生态环境学报 ›› 2021, Vol. 30 ›› Issue (10): 2085-2092.DOI: 10.16258/j.cnki.1674-5906.2021.10.015
茹淑华(), 赵欧亚, 侯利敏, 肖广敏, 王策, 孙世友*(
), 张国印, 王凌, 刘蕾
收稿日期:
2021-06-24
出版日期:
2021-10-18
发布日期:
2021-12-21
通讯作者:
* E-mail: sunshiyou@126.com作者简介:
茹淑华(1973年生),女,研究员,主要从事施肥与农业环境研究。E-mail: shuhuaru@163.com
基金资助:
RU Shuhua(), ZHAO Ouya, HOU Limin, XIAO Guangmin, WANG Ce, SUN Shiyou*(
), ZHANG Guoyin, WANG Ling, LIU Lei
Received:
2021-06-24
Online:
2021-10-18
Published:
2021-12-21
摘要:
探讨施用钝化剂对Cd污染土壤理化性质和修复效果,可为北方轻中度Cd污染农田安全利用提供依据。采用盆栽培养试验,研究不同Cd污染程度下,施用8种钝化剂产品对土壤理化性质、主要养分积累、Cd有效性和小白菜吸收Cd的影响。结果表明,与对照相比,土壤加入1 mg∙kg-1 Cd时,除P6和P7钝化剂外,其他6种钝化剂可显著降低土壤有效态Cd含量,降幅为9.09%—56.73%;P3钝化剂的Cd钝化效果最佳,添加量为5%时土壤有效态Cd降低率为54.90%,小白菜降Cd率为54.04%;所有处理小白菜Cd质量分数均低于0.2 mg∙kg-1,符合国家食品污染物限量标准。土壤加入5 mg∙kg-1 Cd时,添加8种钝化剂处理均可显著降低土壤有效态Cd含量,降幅为11.14%—81.08%;其中P3钝化剂的Cd钝化效果最佳,添加量为5%处理下土壤有效态Cd降低率81.08%,小白菜降Cd率为72.16%,小白菜Cd含量(0.22 mg∙kg-1)基本上接近国家食品中污染物限值,而其他7种钝化剂处理小白菜Cd含量均不同程度超标。相关性分析表明,土壤有效态Cd含量、小白菜Cd含量分别与土壤pH、有机质、速效磷和有效钾含量呈显著或极显著的负相关关系。由此可见,对于北方轻中度Cd污染农田,可通过施用合适的钝化剂产品来改善土壤养分状况,降低土壤Cd的有效性,从而达到农产品安全生产的目的。
中图分类号:
茹淑华, 赵欧亚, 侯利敏, 肖广敏, 王策, 孙世友, 张国印, 王凌, 刘蕾. 8种钝化剂产品对不同镉污染土壤理化性质和镉有效性的影响[J]. 生态环境学报, 2021, 30(10): 2085-2092.
RU Shuhua, ZHAO Ouya, HOU Limin, XIAO Guangmin, WANG Ce, SUN Shiyou, ZHANG Guoyin, WANG Ling, LIU Lei. Effects of Eight Kinds of Passivators on Properties and Cadmium Availability in Different Cadmium-contaminated Soil[J]. Ecology and Environment, 2021, 30(10): 2085-2092.
代号 Code | pH | w/% | w/(mg∙kg-1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
有机质 Organic matter | 全N Total N | 全P Total P | 全K Total K | Cd | As | Cr | Pb | |||
P1 | 10.54 | 0.00 | 0.00 | 0.08 | 0.11 | 0.031 | 9.40 | 0.93 | 2.92 | |
P2 | 12.67 | 28.34 | 0.51 | 0.15 | 6.43 | 0.055 | 8.36 | 35.87 | 2.85 | |
P3 | 9.41 | 24.05 | 0.31 | 0.51 | 12.20 | 0.043 | 8.85 | 7.47 | 1.99 | |
P4 | 10.93 | 2.53 | 0.12 | 0.02 | 6.20 | 0.028 | 8.18 | 25.19 | 3.41 | |
P5 | 8.64 | 1.67 | 4.00 | 8.19 | 2.78 | 0.068 | 8.57 | 4.81 | 5.00 | |
P6 | 9.07 | 0.00 | 0.02 | 0.11 | 0.90 | 0.092 | 4.90 | 4.14 | 9.41 | |
P7 | 8.50 | 14.14 | 0.64 | 0.38 | 7.37 | 0.075 | 1.81 | 8.57 | 4.68 | |
P8 | 6.27 | 22.10 | 0.24 | 1.91 | 10.33 | 0.015 | 3.26 | 59.30 | 0.48 |
表1 供试钝化剂的理化性质和重金属质量分数
Table 1 Physical and chemical properties and mass fraction of heavy metals of tested passivators
代号 Code | pH | w/% | w/(mg∙kg-1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
有机质 Organic matter | 全N Total N | 全P Total P | 全K Total K | Cd | As | Cr | Pb | |||
P1 | 10.54 | 0.00 | 0.00 | 0.08 | 0.11 | 0.031 | 9.40 | 0.93 | 2.92 | |
P2 | 12.67 | 28.34 | 0.51 | 0.15 | 6.43 | 0.055 | 8.36 | 35.87 | 2.85 | |
P3 | 9.41 | 24.05 | 0.31 | 0.51 | 12.20 | 0.043 | 8.85 | 7.47 | 1.99 | |
P4 | 10.93 | 2.53 | 0.12 | 0.02 | 6.20 | 0.028 | 8.18 | 25.19 | 3.41 | |
P5 | 8.64 | 1.67 | 4.00 | 8.19 | 2.78 | 0.068 | 8.57 | 4.81 | 5.00 | |
P6 | 9.07 | 0.00 | 0.02 | 0.11 | 0.90 | 0.092 | 4.90 | 4.14 | 9.41 | |
P7 | 8.50 | 14.14 | 0.64 | 0.38 | 7.37 | 0.075 | 1.81 | 8.57 | 4.68 | |
P8 | 6.27 | 22.10 | 0.24 | 1.91 | 10.33 | 0.015 | 3.26 | 59.30 | 0.48 |
图1 不同钝化剂对土壤有效态Cd质量分数的影响 不同小写字母表示处理间差异显著(P<0.05)。下同
Fig. 1 Effect of different passivators on soil available Cd mass fraction Different small letters indicates significant difference among different treatments (P<0.05). The same below
处理代号 Treatment code | w(Cd)=1 mg∙kg-1 | w(Cd)=5 mg∙kg-1 | |||
---|---|---|---|---|---|
添加量1% Addition | 添加量5% Addition | 添加量1% Addition | 添加量5% Addition | ||
CK | 8.37±0.01cde | 8.37±0.01d | 8.36±0.04e | 8.36±0.04e | |
P1 | 8.67±0.08a | 9.51±0.08a | 8.67±0.02a | 9.56±0.03a | |
P2 | 8.46±0.01b | 8.51±0.07c | 8.43±0.02cd | 8.50±0.05c | |
P3 | 8.47±0.08b | 8.82±0.15b | 8.50±0.03b | 8.89±0.02b | |
P4 | 8.41±0.05bcd | 8.44±0.06cd | 8.49±0.03bc | 8.43±0.03d | |
P5 | 8.28±0.07e | 7.84±0.06e | 8.33±0.08e | 7.96±0.03f | |
P6 | 8.34±0.02de | 8.42±0.01cd | 8.38±0.02de | 8.35±0.02e | |
P7 | 8.32±0.08de | 8.39±0.02d | 8.36±0.03e | 8.44±0.03cd | |
P8 | 8.17±0.04f | 7.86±0.0e | 8.21±0.03f | 7.89±0.06g |
表2 不同钝化剂对土壤pH的影响
Table 2 Effect of different passivators on soil pH
处理代号 Treatment code | w(Cd)=1 mg∙kg-1 | w(Cd)=5 mg∙kg-1 | |||
---|---|---|---|---|---|
添加量1% Addition | 添加量5% Addition | 添加量1% Addition | 添加量5% Addition | ||
CK | 8.37±0.01cde | 8.37±0.01d | 8.36±0.04e | 8.36±0.04e | |
P1 | 8.67±0.08a | 9.51±0.08a | 8.67±0.02a | 9.56±0.03a | |
P2 | 8.46±0.01b | 8.51±0.07c | 8.43±0.02cd | 8.50±0.05c | |
P3 | 8.47±0.08b | 8.82±0.15b | 8.50±0.03b | 8.89±0.02b | |
P4 | 8.41±0.05bcd | 8.44±0.06cd | 8.49±0.03bc | 8.43±0.03d | |
P5 | 8.28±0.07e | 7.84±0.06e | 8.33±0.08e | 7.96±0.03f | |
P6 | 8.34±0.02de | 8.42±0.01cd | 8.38±0.02de | 8.35±0.02e | |
P7 | 8.32±0.08de | 8.39±0.02d | 8.36±0.03e | 8.44±0.03cd | |
P8 | 8.17±0.04f | 7.86±0.0e | 8.21±0.03f | 7.89±0.06g |
处理代号 Treatment code | w(Cd)=1 mg∙kg-1 | w(Cd)=5 mg∙kg-1 | |||
---|---|---|---|---|---|
添加量1% Addition | 添加量5% Addition | 添加量1% Addition | 添加量5% Addition | ||
CK | 12.20±0.66b | 12.20±0.66e | 12.14±0.15bc | 12.14±0.15d | |
P1 | 11.07±0.53bc | 11.25±0.93e | 11.41±0.60cd | 11.47±0.20e | |
P2 | 11.70±0.51bc | 16.40±0.74bc | 11.85±0.51bcd | 14.02±0.05c | |
P3 | 11.68±0.16bc | 18.31±0.05b | 12.52±0.93b | 16.89±0.77b | |
P4 | 10.85±1.07c | 13.07±0.86de | 11.08±0.14de | 11.60±0.22de | |
P5 | 11.34±0.76bc | 11.88±0.57e | 11.50±0.58cd | 11.41±0.26e | |
P6 | 10.84±1.16c | 11.77±0.72e | 10.40±0.32e | 10.26±0.29f | |
P7 | 11.83±0.90bc | 14.51±0.33cd | 11.96±0.13bc | 17.00±0.54b | |
P8 | 14.25±0.27a | 24.50±2.80a | 13.50±0.35a | 21.48±0.27a |
表3 不同钝化剂对土壤有机质含量的影响
Table 3 Effect of different passivators on soil organic matter g∙kg-1
处理代号 Treatment code | w(Cd)=1 mg∙kg-1 | w(Cd)=5 mg∙kg-1 | |||
---|---|---|---|---|---|
添加量1% Addition | 添加量5% Addition | 添加量1% Addition | 添加量5% Addition | ||
CK | 12.20±0.66b | 12.20±0.66e | 12.14±0.15bc | 12.14±0.15d | |
P1 | 11.07±0.53bc | 11.25±0.93e | 11.41±0.60cd | 11.47±0.20e | |
P2 | 11.70±0.51bc | 16.40±0.74bc | 11.85±0.51bcd | 14.02±0.05c | |
P3 | 11.68±0.16bc | 18.31±0.05b | 12.52±0.93b | 16.89±0.77b | |
P4 | 10.85±1.07c | 13.07±0.86de | 11.08±0.14de | 11.60±0.22de | |
P5 | 11.34±0.76bc | 11.88±0.57e | 11.50±0.58cd | 11.41±0.26e | |
P6 | 10.84±1.16c | 11.77±0.72e | 10.40±0.32e | 10.26±0.29f | |
P7 | 11.83±0.90bc | 14.51±0.33cd | 11.96±0.13bc | 17.00±0.54b | |
P8 | 14.25±0.27a | 24.50±2.80a | 13.50±0.35a | 21.48±0.27a |
处理代号 Treatment code | w(Cd)=1 mg∙kg-1 | w(Cd)=5 mg∙kg-1 | |||
---|---|---|---|---|---|
添加量1% Addition | 添加量5% Addition | 添加量1% Addition | 添加量5% Addition | ||
CK | 40.61±1.28bc | 40.61±1.28c | 41.65±0.18b | 41.65±0.18c | |
P1 | 43.32±4.59b | 45.40±5.65bc | 43.17±2.27b | 43.26±3.92c | |
P2 | 44.36±4.72b | 50.48±4.69b | 42.48±0.86b | 50.30±1.10b | |
P3 | 40.68±2.85bc | 41.05±2.52c | 40.39±3.45b | 41.36±2.65c | |
P4 | 37.03±2.47c | 41.15±0.83c | 40.36±4.87b | 42.18±1.52c | |
P5 | 56.71±0.49a | 168.27±8.99a | 58.86±2.46a | 160.21±0.56a | |
P6 | 40.83±5.43bc | 39.28±1.18c | 40.29±0.58b | 40.76±1.21c | |
P7 | 41.15±2.88bc | 52.33±1.31b | 43.41±4.96b | 48.48±2.72b | |
P8 | 40.45±3.17bc | 39.14±2.07c | 39.96±3.06b | 39.92±2.82c |
表4 不同钝化剂对土壤碱解氮质量分数的影响
Table 4 Effect of different passivators on soil available N mass fraction mg∙kg-1
处理代号 Treatment code | w(Cd)=1 mg∙kg-1 | w(Cd)=5 mg∙kg-1 | |||
---|---|---|---|---|---|
添加量1% Addition | 添加量5% Addition | 添加量1% Addition | 添加量5% Addition | ||
CK | 40.61±1.28bc | 40.61±1.28c | 41.65±0.18b | 41.65±0.18c | |
P1 | 43.32±4.59b | 45.40±5.65bc | 43.17±2.27b | 43.26±3.92c | |
P2 | 44.36±4.72b | 50.48±4.69b | 42.48±0.86b | 50.30±1.10b | |
P3 | 40.68±2.85bc | 41.05±2.52c | 40.39±3.45b | 41.36±2.65c | |
P4 | 37.03±2.47c | 41.15±0.83c | 40.36±4.87b | 42.18±1.52c | |
P5 | 56.71±0.49a | 168.27±8.99a | 58.86±2.46a | 160.21±0.56a | |
P6 | 40.83±5.43bc | 39.28±1.18c | 40.29±0.58b | 40.76±1.21c | |
P7 | 41.15±2.88bc | 52.33±1.31b | 43.41±4.96b | 48.48±2.72b | |
P8 | 40.45±3.17bc | 39.14±2.07c | 39.96±3.06b | 39.92±2.82c |
处理代号 Treatment code | w(Cd)=1 mg∙kg-1 | w(Cd)=5 mg∙kg-1 | |||
---|---|---|---|---|---|
添加量1% Addition | 添加量5% Addition | 添加量1% Addition | 添加量5% Addition | ||
CK | 30.00±1.14e | 30.00±1.14fg | 31.30±0.90b | 31.30±0.90f | |
P1 | 45.73±2.95a | 71.60±6.24c | 47.10±5.45a | 73.23±4.00c | |
P2 | 35.13±1.45c | 37.67±1.26e | 35.60±2.25b | 40.10±2.04e | |
P3 | 48.73±3.25a | 102.67±3.88a | 42.87±1.43a | 94.10±4.87a | |
P4 | 30.73±0.65de | 32.37±0.15f | 32.47±2.61b | 33.27±3.15f | |
P5 | 42.53±0.68b | 91.30±2.02b | 42.50±6.40a | 79.83±1.91b | |
P6 | 26.30±0.72f | 27.03±2.51g | 32.53±1.39b | 29.77±2.37f | |
P7 | 32.00±2.03de | 38.57±1.11e | 35.27±1.32b | 44.63±4.56de | |
P8 | 33.73±1.30cd | 48.23±3.15d | 36.37±0.95b | 47.93±6.29d |
表5 不同钝化剂对土壤速效磷质量分数的影响
Table 5 Effect of different passivators on soil available P mass fraction mg∙kg-1
处理代号 Treatment code | w(Cd)=1 mg∙kg-1 | w(Cd)=5 mg∙kg-1 | |||
---|---|---|---|---|---|
添加量1% Addition | 添加量5% Addition | 添加量1% Addition | 添加量5% Addition | ||
CK | 30.00±1.14e | 30.00±1.14fg | 31.30±0.90b | 31.30±0.90f | |
P1 | 45.73±2.95a | 71.60±6.24c | 47.10±5.45a | 73.23±4.00c | |
P2 | 35.13±1.45c | 37.67±1.26e | 35.60±2.25b | 40.10±2.04e | |
P3 | 48.73±3.25a | 102.67±3.88a | 42.87±1.43a | 94.10±4.87a | |
P4 | 30.73±0.65de | 32.37±0.15f | 32.47±2.61b | 33.27±3.15f | |
P5 | 42.53±0.68b | 91.30±2.02b | 42.50±6.40a | 79.83±1.91b | |
P6 | 26.30±0.72f | 27.03±2.51g | 32.53±1.39b | 29.77±2.37f | |
P7 | 32.00±2.03de | 38.57±1.11e | 35.27±1.32b | 44.63±4.56de | |
P8 | 33.73±1.30cd | 48.23±3.15d | 36.37±0.95b | 47.93±6.29d |
处理代号 Treatment code | w(Cd)=1 mg∙kg-1 | w(Cd)=5 mg∙kg-1 | |||
---|---|---|---|---|---|
添加量1% Addition | 添加量5% Addition | 添加量1% Addition | 添加量5% Addition | ||
CK | 168.33±2.89de | 168.33±2.89f | 170.00±0.00de | 170.00±0.00f | |
P1 | 201.67±7.64b | 378.33±7.64b | 225.00±5.00a | 356.67±7.64c | |
P2 | 178.33±2.89d | 248.33±11.55c | 178.33±5.77cd | 238.33±7.64d | |
P3 | 250.00±5.00a | 450.00±25.00a | 225.00±10.00a | 470.00±13.23a | |
P4 | 175.00±0.00de | 185.00±10.00ef | 183.33±5.77c | 178.33±2.89f | |
P5 | 190.00±10.00c | 461.67±18.93a | 195.00±5.00b | 433.33±16.07b | |
P6 | 175.00±5.00de | 180.00±10.00ef | 165.00±5.00e | 183.33±11.55f | |
P7 | 198.33±10.41bc | 216.67±7.64d | 196.67±7.64b | 235.00±8.66d | |
P8 | 165.00±0.00e | 198.33±7.64de | 175.00±5.00cde | 211.67±7.64e |
表6 不同钝化剂对土壤有效钾质量分数的影响
Table 6 Effect of different passivators on soil available K mass fraction mg∙kg-1
处理代号 Treatment code | w(Cd)=1 mg∙kg-1 | w(Cd)=5 mg∙kg-1 | |||
---|---|---|---|---|---|
添加量1% Addition | 添加量5% Addition | 添加量1% Addition | 添加量5% Addition | ||
CK | 168.33±2.89de | 168.33±2.89f | 170.00±0.00de | 170.00±0.00f | |
P1 | 201.67±7.64b | 378.33±7.64b | 225.00±5.00a | 356.67±7.64c | |
P2 | 178.33±2.89d | 248.33±11.55c | 178.33±5.77cd | 238.33±7.64d | |
P3 | 250.00±5.00a | 450.00±25.00a | 225.00±10.00a | 470.00±13.23a | |
P4 | 175.00±0.00de | 185.00±10.00ef | 183.33±5.77c | 178.33±2.89f | |
P5 | 190.00±10.00c | 461.67±18.93a | 195.00±5.00b | 433.33±16.07b | |
P6 | 175.00±5.00de | 180.00±10.00ef | 165.00±5.00e | 183.33±11.55f | |
P7 | 198.33±10.41bc | 216.67±7.64d | 196.67±7.64b | 235.00±8.66d | |
P8 | 165.00±0.00e | 198.33±7.64de | 175.00±5.00cde | 211.67±7.64e |
处理代号 Treatment code | w(Cd)=1 mg∙kg-1 | w(Cd)=5 mg∙kg-1 | |||
---|---|---|---|---|---|
添加量1% Addition | 添加量5% Addition | 添加量1% Addition | 添加量5% Addition | ||
CK | 68.12±2.49cd | 68.12±2.49bc | 66.00±0.91bc | 66.00±0.91c | |
P1 | 64.30±3.43d | 62.30±1.21de | 63.51±2.27c | 53.27±1.32d | |
P2 | 68.17±2.13cd | 73.31±1.74a | 76.44±1.87a | 85.26±2.94a | |
P3 | 64.57±1.00d | 65.81±1.07bcd | 63.47±2.04c | 63.05±1.16c | |
P4 | 65.16±0.53d | 68.20±3.49b | 65.30±2.53c | 73.92±2.00b | |
P5 | 82.48±2.77a | — | 65.49±1.43bc | — | |
P6 | 65.14±3.85d | 68.08±0.19bc | 74.31±4.11a | 72.45±2.04b | |
P7 | 76.47±3.42b | 64.58±1.81cd | 69.21±1.04b | 64.88±3.09c | |
P8 | 70.90±2.19c | 60.52±2.73e | 65.59±2.06bc | 55.57±3.38d |
表7 不同钝化剂对小白菜生长的影响
Table 7 Effect of different passivators on the growth of Chinese cabbage g∙pot-1
处理代号 Treatment code | w(Cd)=1 mg∙kg-1 | w(Cd)=5 mg∙kg-1 | |||
---|---|---|---|---|---|
添加量1% Addition | 添加量5% Addition | 添加量1% Addition | 添加量5% Addition | ||
CK | 68.12±2.49cd | 68.12±2.49bc | 66.00±0.91bc | 66.00±0.91c | |
P1 | 64.30±3.43d | 62.30±1.21de | 63.51±2.27c | 53.27±1.32d | |
P2 | 68.17±2.13cd | 73.31±1.74a | 76.44±1.87a | 85.26±2.94a | |
P3 | 64.57±1.00d | 65.81±1.07bcd | 63.47±2.04c | 63.05±1.16c | |
P4 | 65.16±0.53d | 68.20±3.49b | 65.30±2.53c | 73.92±2.00b | |
P5 | 82.48±2.77a | — | 65.49±1.43bc | — | |
P6 | 65.14±3.85d | 68.08±0.19bc | 74.31±4.11a | 72.45±2.04b | |
P7 | 76.47±3.42b | 64.58±1.81cd | 69.21±1.04b | 64.88±3.09c | |
P8 | 70.90±2.19c | 60.52±2.73e | 65.59±2.06bc | 55.57±3.38d |
项目 Item | w(Cd)=1 mg∙kg-1 | w(Cd)=5 mg∙kg-1 | ||||
---|---|---|---|---|---|---|
方程 Equation | 相关系数 Correlation | 方程 Equation | 相关系数 Correlation | |||
土壤有效Cd Soil available Cd | pH | y = -0.1027x+1.2359 | 0.4565** | y = -0.5159x+5.9955 | 0.3622** | |
有机质OM | y = -0.0073x+0.4672 | 0.3150* | y= -0.0549x+2.3453 | 0.3106* | ||
碱解氮Available N | y = -0.0005x+0.3961 | 0.1887 | y= -0.0056x+1.9134 | 0.3069* | ||
速效磷Available P | y = -0.0029x+0.5002 | 0.7645** | y = -0.0225x+2.664 | 0.8156** | ||
有效钾Available K | y = -0.0006x+0.5219 | 0.7459** | y= -0.0046x+2.7226 | 0.8209** | ||
小白菜Cd Cd in Chinese cabbage | pH | y = -0.0442x+0.5235 | 0.5457** | y = -0.168x+1.9869 | 0.4324** | |
有机质OM | y = -0.0033x+0.1947 | 0.3959** | y = -0.0237x+0.8739 | 0.4921** | ||
碱解氮Available N | y = 0.0001x+0.1432 | 0.152 | y = -0.0002x+0.5751 | 0.0361 | ||
速效磷Available P | y = -0.0008x+0.1866 | 0.5851** | y = -0.0054x+0.8138 | 0.7184** | ||
有效钾Available K | y = -0.0002x+0.1906 | 0.5446** | y = -0.0011x+0.8207 | 0.7033** |
表8 土壤有效态Cd含量、小白菜Cd含量与土壤理化性质相关性分析
Table 8 Correlation analysis between soil properties, soil available Cd content and Cd content in Chinese cabbage
项目 Item | w(Cd)=1 mg∙kg-1 | w(Cd)=5 mg∙kg-1 | ||||
---|---|---|---|---|---|---|
方程 Equation | 相关系数 Correlation | 方程 Equation | 相关系数 Correlation | |||
土壤有效Cd Soil available Cd | pH | y = -0.1027x+1.2359 | 0.4565** | y = -0.5159x+5.9955 | 0.3622** | |
有机质OM | y = -0.0073x+0.4672 | 0.3150* | y= -0.0549x+2.3453 | 0.3106* | ||
碱解氮Available N | y = -0.0005x+0.3961 | 0.1887 | y= -0.0056x+1.9134 | 0.3069* | ||
速效磷Available P | y = -0.0029x+0.5002 | 0.7645** | y = -0.0225x+2.664 | 0.8156** | ||
有效钾Available K | y = -0.0006x+0.5219 | 0.7459** | y= -0.0046x+2.7226 | 0.8209** | ||
小白菜Cd Cd in Chinese cabbage | pH | y = -0.0442x+0.5235 | 0.5457** | y = -0.168x+1.9869 | 0.4324** | |
有机质OM | y = -0.0033x+0.1947 | 0.3959** | y = -0.0237x+0.8739 | 0.4921** | ||
碱解氮Available N | y = 0.0001x+0.1432 | 0.152 | y = -0.0002x+0.5751 | 0.0361 | ||
速效磷Available P | y = -0.0008x+0.1866 | 0.5851** | y = -0.0054x+0.8138 | 0.7184** | ||
有效钾Available K | y = -0.0002x+0.1906 | 0.5446** | y = -0.0011x+0.8207 | 0.7033** |
[1] |
GEEBELEN W, VANGRONSVELD J, ADRIANO D C, et al., 2002. Amendment-induced immobilization of lead in a lead-spiked soil: Evidence from phytotoxicity studies[J]. Water, Air, and Soil Pollution, 140:261-277.
DOI URL |
[2] |
HERWIJNEN R, HUTCHINGS T R, Al-TABBAA A, et al., 2007. Remediation of metal contaminated soil with mineral-amended composts[J]. Environmental Pollution, 150(3):347-354.
DOI URL |
[3] | KONG X S, ZHANG M X, GUO X P, 1999. Effect of Cd toxicity on cell membrane permeability and protective enzyme activity of maize seedling[J]. Agro-Environ Protection, 18(3):133-134. |
[4] |
KUMPIENE J, LAGERKVIST A, MAURICE C, 2008. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—A review[J]. Waste Management, 28(1):215-225.
DOI URL |
[5] |
SINGH B R, MYHR K, 1998. Cadmium uptake by barley as affected by Cd sources and pH levels[J]. Geoderma, 84(1-3):185-194.
DOI URL |
[6] |
YU H Y, LIU C P, ZHU J S, et al., 2016. Cadmium availability in rice paddy fields from a mining area:The effects of soil properties highlighting iron fractions and pH value[J]. Environmental Pollution, 209(1):38-45.
DOI URL |
[7] | 陈能场, 郑煜基, 何晓峰, 等, 2017. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 36(9):1689-1692. |
CHEN N C, ZHENG Y J, HE X F, et al., 2017. Analysis of the bulletin of national soil pollution survey[J]. Journal of Agro-Environment Science, 36(9):1689-1692. | |
[8] | 冯英, 马璐瑶, 王琼, 等, 2018. 我国土壤-蔬菜作物系统重金属污染及其安全生产综合农艺调控技术[J]. 农业环境科学学报, 37(11):2359-2370. |
FENG Y, MA L Y, WANG Q, et al., 2018. Heavy-metal pollution and safety production technologies of soil-vegetable crop systems in China[J]. Journal of Agro-Environment Science, 37(11):2359-2370. | |
[9] | 符云聪, 朱晓龙, 袁毳, 等, 2019. 含硫材料对中碱性农田土壤镉的钝化效果[J]. 生态与农村环境学报, 35(10):1353-1360. |
FU Y C, ZHU X L, YUAN C, et al., 2019. Study on the Effect of Sulfur Materials on Immobilization of Cadmium in Contaminated Alkaline Farmland Soils[J]. Journal of Ecology and Rural Environment, 35(10):1353-1360. | |
[10] | 国家卫生和计划生育委员会, 国家食品药品监督管理总局, 2017. 食品安全国家标准食品中污染物限量(GB 2762—2017)[S]. 北京: 中国标准出版社. |
National Health and Family Planning Commission, China Food and Drug Administration, 2017. National standards for food safety, limits for contaminants in food (GB 2762—2017) [S]. Beijing: China Standard Press. | |
[11] | 华珞, 陈世宝, 白玲玉, 等, 1998. 有机肥对镉锌污染土壤的改良效应[J]. 农业环境保护, 17(2):55-59, 62. |
HUA L, CHEN S B, BAI L Y, et al., 1998. Amelioration of soils polluted by cadmium and zinc by organic matter[J]. Agro-Environmental Protection, 17(2):55-59, 62. | |
[12] | 侯艺璇, 赵华甫, 吴克宁, 等, 2018. 基于BP神经网络的作物 Cd含量预测及安全种植分区[J]. 资源科学, 40(12):2414-2424. |
HOU Y X, ZHAO H F, WU K N, et al., 2018. Prediction of crop Cd content and zoning of safety planting based on BP neural network[J]. Resources Science, 40(12):2414-2424. | |
[13] | 刘勇, 刘燕, 朱光旭, 等, 2019. 石灰对 Cu、Cd、Pb、Zn 复合污染土壤中重金属化学形态的影响[J]. 环境工程, 37(2):158-164. |
LIU Y, LIU Y, ZHU G X, et al., 2019. Effects of lime on chemical forms of heavy metals under combined pollution of Cu, Cd, Pb and Zn in soils[J]. Environmental Engineering, 37(2):158-164. | |
[14] | 罗远恒, 顾雪元, 吴永贵, 等, 2014. 钝化剂对农田土壤镉污染的原位钝化修复效应研究[J]. 农业环境科学学报, 35(5):890-897. |
LUO Y H, GU X Y, WU Y G, et al., 2014. In-situ remediation of cadmium-polluted agriculture land using stabilizing amendments[J]. Journal of Agro-Environment Science, 35(5):890-897. | |
[15] | 彭鸥, 刘玉玲, 铁柏清, 等, 2019. 施硅对镉胁迫下水稻镉吸收和转运的调控效应[J]. 生态学杂志, 38(4):1049-1056. |
PENG O, LIU Y L, TIE B Q, et al., 2019. Effects of silicon application on cadmium uptake and translocation of rice under cadmium stress[J]. Chinese Journal of Ecology, 38(4):1049-1056. | |
[16] | 茹淑华, 耿暖, 张国印, 等, 2016. 河北省典型蔬菜产区土壤和蔬菜中重金属累积特征研究[J]. 生态环境学报, 25(8):1407-1411. |
RU S H, GENG N, ZHANG G Y, et al., 2016. Heavy metals accumulation in soil and vegetable collected from typical vegetable production areas in Hebei Province[J]. Ecology and Environmental Sciences, 25(8):1407-1411. | |
[17] | 生态环境部, 国家市场监督管理总局, 2018. 土壤环境质量农用地土壤污染风险管控标准(试行)(GB 15618—2018) [S]. 北京: 中国环境科学出版社. |
Ministry of Ecological Environment, State General Administration of Market Supervision and Administration, 2018. Soil environmental quality, soil pollution risk control standard for agricultural land (GB 15618—2018)[S]. Beijing: China Environmental Sciences Press. | |
[18] | 孙硕, 李菊梅, 马义兵, 等, 2019. 河北省蔬菜大棚土壤及蔬菜中重金属累积分析[J]. 农业资源与环境学报, 36(2):236-244. |
SUN S, LI J M, MA Y B, et al., 2019. Accumulation of heavy metals in soil and vegetables of greenhouses in Hebei Province, China[J]. Journal of Agricultural Resources and Environment, 36(2):236-244. | |
[19] | 王维, 2012. 水稻镉吸收的区域模型及其调控研究[D]. 南京: 南京林业大学: 17-27. |
WANG W, 2012. Rice cadmium uptake by the regional model and its regulation[D]. Nanjing: Nanjing Forestry University: 17-27. | |
[20] | 王展, 张玉龙, 虞娜, 等, 2013. 不同冻融处理土壤对镉的吸附能力及其影响因子分析[J]. 农业环境科学学报, 32(4):708-713. |
WANG Z, ZHANG Y L, YU N, et al., 2013. Soil Cd adsorption ability under different freeze/thawing treatments and its influencing factors[J]. Journal of Agro-Environment Science, 32(4):708-713. | |
[21] | 韦小了, 牟力, 付天岭, 等, 2019. 不同钝化剂组合对水稻各部位吸收积累Cd及产量的影响[J]. 土壤学报, 56(4):883-894. |
WEI X L, MOU L, FU T L, et al., 2019. Effects of passivator on Cd absorption and accumulation and yield of rice as affected by its combination[J]. Acta Pedologica Sinica, 56(4):883-894. | |
[22] | 肖艳辉, 李应文, 邹碧, 等, 2021. 钝化剂抑制南方污染农田籽粒苋吸收重金属的效应研究[J]. 生态环境学报, 30(4):825-833. |
XIAO Y H, LI Y W, ZOU B, et al., 2021. Reduction of heavy metal uptake by amaranth by 3 soil amendments in contaminated farmland of south China[J]. Ecology and Environmental Sciences, 30(4):825-833. | |
[23] | 杨启良, 武振中, 陈金陵, 等, 2015. 植物修复重金属污染土壤的研究现状及其水肥调控技术展望[J]. 生态环境学报, 24(6):1075-1084. |
YANG Q L, WU Z Z, CHEN J L, et al., 2015. Research status of phytoremediation of heavy metals contaminated soil and prospects of water and fertilizer regulating technology[J]. Ecology and Environmental Sciences, 24(6):1075-1084. | |
[24] | 叶新新, 孙波, 2012. 品种和土壤对水稻镉吸收的影响及镉生物有效性预测模型研究进展[J]. 土壤, 44(3):360-365. |
YE X X, SUN B, 2012. Reviews on the effects of rice cultivars and soil types on Cd absorption and prediction model for Cd bioavailability[J]. Soils, 44(3):360-365. | |
[25] | 殷飞, 王海娟, 李燕燕, 等, 2015. 不同钝化剂对重金属复合污染土壤的修复效应研究[J]. 农业环境科学学报, 34(3):438-448. |
YIN F, WANG H J, LI Y Y, et al., 2015. Remediation of multiple heavy metal polluted soil using different immobilizing agents[J]. Journal of Agro-Environment Science, 34(3):438-448. | |
[26] | 曾希柏, 李莲芳, 梅旭荣, 2007. 中国蔬菜土壤重金属含量及来源分析[J]. 中国农业科学, 40(11):2507-2517. |
ZENG X B, LI L F, MEI X R, 2007. Heavy metal content in soils of vegetable-growing lands in China and source analysis[J]. Scientia Agricultura Sinica, 40(11):2507-2517. |
[1] | 李海鹏, 黄月华, 孙晓东, 曹启民, 符芳兴, 孙楚涵. 海南农田不同质地砖红壤及其细菌群落与番茄青枯病发生的关联分析[J]. 生态环境学报, 2023, 32(6): 1062-1069. |
[2] | 杜丹丹, 高瑞忠, 房丽晶, 谢龙梅. 旱区盐湖盆地土壤重金属空间变异及对土壤理化因子的响应[J]. 生态环境学报, 2023, 32(6): 1123-1132. |
[3] | 王礼霄, 刘晋仙, 柴宝峰. 华北亚高山土壤细菌群落及氮循环对退耕还草的响应[J]. 生态环境学报, 2022, 31(8): 1537-1546. |
[4] | 王磊, 温远光, 周晓果, 朱宏光, 孙冬婧. 尾巨桉与红锥混交对林下植被和土壤性质的影响[J]. 生态环境学报, 2022, 31(7): 1340-1349. |
[5] | 钱莲文, 余甜甜, 梁旭军, 王义祥, 陈永山. 茶园土壤酸化改良中生物炭应用5 a后的稳定性研究[J]. 生态环境学报, 2022, 31(7): 1442-1447. |
[6] | 杨冲, 王春燕, 王文颖, 毛旭峰, 周华坤, 陈哲, 索南吉, 靳磊, 马华清. 青藏高原黄河源区高寒草地土壤营养特征变化及质量评价[J]. 生态环境学报, 2022, 31(5): 896-908. |
[7] | 李春环, 王攀, 余海龙, 李冰, 黄菊莹. 西北荒漠煤矿区降水降尘中盐基离子沉降特征及其效应研究[J]. 生态环境学报, 2022, 31(5): 969-978. |
[8] | 夏开, 邓鹏飞, 马锐豪, 王斐, 温正宇, 徐小牛. 马尾松次生林转换为湿地松和杉木林对土壤细菌群落结构和多样性的影响[J]. 生态环境学报, 2022, 31(3): 460-469. |
[9] | 上官宇先, 尹宏亮, 徐懿, 钟红梅, 何明江, 秦鱼生, 郭松, 喻华. 不同钝化剂对水稻小麦籽粒镉吸收的影响[J]. 生态环境学报, 2022, 31(2): 370-379. |
[10] | 伍德, 彭鸥, 刘玉玲, 张朴心, 尹雪斐, 黄薪铭, 铁柏清. 螯合剂及组配对伴矿景天修复两种镉污染土壤的影响[J]. 生态环境学报, 2022, 31(12): 2414-2421. |
[11] | 姜晶, 阮呈杰, 陈霄宇, 吴仪, 汪永创. 微塑料模拟老化及其对污染物吸附行为影响研究进展[J]. 生态环境学报, 2022, 31(11): 2263-2274. |
[12] | 刘佩伶, 刘效东, 冯英杰, 苏宇乔, 甘先华, 张卫强. 新丰江水库库区水源涵养林土壤饱和导水率特征[J]. 生态环境学报, 2022, 31(10): 1993-2001. |
[13] | 姜晶, 邓精灵, 盛光遥. 生物炭老化及其对重金属吸附影响研究进展[J]. 生态环境学报, 2022, 31(10): 2089-2100. |
[14] | 王瑞, 宋祥云, 柳新伟. 黄河三角洲不同植被类型土壤酶活性的季节变化[J]. 生态环境学报, 2022, 31(1): 62-69. |
[15] | 刘娟, 张乃明, 袁启慧. 不同钝化剂对铅镉复合污染土壤钝化效果及影响因素研究[J]. 生态环境学报, 2021, 30(8): 1732-1741. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||