生态环境学报 ›› 2022, Vol. 31 ›› Issue (2): 344-353.DOI: 10.16258/j.cnki.1674-5906.2022.02.015
秦坤1,2,3(), 王志康1,2, 王章鸿1,2,3,4,*(
), 杨成2,3, 刘杰刚2,3, 沈德魁4
收稿日期:
2021-06-22
出版日期:
2022-02-18
发布日期:
2022-04-14
通讯作者:
*王章鸿(1987年生),男,副教授,博士,主要从事固体废物资源化利用、可持续碳材料开发及废水处理等方面的研究。E-mail: z.wang@gzmu.edu.cn作者简介:
秦坤(1996年生),男,硕士研究生,主要从事喀斯特地区典型固体废弃物的资源化利用。E-mail: 2435004756@qq.com
基金资助:
QIN Kun1,2,3(), WANG Zhikang1,2, WANG Zhanghong1,2,3,4,*(
), YANG Cheng2,3, LIU Jiegang2,3, SHEN Dekui4
Received:
2021-06-22
Online:
2022-02-18
Published:
2022-04-14
摘要:
为了寻求木质素的资源化利用途径和开发低廉、高效的重金属吸附材料,该研究将木质素和聚乙烯混合物在600 ℃下热解制备生物炭(LG/PE-600C),以单独木质素在相同条件下所制备的生物炭作对比(LG-600C),利用扫描电镜(SEM)、N2吸附/脱附、傅里叶红外光谱(FT-IR)和元素分析等对比分析LG-600C和LG/PE-600C在表观形貌、孔隙特性、表面官能团、物质组成等的差异,并进一步考察两种生物炭对Cd(II)的吸附性能。相对于LG-600,LG/PE-600C表面较粗糙,孔隙结构较发达。LG/PE-600C的比表面积达213.87 m2∙g-1,约为LG-600的2.5倍。聚乙烯的介入,导致LG/PE-600C的O元素含量和表面含氧官能团较LG-600C有所降低。吸附结果显示,LG/PE-600C对Cd(II)的吸附性能明显优于LG-600。在一定范围内,Cd(II)初始浓度、环境温度、吸附时间、溶液pH的增加均能够促进LG/PE-600C对Cd(II)的吸附。Langmuir模型和准二级动力学模型能够很好地拟合Cd(II)的吸附过程,表明LG/PE-600C对Cd(II)的吸附为化学作用主导的单分子层吸附。基于Langmuir模型所得到的理论最大吸附量达到40.82 mg∙g-1。热力学分析证实,LG/PE-600C对Cd(II)的吸附为自发的吸热反应。机理分析表明,LG/PE-600C具有优于LG-600C的吸附性能,其主要原因在于聚乙烯介入能够强化木质素的分解,促进LG/PE-600C孔隙的发育,使得LG/PE-600C表面暴露大量Cd(II)的吸附位点,如-OH、C=C、-C-O-C等。这些吸附位点能够通过配位、沉淀、离子交换等作用对Cd(II)进行吸附。由此证实,添加聚乙烯与木质素进行共热解制备生物炭用于Cd(II)的吸附可作为木质素重要的资源化利用方式。
中图分类号:
秦坤, 王志康, 王章鸿, 杨成, 刘杰刚, 沈德魁. 木质素-聚乙烯共热解生物炭对Cd(II)的吸附性能[J]. 生态环境学报, 2022, 31(2): 344-353.
QIN Kun, WANG Zhikang, WANG Zhanghong, YANG Cheng, LIU Jiegang, SHEN Dekui. Cd(II) Adsorption Capability of the Biochar Derived from Co-pyrolysis of Lignin and Polyethylene[J]. Ecology and Environment, 2022, 31(2): 344-353.
样品 Sample | 比表面积 Specific surface area/ (m2∙g-1) | 孔比表面积 Pore specific surface area/ (m2∙g-1) | 总孔容 Total pore volume/ (m3∙g-1) | 微孔孔容 Micropore volume/ (m3∙g-1) | 平均孔隙直径 Average pore diameter/ nm |
---|---|---|---|---|---|
LG-600C | 89.12 | 44.84 | 0.15 | 0.09 | 40.12 |
LG/PE-600C | 213.87 | 108.74 | 0.75 | 0.29 | 23.85 |
表1 生物炭孔隙分析
Table 1 Biochar pore analysis
样品 Sample | 比表面积 Specific surface area/ (m2∙g-1) | 孔比表面积 Pore specific surface area/ (m2∙g-1) | 总孔容 Total pore volume/ (m3∙g-1) | 微孔孔容 Micropore volume/ (m3∙g-1) | 平均孔隙直径 Average pore diameter/ nm |
---|---|---|---|---|---|
LG-600C | 89.12 | 44.84 | 0.15 | 0.09 | 40.12 |
LG/PE-600C | 213.87 | 108.74 | 0.75 | 0.29 | 23.85 |
样品 Sample | w(C)/% | w(H)/% | w(O)/% | w(S)/% | pH | 灰分 Ash/% |
---|---|---|---|---|---|---|
LG-600C | 80.15 | 4.12 | 14.23 | 0.32 | 7.48 | 3.54 |
LG/PE-600C | 90.14 | 3.48 | 4.94 | 0.51 | 7.66 | 3.87 |
表2 生物炭的理化特性
Table 2 The physical and chemical properties of biochar
样品 Sample | w(C)/% | w(H)/% | w(O)/% | w(S)/% | pH | 灰分 Ash/% |
---|---|---|---|---|---|---|
LG-600C | 80.15 | 4.12 | 14.23 | 0.32 | 7.48 | 3.54 |
LG/PE-600C | 90.14 | 3.48 | 4.94 | 0.51 | 7.66 | 3.87 |
样品 Sample | Langmuir模型 Langmuir model | Freundlich模型 Freundlich model | ||||
---|---|---|---|---|---|---|
qm/ (mg∙g-1) | k1/ (L∙mg-1) | R2 | kf/ [mg(1-n)Ln∙g-1] | n | R2 | |
LG-600C | 5.54 | 0.18 | 0.998 | 2.36 | 6.13 | 0.974 |
LG/PE-600C | 40.82 | 0.23 | 0.999 | 7.20 | 2.34 | 0.929 |
表3 生物炭的吸附等温线参数
Table 3 Adsorption isotherm parameters of biochar
样品 Sample | Langmuir模型 Langmuir model | Freundlich模型 Freundlich model | ||||
---|---|---|---|---|---|---|
qm/ (mg∙g-1) | k1/ (L∙mg-1) | R2 | kf/ [mg(1-n)Ln∙g-1] | n | R2 | |
LG-600C | 5.54 | 0.18 | 0.998 | 2.36 | 6.13 | 0.974 |
LG/PE-600C | 40.82 | 0.23 | 0.999 | 7.20 | 2.34 | 0.929 |
样品 Sample | 实验平衡吸附量qe,exp/(mg∙g-1) | 准一级动力学模型 Pseudo-first-order model | 准二级动力学模型 Pseudo-second-order model | ||||
---|---|---|---|---|---|---|---|
k1/(h-1) | qe/(mg∙g-1) | R2 | k2/(g∙mgh-1) | qe/(mg∙g-1) | R2 | ||
LG-600C | 3.14 | 0.042 | 3.14 | 0.459 | 0.35 | 3.60 | 0.936 |
LG/PE-600C | 36.58 | 0.037 | 36.58 | 0.230 | 0.050 | 40.16 | 0.928 |
表4 生物炭吸附动力学参数
Table 4 Biochar adsorption kinetic parameters
样品 Sample | 实验平衡吸附量qe,exp/(mg∙g-1) | 准一级动力学模型 Pseudo-first-order model | 准二级动力学模型 Pseudo-second-order model | ||||
---|---|---|---|---|---|---|---|
k1/(h-1) | qe/(mg∙g-1) | R2 | k2/(g∙mgh-1) | qe/(mg∙g-1) | R2 | ||
LG-600C | 3.14 | 0.042 | 3.14 | 0.459 | 0.35 | 3.60 | 0.936 |
LG/PE-600C | 36.58 | 0.037 | 36.58 | 0.230 | 0.050 | 40.16 | 0.928 |
样品 Sample | 吉布斯自由能 ΔG0/(kJ·mol-1) | 焓 ΔH0/ (kJ∙mol-1) | 熵 ΔS0/ [J∙(mol∙K)-1] | |||
---|---|---|---|---|---|---|
288 K | 298 K | 308 K | 318 K | |||
LG-600C | -6.05 | -9.83 | -10.47 | -11.58 | 43.84 | 175.97 |
LG/PE-600C | -9.47 | -12.25 | -14.54 | -16.20 | 55.44 | 226.26 |
表5 生物炭对Cd(II)吸附的热力学参数
Table 5 Thermodynamic parameters of Cd(II) adsorption by biochar
样品 Sample | 吉布斯自由能 ΔG0/(kJ·mol-1) | 焓 ΔH0/ (kJ∙mol-1) | 熵 ΔS0/ [J∙(mol∙K)-1] | |||
---|---|---|---|---|---|---|
288 K | 298 K | 308 K | 318 K | |||
LG-600C | -6.05 | -9.83 | -10.47 | -11.58 | 43.84 | 175.97 |
LG/PE-600C | -9.47 | -12.25 | -14.54 | -16.20 | 55.44 | 226.26 |
[1] |
DEWANGAN A, PRADHAN D, SINGH R K, 2016. Co-pyrolysis of sugarcane bagasse and low-density polyethylene: Influence of plastic on pyrolysis product yield[J]. Fuel, 185: 508-516.
DOI URL |
[2] |
CHEN T, ZHOU Z Y, HAN R, et al., 2015. Adsorption of cadmium by biochar derived from municipal sewage sludge: Impact factors and adsorption mechanism[J]. Chemosphere, 134: 286-293.
DOI URL |
[3] | CHEN W M, CHEN M Z, ZHOU X Y, 2015. Characterization of biochar obtained by co-pyrolysis of waste newspaper with high-density polyethylene[J]. BioResources, 10(4): 8253-8267. |
[4] | FAHAD A A, BASEL A, ABDALLA M A, et al., 2015. Cadmium removal by activated carbon, carbon nanotubes, carbon nanofibers, and carbon fly ash: A comparative study[J]. Desalination and Water Treatment, 53(5): 1417-1429. |
[5] |
FAN X L, ZHANG J J, XIE Y, et al., 2021. Biochar produced from the co-pyrolysis of sewage sludge and waste tires for cadmium and tetracycline adsorption from water[J]. Water Science and Technology, 83(6): 1429-1445.
DOI URL |
[6] |
KEILUWEIT M, NICO P S, JOHNSON M G, et al., 2010. Dynamic molecular structure of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 44(4): 1247-1253.
DOI URL |
[7] |
LIU J, YANG X Y, LIU H H, et al., 2021. Mixed biochar obtained by the co-pyrolysis of shrimp shell with corn straw: Co-pyrolysis characteristics and its adsorption capability[J]. Chemosphere, DOI: 10.1016/j.chemosphere.2021.131116.
DOI |
[8] |
MARINA B Š, MILE T K, MIRJANA G A, 2011. Study of the biosorption of different heavy metal ions onto Kraft lignin[J]. Ecological Engineering, 37(12): 2092-2095.
DOI URL |
[9] |
MENG J, FENG X L, DAI Z M, et al.,2014 Adsorption characteristics of Cu(II) from aqueous solution onto biochar derived from swine manure[J]. Environmental Science and Pollution Research, 21(11): 7035-7046.
DOI URL |
[10] |
MURAT K, ÇISEM K, ÖZGE Ç, et al., 2013. Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis[J]. Applied Surface Science, 283: 856-862.
DOI URL |
[11] |
SEWU D, BOAKYE P, JUNG H, et al., 2017. Synergistic dye adsorption by biochar from co-pyrolysis of spent mushroom substrate and Saccharina japonica[J]. Bioresources Technology, 244(1): 1142-1149.
DOI URL |
[12] |
SHEN Y F, 2015. Chars as carbonaceous adsorbents/catalysts for tar elimination during biomass pyrolysis or gasification[J]. Renewable and Sustainable Energy Reviews, 43: 281-295.
DOI URL |
[13] |
SU D S, CHEN X W, WEINBERG G, et al., 2005. Hierarchically structured carbon: Synthesis of carbon nanofibers nested inside or immobilized onto modified activated carbon[J]. Angewandte Chemie (International ed. in English), 44(34): 5488-5492.
DOI URL |
[14] |
WANG Z H, SHEN D K, SHEN F, et al., 2016. Phosphate adsorption on lanthanum loaded biochar[J]. Chemosphere, 150: 1-7.
DOI URL |
[15] |
WANG Z H, SHEN F, SHEN D K, et al., 2017. Immobilization of Cu2+ and Cd2+ by earthworm manure derived biochar in acidic circumstance[J]. Journal of Environmental Sciences, 53(3): 293-300.
DOI URL |
[16] |
WEI J, SHEN D K, LIU Q, et al., 2016. Evaluation of the co-pyrolysis of lignin with plastic polymers by TG-FTIR and Py-GC/MS[J]. Polymer Degradation and Stability, 133: 65-74.
DOI URL |
[17] |
XU D Y, ZHAO Y, SUN K, et al., 2014. Cadmium adsorption on plant-and manure-derived biochar and biochar-amended sandy soils: Impact of bulk and surface properties[J]. Chemosphere, 111: 320-326.
DOI URL |
[18] | 蔡佳佩, 朱坚, 彭华, 等, 2018. 不同镉污染消减措施对水稻-土壤镉累积的影响[J]. 生态环境学报, 27(12): 2337-2342. |
CAI J P, ZHU J, PENG H, et al., 2018, Accumulation of cadmium in paddy rice and soil affected by different reduction measures[J]. Ecology and Environmental Sciences, 27(12): 2337-2342. | |
[19] | 曹健华, 刘凌沁, 黄亚继, 等, 2019. 原料种类和热解温度对生物炭吸附Cd2+的影响[J]. 化工进展, 38(9): 4183-4190. |
CAO J H, LIU L Q, HUANG Y J, et al., 2019. Effects of feedstock type and pyrolysis temperature on Cd2+ adsorption by biochar[J]. Chemical Industry and Engineering Progress, 38(9): 4183-4190. | |
[20] | 陈能场, 郑煜基, 何晓峰, 等, 2017. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 36(9): 1689-1692. |
CHEN N C, ZHENG Y J, HE X F, et al., 2017. Analysis of the bulletin of national soil pollution survey[J]. Journal of Agro-Environment Science, 36(9): 1689-1692. | |
[21] | 姜禹奇, 都琳, 2021. 生物质炭修复重金属镉污染水体的研究[J]. 中国资源综合利用, 39(2): 201-204. |
JIANG Y Q, DU L, 2021. Study on Biomass Charcoal Remediation of Heavy Metal Cadmium Polluted Water[J]. China Resources Comprehensive Utilization, 39(2): 201-204. | |
[22] | 康彩艳, 李秋燕, 刘金玉, 等, 2021. 不同热解温度生物炭对Cd2+的吸附影响[J]. 工业水处理, 41(5): 68-72, 79. |
KANG C Y, LI Q Y, LIU J Y, et al., 2021. Effect of biochar at different pyrolysis temperatures on the adsorption of Cd2+[J]. Industrial Water Treatment, 41(5): 68-72, 79. | |
[23] | 刘岑薇, 叶菁, 林怡, 等, 2021. 大薸生物炭对水中铜离子的吸附特征[J]. 安徽农学通报, 27(6): 134-138. |
LIU C W, YE J, LIN Y, et al., 2021. Removal of Copper(II)Using Water Lettuce (Pistia Stratiotes L.) Biochar in Aqueous Solutions[J]. Anhui Agri, Sci, Bull, 27(6): 134-138. | |
[24] | 刘群星, 宋琳, 何彪, 2020. 不同热解温度万寿菊秸秆制备生物炭对Cd的吸附特性研究[J]. 安徽农学通报, 26(19): 138-139. |
LIU Q X, SONG L, HE B, 2020. Adsorption Characteristics of Cd on Biochar Derived from Straw of Tagetes erecta at Different Pyrolysis Temperatures[J]. Anhui Agricultural Science Bulletin, 26(19): 138-139. | |
[25] | 刘莹莹, 秦海芝, 李恋卿, 等, 2012. 不同作物原料热裂解生物质炭对溶液中Cd2+和Pb2+的吸附特性[J]. 生态环境学报, 21(1): 146-152. |
LIU Y Y, QIN H Z, LI L Q, et al., 2012. Adsorption of Cd2+ and Pb2+ in aqueous solution by biochars produced from the pyrolysis of different crop feedstock[J]. Ecology and Environmental Sciences, 21(1): 146-152. | |
[26] |
马贵, 韩新宁, 赵文霞, 等, 2021. 马铃薯生物炭对土壤中Cd的钝化效果[J]. 新疆农业科学, 58(4): 663-671.
DOI |
MA G, HAN X N, ZAHO W X, et al., 2021. Immobilization of Cadmium in Soils by Potato Straw Biochar[J]. Xinjiang Agricultural Sciences, 58(4): 663-671. | |
[27] | 王丹丹, 林静雯, 张岩, 等, 2015. 牛粪生物炭对Cd2+的吸附影响因素及特性[J]. 环境工程学报, 9(7): 3197-3203. |
WANG D D, LIN J W, ZHANG Y, et al., 2015. Cd2+ adsorption influential factors and performance of dairy dung biochar[J]. Chinese Journal of Environmental Engineering, 9(7): 3197-3203. | |
[28] | 王道涵, 李景阳, 汤家喜, 2020. 不同热解温度生物炭对溶液中镉的吸附性能研究[J]. 工业水处理, 40(1): 18-23. |
WANG D H, LI J Y, TANG J X, 2020. Adsorption of cadmium in solution by biochar at different pyrolysis temperatures[J]. Industrial Water Treatment, 40(1): 18-23. | |
[29] | 张晓峰, 方利平, 李芳柏, 等, 2020. 水稻全生育期内零价铁与生物炭钝化土壤镉砷的协同效应与机制[J]. 生态环境学报, 29(7): 1455-1465. |
ZHANG X F, FANG L P, LI F B, et al., 2020. Synergistic Passivating Effects and Mechanisms of Zero Valent Iron and Biochar on Cadmium and Arsenic in Paddy Soil over A Whole Growth Period of Rice[J]. Ecology and Environmental Sciences, 29(7): 1455-1465. | |
[30] | 张长平, 张彤, 王子月, 2016. 镉污染水处理技术及展望[J]. 化工技术与开发, 45(11): 47-50. |
ZHANG C P, ZHANG T, WANG Z Y, 2016. Treatment Technology and Prospect of Cadmium Polluted Water[J]. Technology & Development of Chemical Industry, 45(11): 47-50. | |
[31] | 周艳, 张红平, 张建平, 等, 2016. 多齿配体改性碱木质素对Hg2+和Cd2+的吸附性能[J]. 环境化学, 35(9): 1952-1960. |
ZHOU Y, ZHANG H P, ZHANG J P, et al., 2016. Adsorption of Cd2+/Hg2+ in aqueous solutions using chelating ligands modified alkali lignin[J]. Environmental Chemistry, 35(9): 1952-1960. |
[1] | 赵维彬, 唐丽, 王松, 刘玲玲, 王树凤, 肖江, 陈光才. 两种生物炭对滨海盐碱土的改良效果[J]. 生态环境学报, 2023, 32(4): 678-686. |
[2] | 崔远远, 张征云, 刘鹏, 张运春, 张桥英. 镉与聚乙烯微塑料胁迫对小白菜根系的形态特征和分形维数的影响[J]. 生态环境学报, 2023, 32(1): 158-165. |
[3] | 游宏建, 张文文, 兰正芳, 马兰, 张宝娣, 穆晓坤, 李文慧, 曹云娥. 蚯蚓原位堆肥与生物炭对黄瓜根结线虫及根际微生物的影响[J]. 生态环境学报, 2023, 32(1): 99-109. |
[4] | 李晓晖, 艾仙斌, 李亮, 王玺洋, 辛在军, 孙小艳. 新型改性稻壳生物炭材料对镉污染土壤钝化效果的研究[J]. 生态环境学报, 2022, 31(9): 1901-1908. |
[5] | 陶玲, 黄磊, 周怡蕾, 李中兴, 任珺. 污泥-凹凸棒石共热解生物炭对矿区土壤重金属生物有效性和环境风险的影响[J]. 生态环境学报, 2022, 31(8): 1637-1646. |
[6] | 房献宝, 张智钧, 赖阳晴, 叶脉, 刁增辉. 新型污泥生物炭对土壤重金属Cr和Cd的修复研究[J]. 生态环境学报, 2022, 31(8): 1647-1656. |
[7] | 钱莲文, 余甜甜, 梁旭军, 王义祥, 陈永山. 茶园土壤酸化改良中生物炭应用5 a后的稳定性研究[J]. 生态环境学报, 2022, 31(7): 1442-1447. |
[8] | 刘晓红, 刘柳青青, 栗敏, 刘强, 曹东东, 郑浩, 罗先香. 不同粒径的聚乙烯微塑料对玉米和黄瓜种子发芽和幼苗生长的影响[J]. 生态环境学报, 2022, 31(6): 1263-1271. |
[9] | 张慧琦, 李子忠, 秦艳. 玉米秸秆生物炭用量对砂土孔隙和持水性的影响[J]. 生态环境学报, 2022, 31(6): 1272-1277. |
[10] | 邓晓, 武春媛, 杨桂生, 李怡, 李勤奋. 椰壳生物炭对海南滨海土壤的改良效果[J]. 生态环境学报, 2022, 31(4): 723-731. |
[11] | 魏岚, 黄连喜, 李翔, 王泽煌, 陈伟盛, 黄庆, 黄玉芬, 刘忠珍. 生物炭基质可显著地促进香蕉幼苗生长[J]. 生态环境学报, 2022, 31(4): 732-739. |
[12] | 赵超凡, 周丹丹, 孙建财, 钱坤鹏, 李芳芳. 生物炭中可溶性组分对其吸附镉的影响[J]. 生态环境学报, 2022, 31(4): 814-823. |
[13] | 程文远, 李法云, 吕建华, 吝美霞, 王玮. 碱改性向日葵秸秆生物炭对多环芳烃菲吸附特性研究[J]. 生态环境学报, 2022, 31(4): 824-834. |
[14] | 苏焱, 全妍红, 宦紫嫣, 姚佳, 苏小娟. 磷改性生物炭对云南某铅锌矿周边农田铅锌污染土壤修复效果的影响[J]. 生态环境学报, 2022, 31(3): 593-602. |
[15] | 刘沙沙, 陈诺, 杨晓茵. 微塑料对有机污染物的吸附-解吸特性及其复合毒性效应研究进展[J]. 生态环境学报, 2022, 31(3): 610-620. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||