生态环境学报 ›› 2022, Vol. 31 ›› Issue (9): 1892-1900.DOI: 10.16258/j.cnki.1674-5906.2022.09.020
马闯1,2(), 王雨阳1,2, 周通1, 吴龙华1,*(
)
收稿日期:
2022-04-10
出版日期:
2022-09-18
发布日期:
2022-11-07
通讯作者:
*吴龙华(1969年生),男,研究员,博士,主要研究方向为土壤污染与修复。E-mail: lhwu@issas.ac.cn作者简介:
马闯(1996年生),男,硕士研究生,主要从事土壤重金属污染与修复研究。E-mail: machuang19@mails.ucas.ac.cn
基金资助:
MA Chuang1,2(), WANG Yuyang1,2, ZHOU Tong1, WU Longhua1,*(
)
Received:
2022-04-10
Online:
2022-09-18
Published:
2022-11-07
摘要:
颗粒态有机质(POM)不仅是土壤活性有机质的重要组分,同时也是影响土壤中污染物迁移转化的重要因子,探明其镉(Cd)锌(Zn)富集特征及解吸行为,可深入了解土壤有机质与重金属的相互作用机制,为Cd、Zn污染土壤的修复提供科学理论。以我国西南某矿区周边重金属污染农田土壤为对象,利用物理分级技术从土壤中分离出2000-250 μm和250-53 μm的POM组分,并选择乙二胺四乙酸二钠盐(EDTA)作为提取剂分析POM中Cd、Zn的解吸动力学行为,结合红外光谱分析技术探究了EDTA提取前后POM中有机官能团变化。结果表明,POM对重金属Cd、Zn具有高度富集的特征,2000-53 μm POM中Cd和Zn质量分数显著高于2000-53 μm的矿物质组分和<53 μm的有机-无机复合体,且土壤中26.61%-26.74%的Cd和13.71%-23.60%的Zn富集在2000-53 μm POM中。EDTA提取24 h后,POM中Cd和Zn的提取率分别达75.74%和58.45%以上,表明POM中Cd、Zn有效性较高,其中Cd的解吸过程用Elovich方程的拟合效果最佳,Zn的解吸过程更适于双常数方程拟合。与EDTA提取前的POM比较,EDTA提取后2000-250 μm POM和250-53 μm POM中酯基(-COO-)等含C=O键的基团相对含量分别提高了11.81%-28.59%和5.77%-6.59%,而POM中C-H基团的相对数量未发生显著变化。综上,POM中丰富的有机功能性基团是其富集Cd、Zn的重要机制,其富集的Cd、Zn等重金属被充分提取后,可进一步改变POM中有机功能性基团的相对丰度,对深入探讨受污染土壤修复过程中有机质的转化与稳定性具有重要意义。
中图分类号:
马闯, 王雨阳, 周通, 吴龙华. 污染土壤颗粒态有机质镉锌富集特征及其解吸行为研究[J]. 生态环境学报, 2022, 31(9): 1892-1900.
MA Chuang, WANG Yuyang, ZHOU Tong, WU Longhua. Enrichment Characteristics and Desorption Behavior of Cadmium and Zinc in Particulate Organic Matter of Polluted Soil[J]. Ecology and Environment, 2022, 31(9): 1892-1900.
供试土壤 Tested soils | 有机质 Organic matter/(g∙kg-1) | pH | 砂粒 Sand/% | 粉粒 Silt/% | 黏粒 Clay/% | Cd质量分数 w(Cd)/(mg∙kg-1) | Zn质量分数 w(Zn)/(mg∙kg-1) |
---|---|---|---|---|---|---|---|
对照土壤 Control soil | 77.00±1.28 | 5.18±0.03 | 56.20 | 36.00 | 7.80 | 0.67±0.07 | 77.04±4.34 |
高污染土壤 High polluted soil | 65.10±3.79 | 5.55±0.03 | 30.20 | 51.00 | 18.80 | 4.03±0.27 | 369.87±3.69 |
表1 供试土壤基本理化性质
Table 1 The physico-chemical properties of tested soils
供试土壤 Tested soils | 有机质 Organic matter/(g∙kg-1) | pH | 砂粒 Sand/% | 粉粒 Silt/% | 黏粒 Clay/% | Cd质量分数 w(Cd)/(mg∙kg-1) | Zn质量分数 w(Zn)/(mg∙kg-1) |
---|---|---|---|---|---|---|---|
对照土壤 Control soil | 77.00±1.28 | 5.18±0.03 | 56.20 | 36.00 | 7.80 | 0.67±0.07 | 77.04±4.34 |
高污染土壤 High polluted soil | 65.10±3.79 | 5.55±0.03 | 30.20 | 51.00 | 18.80 | 4.03±0.27 | 369.87±3.69 |
动力学方程 Kinetic equations | 方程式 Formula | 参考文献 References |
---|---|---|
简化Elovich方程 Simple Elovich equation | Y=a+1/β lnt | Havlin et al., |
抛物线扩散方程 Parabolic diffusion equation | Y=a+R×t 0.5 | Dang et al., |
双常数方程 Two constant equation | Y=a×tb | Havlin et al., |
表2 解吸动力学模型
Table 2 Desorption kinetic model
动力学方程 Kinetic equations | 方程式 Formula | 参考文献 References |
---|---|---|
简化Elovich方程 Simple Elovich equation | Y=a+1/β lnt | Havlin et al., |
抛物线扩散方程 Parabolic diffusion equation | Y=a+R×t 0.5 | Dang et al., |
双常数方程 Two constant equation | Y=a×tb | Havlin et al., |
土壤组分 Soil fractions | 质量分数 w/% | Cd质量分数 w(Cd)/(mg∙kg-1) | Zn质量分数 w(Zn)/(mg∙kg-1) | |||||
---|---|---|---|---|---|---|---|---|
对照 Control | 高污染 High polluted | 对照 Control | 高污染 High polluted | 对照土壤 Control | 高污染 High polluted | |||
POM (2000-250 µm) | 3.88 | 2.17 | 2.30±0.03Ab | 19.33±0.49Aa | 233.45±4.93Ab | 868.86±2.93Aa | ||
POM (250-53 µm) | 5.44 | 5.04 | 1.65±0.02Bb | 12.93±1.80Ba | 226.85±6.32Ab | 632.21±15.08Ba | ||
矿物质 Mineral (2000-250 µm) | 15.01 | 3.76 | 0.07±0.01Db | 1.89±0.30Da | 8.56±0.22Cb | 265.56±19.41Da | ||
矿物质 Mineral (250-53 µm) | 33.77 | 18.43 | 0.06±0.01Db | 0.88±0.20Da | 8.92±1.25Cb | 87.38±12.94Ea | ||
有机-无机复合体 Organic-inorganic composite (<53 µm) | 40.89 | 70.77 | 1.03±0.12Cb | 3.73±0.53Ca | 157.89±2.99Bb | 391.76±3.31Ca |
表3 土壤不同粒径组分及其镉锌的质量分数变化
Table 3 Changes in mass fraction (w) of soil different particulate components and Cd/Zn
土壤组分 Soil fractions | 质量分数 w/% | Cd质量分数 w(Cd)/(mg∙kg-1) | Zn质量分数 w(Zn)/(mg∙kg-1) | |||||
---|---|---|---|---|---|---|---|---|
对照 Control | 高污染 High polluted | 对照 Control | 高污染 High polluted | 对照土壤 Control | 高污染 High polluted | |||
POM (2000-250 µm) | 3.88 | 2.17 | 2.30±0.03Ab | 19.33±0.49Aa | 233.45±4.93Ab | 868.86±2.93Aa | ||
POM (250-53 µm) | 5.44 | 5.04 | 1.65±0.02Bb | 12.93±1.80Ba | 226.85±6.32Ab | 632.21±15.08Ba | ||
矿物质 Mineral (2000-250 µm) | 15.01 | 3.76 | 0.07±0.01Db | 1.89±0.30Da | 8.56±0.22Cb | 265.56±19.41Da | ||
矿物质 Mineral (250-53 µm) | 33.77 | 18.43 | 0.06±0.01Db | 0.88±0.20Da | 8.92±1.25Cb | 87.38±12.94Ea | ||
有机-无机复合体 Organic-inorganic composite (<53 µm) | 40.89 | 70.77 | 1.03±0.12Cb | 3.73±0.53Ca | 157.89±2.99Bb | 391.76±3.31Ca |
POM粒径 Sizes of POM/μm | 污染程度 Pollution degree | Cd | Zn | ||||
---|---|---|---|---|---|---|---|
Elovich方程 Elovich equation | 扩散方程 Diffusion equation | 双常数方程 Two-constant equation | 扩散方程 Diffusion equation | 双常数方程 Two-constant equation | |||
2000-250 | 对照 | 0.715 | 0.462 | 0.687 | 0.887 | 0.974 | |
高污染 | 0.669 | 0.448 | 0.657 | 0.787 | 0.850 | ||
250-53 | 对照 | 0.757 | 0.714 | 0.774 | 0.926 | 0.790 | |
高污染 | 0.910 | 0.654 | 0.900 | 0.892 | 0.900 |
表4 颗粒态有机质中Cd和Zn解吸动力学拟合参数R2
Table 4 The parameters R2 of Cd and Zn desorption kinetics in different soil particulate organic matter fractions
POM粒径 Sizes of POM/μm | 污染程度 Pollution degree | Cd | Zn | ||||
---|---|---|---|---|---|---|---|
Elovich方程 Elovich equation | 扩散方程 Diffusion equation | 双常数方程 Two-constant equation | 扩散方程 Diffusion equation | 双常数方程 Two-constant equation | |||
2000-250 | 对照 | 0.715 | 0.462 | 0.687 | 0.887 | 0.974 | |
高污染 | 0.669 | 0.448 | 0.657 | 0.787 | 0.850 | ||
250-53 | 对照 | 0.757 | 0.714 | 0.774 | 0.926 | 0.790 | |
高污染 | 0.910 | 0.654 | 0.900 | 0.892 | 0.900 |
指标 Index | 污染程度 Pollution degree | Cd | Zn | |||
---|---|---|---|---|---|---|
2000-250 μm | 250-53 μm | 2000-250 μm | 250-53 μm | |||
24 h EDTA提取态 Extraction by EDTA for 24 h, w/(mg∙kg-1) | 对照 | 2.20±0.24Ab | 1.66±0.05Bb | 178.93±2.39Ab | 162.13±4.27Bb | |
高污染 | 16.25±0.63Aa | 9.67±0.19Ba | 613.84±10.35Aa | 369.26±8.18Ba | ||
24 h 提取率 Extracted rate for 24 h/% | 对照 | 95.44±0.10Aa | 100.00±0.01Aa | 76.66±0.01Aa | 71.47±0.01Ba | |
高污染 | 83.95±0.05Ab | 75.74±0.13Bb | 70.65±0.01Ab | 58.45±0.03Bb |
表5 颗粒态有机质中EDTA提取态Cd和Zn解吸量以及提取率
Table 5 The EDTA extractable Cd and Zn concentrations and the extracted rate of soil POM fraction
指标 Index | 污染程度 Pollution degree | Cd | Zn | |||
---|---|---|---|---|---|---|
2000-250 μm | 250-53 μm | 2000-250 μm | 250-53 μm | |||
24 h EDTA提取态 Extraction by EDTA for 24 h, w/(mg∙kg-1) | 对照 | 2.20±0.24Ab | 1.66±0.05Bb | 178.93±2.39Ab | 162.13±4.27Bb | |
高污染 | 16.25±0.63Aa | 9.67±0.19Ba | 613.84±10.35Aa | 369.26±8.18Ba | ||
24 h 提取率 Extracted rate for 24 h/% | 对照 | 95.44±0.10Aa | 100.00±0.01Aa | 76.66±0.01Aa | 71.47±0.01Ba | |
高污染 | 83.95±0.05Ab | 75.74±0.13Bb | 70.65±0.01Ab | 58.45±0.03Bb |
变量 Variables | 污染程度 Pollution degree | POM (2000-250 μm) | POM (250-53 μm) | |||
---|---|---|---|---|---|---|
提取前 Before Extraction | 提取后 After extraction | 提取前 Before Extraction | 提取后 After extraction | |||
C-H/石英 C-H/Quartz | 对照 | 0.11 | 0.12 | 0.081 | 0.092 | |
高污染 | 0.10 | 0.13 | 0.088 | 0.088 | ||
C=O/石英 C=O/Quartz | 对照 | 1.17 | 1.31 | 1.04 | 1.10 | |
高污染 | 1.09 | 1.40 | 1.08 | 1.15 |
表6 EDTA提取前后POM红外光谱图中C-H/石英和C=O/石英的峰高比值
Table 6 Mean ratios of peak heights of C-H/quartz and C=O/quartz from FTIR spectra
变量 Variables | 污染程度 Pollution degree | POM (2000-250 μm) | POM (250-53 μm) | |||
---|---|---|---|---|---|---|
提取前 Before Extraction | 提取后 After extraction | 提取前 Before Extraction | 提取后 After extraction | |||
C-H/石英 C-H/Quartz | 对照 | 0.11 | 0.12 | 0.081 | 0.092 | |
高污染 | 0.10 | 0.13 | 0.088 | 0.088 | ||
C=O/石英 C=O/Quartz | 对照 | 1.17 | 1.31 | 1.04 | 1.10 | |
高污染 | 1.09 | 1.40 | 1.08 | 1.15 |
[1] | BERNIER M H, LEVY G J, FINE P, et al., 2013. Organic matter composition in soils irrigated with treated wastewater: FT-IR spectroscopic analysis of bulk soil samples[J]. Geoderma, 209-210: 233-240. |
[2] |
CAPRIEL P, BECK T, BORCHERT H, 1995. Hydrophobicity of the organic matter in arable soils[J]. Soil Biology and Biochemistry, 27(11): 1453-1458.
DOI URL |
[3] | CHEN L, BEIYUAN J Z, HU W F, et al., 2022. Phytoremediation of potentially toxic elements (PTEs) contaminated soils using alfalfa (Medicago sativa L.): A comprehensive review[J]. Chemosphere, 293: 133577. |
[4] |
CHRISTENSEN B T, 2001. Physical fractionation of soil and structural and functional complexity in organic matter turnover[J]. European Journal of Soil Science, 52(3): 345-353.
DOI URL |
[5] |
CORNU J Y, DEPERNET C, GARNIER C, et al., 2017. How do low doses of desferrioxamine B and EDTA affect the phytoextraction of metals in sunflower?[J] Science of the Total Environment, 592: 535-545.
DOI URL |
[6] |
DANG Y P, DALAL R C, EDWARDS D G, et al., 1994. Kinetics of zinc desorption from vertisols[J]. Soil Science Society of America Journal, 58(5): 1392-1399.
DOI URL |
[7] | ELKHATIB E A, MAHDY A M, SALEH M E, et al., 2007. Kinetics of copper desorption from soils as affected by different organic ligands[J]. International Journal of Environmental Science & Technology, 4(3): 331-338. |
[8] |
ELLERBROCK R H, GERKE H H, BOHM C, 2009. In situ DRIFT characterization of organic matter composition on soil structural surfaces[J]. Soil Science Society of America Journal, 73(2): 531-540.
DOI URL |
[9] |
ELLERBROCK R H, GERKE H H, DEUMLICH D, 2016. Soil organic matter composition along a slope in an erosion-affected arable landscape in North East Germany[J]. Soil and Tillage Research, 156: 209-218.
DOI URL |
[10] |
GUO X Y, ZHANG S Z, SHAN X Q, et al., 2006. Characterization of Pb, Cu, and Cd adsorption on particulate organic matter in soil[J]. Environmental Toxicology and Chemistry, 25(9): 2366-2373.
PMID |
[11] |
HAVLIN J L, WESTFALL D G, OLSEN S R, 1985. Mathematical models for potassium release kinetics in calcareous soil[J]. Soil Science Society of America Journal, 49(2): 371-376.
DOI URL |
[12] |
HELLER C, ELLERBROCK R H, ROƁKOPF N, et al., 2015. Soil organic matter characterization of temperate peatland soil with FTIR-spectroscopy: Effects of mire type and drainage intensity[J]. European Journal of Soil Science, 66: 847-858.
DOI URL |
[13] |
LABANOWSKI J, SEBASTIA J, FOY E, et al., 2007. Fate of metal-associated POM in a soil under arable land use contaminated by metallurgical fallout in northern France[J]. Environmental Pollution, 149(1): 59-69.
PMID |
[14] |
LAVALLEE J M, SOONG J L, COTRUFO M F, 2020. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century[J]. Global Change Biology, 26(1): 1-13.
DOI URL |
[15] |
LI Z, WU L H, LUO Y M, et al., 2014. Dynamics of plant metal uptake and metal changes in whole soil and soil particle fractions during repeated phytoextraction[J]. Plant and Soil, 374(1-2): 857-869.
DOI URL |
[16] |
LUO Y F, WU Y G, SHU J, et al., 2019. Effect of particulate organic matter fractions on the distribution of heavy metals with aided phytostabilization at a zinc smelting waste slag site[J]. Environmental Pollution, 253: 330-341.
DOI PMID |
[17] |
MOHAMED I, AHAMADOU B, LI M, et al., 2010. Fractionation of copper and cadmium and their binding with soil organic matter in a contaminated soil amended with organic materials[J]. Journal of Soils and Sediments, 10(6): 973-982.
DOI URL |
[18] | PANDION K, MOHAMED KHALITH S B, RAVINDRAN B, et al., 2022. Potential health risk caused by heavy metal associated with seafood consumption around coastal area[J]. Environmental Pollution, 294: 118553. |
[19] | RAI R, AGRAWAL M, AGRAWAL S B, 2016. Impact of heavy metals on physiological processes of plants: With special reference to photosynthetic system[M]. Springer: Singapore. |
[20] | RIVERA M B, GIRÁLDEX M I, FERNÁNDEZ-CALIANI J C, 2016. Assessing the environmental availability of heavy metals in geogenically contaminated soils of the Sierra de Aracena Natural Park (SW Spain). Is there a health risk?[J] Science of the Total Environment, 560-561: 254-265. |
[21] |
SEBASTIA J, OORT F V, LAMY I, 2008. Buffer capacity and Cu affinity of soil particulate organic matter (POM) size fractions[J]. European Journal of Soil Science, 59(2): 304-314.
DOI URL |
[22] |
SHI J Y, WU Q H, ZHENG C Q, et al., 2018. The interaction between particulate organic matter and copper, zinc in paddy soil[J]. Environmental Pollution, 243: 1394-1402.
DOI PMID |
[23] |
WEN H J, ZHANG Y X, CLOQUET C, et al., 2015. Tracing sources of pollution in soils from the Jinding Pb-Zn mining district in China using cadmium and lead isotopes[J]. Applied Geochemistry, 52(1): 147-154.
DOI URL |
[24] |
YANG Q Q, LI Z Y, LU X N, et al., 2018. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment[J]. Science of the Total Environment, 642: 690-700.
DOI URL |
[25] |
ZENG S Y, MA J, YANG Y J, et al., 2019. Spatial assessment of farmland soil pollution and its potential human health risks in China[J]. Science of the Total Environment, 687: 642-653.
DOI URL |
[26] |
ZHANG J, HUA P, KREBS P, 2017. Influences of land use and antecedent dry-weather period on pollution level and ecological risk of heavy metals in road-deposited sediment[J]. Environmental Pollution, 228: 158-168.
DOI PMID |
[27] |
ZHANG X W, YANG L S, LI Y H, et al., 2012. Impacts of lead/zinc mining and smelting on the environment and human health in China[J]. Environmental Monitoring and Assessment, 184(4): 2261-2273.
DOI URL |
[28] | ZHANG X X, CHEN Z L, HUO X Y, et al., 2021. Application of Fourier transform ion cyclotron resonance mass spectrometry in deciphering molecular composition of soil organic matter: A review[J]. Science of the Total Environment, 756(20): 144140. |
[29] |
ZHAO F J, MA Y B, ZHU Y G, et al., 2015. Soil contamination in China: Current status and mitigation strategies[J]. Environmental Science and Technology, 49(2): 750-759.
DOI URL |
[30] |
ZHOU T, LI L Q, ZHANG X H, et al., 2016. Changes in organic carbon and nitrogen in soil with metal pollution by Cd, Cu, Pb and Zn: A meta-analysis[J]. European Journal of Soil Science, 67(2): 237-246.
DOI URL |
[31] |
ZHOU T, WU L H, CHRISTIE P, et al., 2018b. The efficiency of Cd phytoextraction by S. plumbizincicola increased with the addition of rice straw to polluted soils: The role of particulate organic matter[J]. Plant and Soil, 429(1-2): 321-333.
DOI URL |
[32] |
ZHOU T, WU L H, LUO Y M, et al., 2018a. Effects of organic matter fraction and compositional changes on distribution of cadmium and zinc in long-term polluted paddy soils[J]. Environmental Pollution, 232: 514-522.
DOI URL |
[33] | ŻUKOWSKA J, BIZIUK M, 2010. Methodological evaluation of method for dietary heavy metal intake[J]. Journal of Food Science, 73(2): 21-29. |
[34] | 樊霆, 叶文玲, 陈海燕, 等, 2013. 农田土壤重金属污染状况及修复技术研究[J]. 生态环境学报, 22(10): 1727-1736. |
FAN T, YE W L, CHEN H Y, et al., 2013. Review on contamination and remediation technology of heavy metal in agricultural soil[J]. Ecology and Environmental Sciences, 22(10): 1727-1736. | |
[35] | 黄一珂, 邱晓航, 2016. 软硬酸碱理论的发展和应用[J]. 大学化学, 31(11): 45-50. |
HUANG Y K, QIU X H, 2016. Development and application of the concept of Hard-Soft-Acid-Base (HSAB)[J]. University Chemistry, 31(11): 45-50.
DOI URL |
|
[36] | 鲁如坤, 2000. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社. |
LU R K, 2000. Analytical methods for soil and agro-chemistry[M]. Beijing: China Agricultural Science and Technology Press. | |
[37] | 生态环境部, 2018. 土壤环境质量-农用地土壤污染风险管控标准 (试行): GB 15618-2018[S]. 北京: 中国环境科学出版社. |
Ministry of Ecology and Environment of the People’s Republic of China, 2018. Soil Environmental quality risk control standard for soil contamination of agricultural land: GB 15618-2018[S]. Beijing, China Environmental Science Press. | |
[38] | 许超, 夏北城, 林颖, 2009. EDTA和柠檬酸对污染土壤中重金属的解吸动力学及其形态的影响[J]. 水土保持学报, 23(4): 146-150. |
XU C, XIA B C, LIN Y, 2009. Kinetics of heavy metal desorption by EDTA and citric in contaminated soil and their redistribution of fractions[J]. Journal of Soil and Water Conservation, 23(4): 146-150. | |
[39] | 曾晓舵, 王向琴, 凃新红, 等, 2019. 农田土壤重金属污染阻控技术研究进展[J]. 生态环境学报, 28(9): 1900-1906. |
ZENG X D, WANG X Q, TU X H, et al., 2019. Research progress on speciation and physiological control of heavy metal in soil-plant system[J]. Ecology and Environmental Sciences, 28(9): 1900-1906. | |
[40] | 张兰萍, 闵文豪, 范志强, 等, 2020. 酸性紫色水稻土颗粒有机质对镉的吸附特性[J]. 中国环境科学, 40(6): 2588-2597. |
ZHANG L P, MIN W H, FAN Z Q, et al., 2020. Characteristics of cadmium adsorption on particulate organic matter isolated from an purple paddy soil[J]. China Environmental Science, 40(6): 2588-2597. | |
[41] | 张叶叶, 莫非, 韩娟, 等, 2021. 秸秆还田下土壤有机质激发效应研究进展[J]. 土壤学报, 58(6): 1381-1392. |
ZHANG Y Y, MO F, HAN J, et al., 2021. Research progress on the native soil carbon priming after straw addition[J]. Acta Pedologica Sinica, 58(6): 1381-1392. | |
[42] | 赵永存, 徐胜祥, 王美艳, 等, 2018. 中国农田土壤固碳潜力与速率: 认识、挑战与研究建议[J]. 中国科学院院刊, 33(2): 191-197. |
ZHAO Y C, XU S X, WANG M Y, et al., 2018. Carbon sequestration potential in Chinese cropland soils: Review, challenge, and research suggestions[J]. Bulletin of Chinese Academy of Sciences, 33(2): 191-197. | |
[43] | 中华人民共和国环境保护部, 中华人民共和国国土资源部, 2014. 全国土壤污染状况调查公报[J]. 中国环保产业 (5): 10-11. |
Ministry of Environmental Protection of the People’s Republic of China, Ministry of Land and Resources of the People’s Republic of China, 2014. Bulletin of national soil pollution survey[J]. China Environmental Protection Industry (5): 10-11. |
[1] | 杜丹丹, 高瑞忠, 房丽晶, 谢龙梅. 旱区盐湖盆地土壤重金属空间变异及对土壤理化因子的响应[J]. 生态环境学报, 2023, 32(6): 1123-1132. |
[2] | 李传福, 朱桃川, 明玉飞, 杨宇轩, 高舒, 董智, 李永强, 焦树英. 有机肥与脱硫石膏对黄河三角洲盐碱地土壤团聚体及其有机碳组分的影响[J]. 生态环境学报, 2023, 32(5): 878-888. |
[3] | 王超, 杨倩楠, 张池, 刘同旭, 张晓龙, 陈静, 刘科学. 丹霞山不同土地利用方式土壤磷组分特征及其有效性[J]. 生态环境学报, 2023, 32(5): 889-897. |
[4] | 陈俊芳, 吴宪, 刘啸林, 刘娟, 杨佳绒, 刘宇. 不同土壤水分下元素化学计量对微生物多样性的塑造特征[J]. 生态环境学报, 2023, 32(5): 898-909. |
[5] | 董智今, 张呈春, 展秀丽, 张维福. 宁夏河东沙地生物土壤结皮及其下伏土壤养分的空间分布特征[J]. 生态环境学报, 2023, 32(5): 910-919. |
[6] | 周沁苑, 董全民, 王芳草, 刘玉祯, 冯斌, 杨晓霞, 俞旸, 张春平, 曹铨, 刘文亭. 放牧方式对高寒草地瑞香狼毒根际土壤团聚体及有机碳特征的影响[J]. 生态环境学报, 2023, 32(4): 660-667. |
[7] | 潘昱伶, 璩向宁, 李琴, 王磊, 王筱平, 谭鹏, 崔庚, 安雨, 佟守正. 黄河宁夏段典型滩涂湿地土壤理化因子空间分布特征及其对微地形的响应[J]. 生态环境学报, 2023, 32(4): 668-677. |
[8] | 赵维彬, 唐丽, 王松, 刘玲玲, 王树凤, 肖江, 陈光才. 两种生物炭对滨海盐碱土的改良效果[J]. 生态环境学报, 2023, 32(4): 678-686. |
[9] | 冯树娜, 吕家珑, 何海龙. KI淋洗对黄绵土汞污染的去除效果及土壤理化性状的影响[J]. 生态环境学报, 2023, 32(4): 776-783. |
[10] | 陈敏毅, 朱航海, 佘伟铎, 尹光彩, 黄祖照, 杨巧玲. 珠三角某遗留造船厂场地土壤重金属人体健康风险评估及源解析[J]. 生态环境学报, 2023, 32(4): 794-804. |
[11] | 张林, 齐实, 周飘, 伍冰晨, 张岱, 张岩. 北京山区针阔混交林地土壤有机碳含量的影响因素研究[J]. 生态环境学报, 2023, 32(3): 450-458. |
[12] | 秦浩, 李蒙爱, 高劲, 陈凯龙, 张殷波, 张峰. 芦芽山不同海拔灌丛土壤细菌群落组成和多样性研究[J]. 生态环境学报, 2023, 32(3): 459-468. |
[13] | 唐海明, 石丽红, 文丽, 程凯凯, 李超, 龙泽东, 肖志武, 李微艳, 郭勇. 长期施肥对双季稻田根际土壤氮素的影响[J]. 生态环境学报, 2023, 32(3): 492-499. |
[14] | 刘抗旱, 郑刘根, 张理群, 丁丹, 单士锋. 复合型植物源活化剂强化蜈蚣草修复砷污染土壤的效应研究[J]. 生态环境学报, 2023, 32(3): 635-642. |
[15] | 樊慧琳, 张佳敏, 李欢, 王艳玲. 坡耕地稻田剖面磷的储存格局与流失风险研究[J]. 生态环境学报, 2023, 32(2): 283-291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||