征[J]. 生态学报, 37(10): 3385-3393. |
LÜ J L, YAN M J, SONG B L, et al., 2017. Ecological stoichiometry characteristics of soil carbon, nitrogen, and phosphorus in an oak forest and a black locust plantation in the Loess hilly region[J]. Acta Ecologica Sinica, 37(10): 3385-3393. | |
[31] | 欧延升, 汪霞, 李佳, 等, 2019. 不同恢复年限人工草地土壤碳氮磷含量及其生态化学计量特征[J]. 应用与环境生物学报, 25(1): 38-45. |
OU Y S, WANG X, LI J, et al., 2019. Content and ecological stoichiometry characteristics of soil carbon, nitrogen, and phosphorus in artificial grassland under different restoration years[J]. Chinese Journal of Applied & Environmental Biology, 25(1): 38-45. | |
[32] | 尚占环, 龙瑞军, 马玉寿, 2007. 青藏高原江河源区生态环境安全问题分析与探讨[J]. 草业科学, 24(3): 1-7. |
SHANG Z H, LONG R J, MA Y S, 2007. Review on environmental problems in the headwater areas of Yangtze and Yellow Rivers in Qinghai-Tibetan Plateau[J]. Pratacultural Science, 24(3): 1-7. | |
[33] | 孙华方, 李希来, 金立群, 等, 2019. 黄河源区建植17年栽培草地退化响应因子分析[J]. 草业科学, 36(5): 1240-1248. |
SUN H F, LI X L, JIN L Q, et al., 2019. Analysis of degradation response factors of a 17-year-old pasture in the source area of the Yellow River[J]. Pratacultural Science, 36(5): 1240-1248. | |
[34] | 孙华方, 李希来, 金立群, 等, 2020. 生物土壤结皮对黄河源区人工草地植被与土壤理化性质的影响[J]. 草地学报, 28(2): 509-520. |
SUN H F, LI X L, JIN L Q, et al., 2020. Effects of Biological Soil Crusts on the Physical and Chemical Properties of Soil and Vegetation of Artificial Grassland in the Yellow River Source Zone[J]. Acta Agrestia Sinica, 28(2): 509-520. | |
[35] | 唐贤, 梁丰, 徐明岗, 等, 2020. 长期施用化肥对农田土壤pH影响的整合分析[J]. 吉林农业大学学报, 42(2): 316-321. |
TANG X, LIANG F, XU M G, et al., 2020. A Meta-analysis of Effects of Long-term Application of Chemical Fertilizer on pH of Farmland Soil[J]. Journal of Jilin Agricultural University, 42(2): 316-321. | |
[36] | 唐仲霞, 王文颖, 柯君, 等, 2009. 不同土地管理措施对高寒嵩草草甸植被及土壤理化特征的影响[J]. 土壤, 41(4): 649-653. |
TANG Z X, WANG W Y, KE J, et al., 2009. Effects of Different Managements on Characteristics of Alpine Vegetation and Soil[J]. Soils, 41(004):649-653. | |
[37] | 王博文, 陈立新, 2006. 土壤质量评价方法述评[J]. 中国水土保持科学, 4(2): 120-126. |
WANG B W, CHEN L X, 2006. Review on methods of soil quality evaluation[J]. Science of Soil and Water Conservation, 4(2): 120-126. | |
[38] | 王长庭, 曹广民, 王启兰, 等, 2007. 三江源地区不同建植期人工草地植被特征及其与土壤特征的关系[J]. 应用生态学报, 18(11): 2426-2431. |
WANG C T, CAO G M, WANG Q L, et al., 2007. Characteristics of artificial grassland plant communities with different establishment duration and their relationships with soil properties in the source region of Three Rivers in China[J]. Chinese Journal of Applied Ecology, 18(11): 2426-2431. | |
[39] | 王长庭, 龙瑞军, 王启兰, 等, 2008. 放牧扰动下高寒草甸植物多样性,生产力对土壤养分条件变化的响应[J]. 生态学报, 28(9): 4144-4152. |
WANG C T, LONG R J, WANG Q L, et al., 2008. Response of plant diversity and productivity to soil resources changing under grazing disturbance on an alpine meadow[J]. Acta Ecologica Sinica, 28(9): 4144-4152. | |
[40] | 王华, 黄宇, 汪思龙, 等, 2009. 中亚热带区域几种典型生态系统土壤质量评价Ⅰ. 不同生态系统对土壤性质的影响[J]. 生态环境学报, 18(3): 1100-1106. |
WANG H, HUANG Y, WANG S L, et al., 2009. Soil quality assessment under several typical ecosystems in mid-subtropical region: Ⅰ. Effects of several typical ecosystems on soil properties[J]. Ecology and Environmental Sciences, 18(3): 1100-1106. | |
[41] | 王普昶, 牟琼, 王晓力, 等, 2011. 贵州黑麦草人工草地杂草入侵对刈割强度的响应[J]. 中国草地学报, 33(4): 117-119. |
WANG P C, MOU Q, WANG X L, et al., 2011. Response of weed invasion to mowing intensity in Lolium perenne artificial pasture[J]. Chinese Journal of Grassland, 33(4): 117-119. | |
[42] |
王启兰, 王溪, 曹广民, 等, 2011. 青海省海北州典型高寒草甸土壤质量评价[J]. 应用生态学报, 22(6): 1416-1422.
PMID |
WANG Q L, WANG X, CAO G M, et al., 2011. Soil quality assessment of alpine meadow in Haibei State of Qinghai Province[J]. Chinese Journal of Applied Ecology, 22(6): 1416-1422.
PMID |
|
[43] | 王启基, 王发刚, 周华坤, 等, 2010. 三江源区东北部生态环境现状及防治策略[J]. 草业科学, 27(2): 59-65. |
WANG Q J, WANG F G, ZHOU H K, et al., 2010. The status of eco-environment of northeast regions of Yangtze, Yellow and Yalu Tsangpo rivers and protecting strategies[J]. Pratacultural Science, 27(2): 59-65. | |
[44] | 王学霞, 董世魁, 李媛媛, 等, 2012. 三江源区草地退化与人工恢复对土壤理化性状的影响[J]. 水土保持学报, 26(4): 113-117. |
WANG X X, DONG S K, LI Y Y, et al., 2012. Effects of Grassland Degradation and Artificial Restoration on Soil Physicochemical Properties in Three-river Headwater[J]. Journal of Soil and Water Conservation, 26(4): 113-117. | |
[45] | 王文颖, 王启基, 王刚, 2006. 高寒草甸土地退化及其恢复重建对土壤碳氮含量的影响[J]. 生态环境学报, 15(2): 362-366. |
WANG W Y, WANG Q J, WANG G, 2006. Effects of land degradation and rehabilitation on soil carbon and nitrogen content on alpine Kobersia meadow[J]. Ecology and Environment, 15(2): 362-366. | |
[46] | 伍星, 李辉霞, 傅伯杰, 等, 2013. 三江源地区高寒草地不同退化程度土壤特征研究[J]. 中国草地学报, 35(3): 77-83. |
WU X, LI H X, FU B J, et al., 2013. Study on soil characteristics of alpine grassland in different degradation levels in headwater regions of Three Rivers in China[J]. Chinese Journal of Grassland, 35(3):77-83. | |
[47] | 徐田伟, 赵新全, 耿远月, 等, 2020. 黄河源区生态保护与草牧业发展关键技术及优化模式[J]. 资源科学, 42(3): 508-516. |
XU T W, ZHAO X Q, GENG Y Y, et al., 2020. Key technologies and optimization model for ecological protection and grass-based live stock husbandry in the source region of the Yellow River[J]. Resources Science, 42(3): 508-516. | |
[48] | 杨银芳, 2011. 发展高寒牧区畜产品加工业的对策和措施[J]. 畜牧兽医杂志, 30(3): 84-85. |
YANG Y F, 2011. Countermeasures and measures for developing animal products processing industry in alpine pastoral areas[J]. Journal of Animal Science and Veterinary Medicine, 30(3): 84-85. | |
[49] | 杨文静, 王一博, 刘鑫, 等, 2019. 基于BP神经网络的青藏高原土壤养分评价[J]. 冰川冻土, 41(1): 215-226. |
YANG W J, WANG Y B, LIU X, et al., 2019. Nutrient evaluation of the soil in the Qinghai-Tibet Plateau based on BP neural network[J]. Journal of Glaciology and Geocryology, 41(1): 215-226. | |
[50] | 姚宝辉, 王缠, 郭怀亮, 等, 2019. 人工草地建设对甘南草原土壤理化特性和微生物数量特征的影响[J]. 水土保持学报, 33(1): 192-199. |
YAO B H, WANG C, GUO H L, et al., 2019. Effects of Artificial Supplementary Sowing on Soil Physical and Chemical Characteristics and Microorganism Quantity in Gannan Grassland[J]. Journal of Soil and Water Conservation, 33(1): 192-199. | |
[51] | 詹天宇, 侯阁, 刘苗, 等, 2019. 青藏高原不同退化梯度高寒草地植被与土壤属性分异特征[J]. 草业科学, 36(4): 1010-1021. |
ZHAN T Y, HOU G, LIU M, et al., 2019. Different characteristics of vegetation and soil properties along degraded gradients of alpine grasslands in the Qinghai-Tibet Plateau[J]. Pratacultural Science, 36(4): 1010-1021. | |
[52] | 张莉, 王长庭, 刘伟, 等, 2012. 不同建植期人工草地优势种植物根系活力、群落特征及其土壤环境的关系[J]. 草业学报, 21(5): 185-194. |
ZHANG L, WANG C T, LIU W, et al., 2012. Relationships of dominant species root activity, plant community characteristics and soil micro-environment in artificial grassland over different cultivation periods[J]. Acta Prataculturae Sinica, 21(5): 185-194. | |
[53] | 张光茹, 李红琴, 杨永胜, 等, 2020. 基于主成分分析对退化高寒草甸不同恢复方式下草地质量的综合评价[J]. 中国草地学报, 42(2): 76-82. |
ZHANG G R, LI H Q, YANG Y S, et al., 2020. Comprehensive Evaluation of Grassland Quality under Different Restoration Methods in Degraded Alpine Meadow Based on Principal Component Analysis[J]. Chinese Journal of Grassland, 42(2): 76-82. | |
[54] | 张子龙, 王文全, 缪作清, 等, 2013. 主成分分析在三七连作土壤质量综合评价中的应用[J]. 生态学杂志, 32(6): 1636-1644. |
ZHANG Z L, WANG W Q, MIU Z Q, et al., 2013. Application of principal component analysis in comprehensive assessment of soil quality under Panax notoginseng continuous planting[J]. Chinese Journal of Ecology, 32(6):1636-1644. | |
[55] | 赵海燕, 张剑, 刘冬, 等, 2020. 不同沼泽湿地土壤碳氮磷生态化学计量学特征及其影响因素[J]. 干旱区研究, 37(3): 618-626. |
ZHAO H Y, ZHANG J, LIU D, et al., 2020. Characteristics and determining factors for ecological stoichiometry of soil carbon, nitrogen, and phosphorus in different marsh wetlands[J]. Arid Zone Research, 37(3): 618-626. | |
[56] | 扎西卓玛, 王宏博, 李桂香, 等, 2018. 高寒草甸草场牧草营养成分测定与分析[J]. 湖北农业科学, 57(1): 109-111. |
ZHAXI Z M, WANG H B, LI G X, et al., 2018. Determination and Analysis of Forage Nutrients in Alpine Meadow[J]. Hubei Agricultural Sciences, 57(1):109-111. | |
[57] | 周天阳, 高景, 王金牛, 等, 2018. 基于群落结构及土壤理化性质对围封7年青藏高原东南缘高山草地的综合评价[J]. 草业学报, 27(12): 1-11. |
ZHOU T Y, GAO J, WANG J N, et al., 2018. Effects of 7-year enclosure on an alpine meadow at the south-eastern margin of Tibetan Plateau based on community structure and coil physic-chemical properties[J]. Acta Prataculturae Sinica, 27(12): 1-11. |
[1] | 杜丹丹, 高瑞忠, 房丽晶, 谢龙梅. 旱区盐湖盆地土壤重金属空间变异及对土壤理化因子的响应[J]. 生态环境学报, 2023, 32(6): 1123-1132. |
[2] | 周沁苑, 董全民, 王芳草, 刘玉祯, 冯斌, 杨晓霞, 俞旸, 张春平, 曹铨, 刘文亭. 放牧方式对高寒草地瑞香狼毒根际土壤团聚体及有机碳特征的影响[J]. 生态环境学报, 2023, 32(4): 660-667. |
[3] | 王礼霄, 刘晋仙, 柴宝峰. 华北亚高山土壤细菌群落及氮循环对退耕还草的响应[J]. 生态环境学报, 2022, 31(8): 1537-1546. |
[4] | 王磊, 温远光, 周晓果, 朱宏光, 孙冬婧. 尾巨桉与红锥混交对林下植被和土壤性质的影响[J]. 生态环境学报, 2022, 31(7): 1340-1349. |
[5] | 夏开, 邓鹏飞, 马锐豪, 王斐, 温正宇, 徐小牛. 马尾松次生林转换为湿地松和杉木林对土壤细菌群落结构和多样性的影响[J]. 生态环境学报, 2022, 31(3): 460-469. |
[6] | 王薇, 程歆玥. 合肥市不同功能街道峡谷PM2.5和PM10时空分布特征及影响因素分析[J]. 生态环境学报, 2022, 31(3): 524-534. |
[7] | 盛基峰, 李垚, 于美佳, 韩艳英, 叶彦辉. 氮磷添加对高寒草地土壤养分和相关酶活性的影响[J]. 生态环境学报, 2022, 31(12): 2302-2309. |
[8] | 刘佩伶, 刘效东, 冯英杰, 苏宇乔, 甘先华, 张卫强. 新丰江水库库区水源涵养林土壤饱和导水率特征[J]. 生态环境学报, 2022, 31(10): 1993-2001. |
[9] | 白海锋, 王怡睿, 宋进喜, 孔飞鹤, 张雪仙, 李琦. 渭河浮游生物群落结构特征及其与环境因子的关系[J]. 生态环境学报, 2022, 31(1): 117-130. |
[10] | 王瑞, 宋祥云, 柳新伟. 黄河三角洲不同植被类型土壤酶活性的季节变化[J]. 生态环境学报, 2022, 31(1): 62-69. |
[11] | 宗宁, 石培礼, 朱军涛. 高寒草地沙化过程植物群落构成及生态位特征变化[J]. 生态环境学报, 2021, 30(8): 1561-1570. |
[12] | 郑智恒, 熊康宁, 容丽, 池永宽. 两种等级喀斯特石漠化地区生物结皮对土壤养分恢复的影响[J]. 生态环境学报, 2021, 30(6): 1202-1212. |
[13] | 林丽, 代磊, 林泽北, 吴际通, 颜伟, 王志杰. 黔中城市森林群落植物多样性及其与土壤理化性质的关系[J]. 生态环境学报, 2021, 30(11): 2130-2141. |
[14] | 王薇, 程歆玥, 胡春, 夏斯涵, 王甜. 城市街道峡谷PM2.5时空分布特征与空气质量评价——以合肥市长淮街道为例[J]. 生态环境学报, 2021, 30(11): 2157-2164. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||