生态环境学报 ›› 2022, Vol. 31 ›› Issue (12): 2414-2421.DOI: 10.16258/j.cnki.1674-5906.2022.12.016
伍德1,2,3(), 彭鸥1,2,3, 刘玉玲1,2,3, 张朴心1,2,3, 尹雪斐1,2,3, 黄薪铭1,2,3, 铁柏清1,2,3,*(
)
收稿日期:
2022-04-06
出版日期:
2022-12-18
发布日期:
2023-02-15
通讯作者:
*铁柏清,男,教授,主要从事农田土壤重金属污染治理研究。E-mail: tiebq@qq.com作者简介:
伍德(1999年生),男,硕士研究生,主要研究方向为重金属污染治理与修复。E-mail: 3273718771@qq.com
基金资助:
WU De1,2,3(), PENG Ou1,2,3, LIU Yuling1,2,3, ZHANG Puxin1,2,3, YIN Xuefei1,2,3, HUANG Xinming1,2,3, TIE Boqing1,2,3,*(
)
Received:
2022-04-06
Online:
2022-12-18
Published:
2023-02-15
摘要:
为探究螯合剂及其组配对伴矿景天(Sedum plumbizincicola)修复酸性Cd污染土壤的效果,以乙二胺四乙酸二钠(EDTA)、草酸(OA)、酒石酸(TA)3种螯合剂为试验材料,以Cd单一污染和Cd/As复合污染酸性农田土壤为研究对象,设置3种螯合剂单一处理及其组配处理,对比了修复前后两种污染土壤的pH值、全量Cd、有效态Cd含量、Cd形态的变化以及修复效率。研究结果表明:施用螯合剂后两种污染类型的土壤pH明显下降,其中以EDTA-OA组配处理pH下降最大,相比于对照组分别下降了1.04和0.99个单位。对于土壤镉形态而言,两种酸性土壤中弱酸可溶态Cd的含量显著提高,EDTA-OA处理效果最明显,两种土壤中可溶态Cd的含量分别提高了22.99%和24.34%。对于伴矿景天镉积累而言,施用螯合剂促进了伴矿景天对Cd的吸收,两种类型土壤施用螯合剂后植株镉含量增加了25.80%—86.47%。对于修复效率而言,施用螯合剂后伴矿景天在两种土壤中修复效率分别为16.62%—22.82%、16.06%—24.98%;以EDTA-OA处理效果最显著,修复效率分别提高了9.06%和12.14%。综合而言,在两种类型镉污染土壤中采用乙二胺四乙酸二钠和草酸1?1组配施用修复效果最好。
中图分类号:
伍德, 彭鸥, 刘玉玲, 张朴心, 尹雪斐, 黄薪铭, 铁柏清. 螯合剂及组配对伴矿景天修复两种镉污染土壤的影响[J]. 生态环境学报, 2022, 31(12): 2414-2421.
WU De, PENG Ou, LIU Yuling, ZHANG Puxin, YIN Xuefei, HUANG Xinming, TIE Boqing. Effects of Chelating Agents and Thier Combinations on Remediation of Two Cadmium Contaminated Soils by Sedum plumbizincicola[J]. Ecology and Environment, 2022, 31(12): 2414-2421.
试验地点 Experimental location | 镉质量分数 w(Cd)/ (mg∙kg−1) | 有效态镉质量分数 w(available Cd)/ (mg∙kg−1) | 砷质量分数w(As)/ (mg∙kg−1) | 有效态砷质量分数 w(available As)/ (mg∙kg−1) | 阳离子交换量 Cation exchange capacity/(cmol∙kg−1) | pH | 有机质质量分数 w(soil organic matter)/ (g∙kg−1) | 污染类型 Pollution type |
---|---|---|---|---|---|---|---|---|
渌口区 Lukou district | 0.93 | 0.27 | 7.80 | 0.04 | 11.60 | 5.75 | 51.40 | 单一镉污染 Cd contaminated soil |
浏阳市 Liuyang city | 0.78 | 0.50 | 47.90 | 0.96 | 7.10 | 5.88 | 32.80 | 镉砷复合污染 Cd-As contaminated soil |
表1 供试土壤背景值
Table 1 Background levels of heavy metals in tested soil
试验地点 Experimental location | 镉质量分数 w(Cd)/ (mg∙kg−1) | 有效态镉质量分数 w(available Cd)/ (mg∙kg−1) | 砷质量分数w(As)/ (mg∙kg−1) | 有效态砷质量分数 w(available As)/ (mg∙kg−1) | 阳离子交换量 Cation exchange capacity/(cmol∙kg−1) | pH | 有机质质量分数 w(soil organic matter)/ (g∙kg−1) | 污染类型 Pollution type |
---|---|---|---|---|---|---|---|---|
渌口区 Lukou district | 0.93 | 0.27 | 7.80 | 0.04 | 11.60 | 5.75 | 51.40 | 单一镉污染 Cd contaminated soil |
浏阳市 Liuyang city | 0.78 | 0.50 | 47.90 | 0.96 | 7.10 | 5.88 | 32.80 | 镉砷复合污染 Cd-As contaminated soil |
处理编号 Test label | 施用的螯合剂种类 Type of chelating agent | 施用质量 摩尔浓度 b/(mmol∙kg−1) | 施用方法 Application method |
---|---|---|---|
CK | — | — | — |
EDTA | EDTA | 2 | 单一施用 |
OA | OA | 2 | 单一施用 |
TA | TA | 2 | 单一施用 |
EDTA-OA | EDTA, OA | 2 | 1꞉1组配施用 |
EDTA-TA | EDTA, TA | 2 | 1꞉1组配施用 |
TA-OA | OA, TA | 2 | 1꞉1组配施用 |
表2 试验处理设计
Table 2 Experimental design for the chelating agents enhanced remediation of Cd contaminated soils by Sedum plumbizincicola
处理编号 Test label | 施用的螯合剂种类 Type of chelating agent | 施用质量 摩尔浓度 b/(mmol∙kg−1) | 施用方法 Application method |
---|---|---|---|
CK | — | — | — |
EDTA | EDTA | 2 | 单一施用 |
OA | OA | 2 | 单一施用 |
TA | TA | 2 | 单一施用 |
EDTA-OA | EDTA, OA | 2 | 1꞉1组配施用 |
EDTA-TA | EDTA, TA | 2 | 1꞉1组配施用 |
TA-OA | OA, TA | 2 | 1꞉1组配施用 |
图1 螯合剂对两种污染土壤pH的影响 图中数据为平均值±标准误(n=3);表中不同字母表示不同处理之间差异显著(P<0.05),下同
Figure 1 Effect of chelating agents on pH of the two Cd contaminated soils Data in the figure are mean±standard error (n=3); Different letters in the table indicate significant differences among different treatments (P<0.05), the same below
处理编号 Test label | 修复后土壤全量Cd 质量分数 w( Cd in the restored soi)/(mg∙kg−1) | 修复后土壤有效态Cd 质量分数 w(available Cd in the restored soi)/(mg∙kg−1) |
---|---|---|
CK | 0.77±0.02a | 0.16±0.03a |
EDTA | 0.70±0.01bc | 0.19±0.08a |
OA | 0.71±0.02b | 0.22±0.07a |
TA | 0.71±0.03bc | 0.23±0.01a |
EDTA-OA | 0.69±0.03bc | 0.16±0.03a |
EDTA-TA | 0.66±0.03c | 0.18±0.02a |
TA-OA | 0.68±0.03bc | 0.19±0.05a |
表3 螯合剂对Cd单一污染土壤全量Cd和有效态Cd含量的影响
Table 3 Effects of chelating agents on the contents of total Cd and available Cd in Cd contaminated soil
处理编号 Test label | 修复后土壤全量Cd 质量分数 w( Cd in the restored soi)/(mg∙kg−1) | 修复后土壤有效态Cd 质量分数 w(available Cd in the restored soi)/(mg∙kg−1) |
---|---|---|
CK | 0.77±0.02a | 0.16±0.03a |
EDTA | 0.70±0.01bc | 0.19±0.08a |
OA | 0.71±0.02b | 0.22±0.07a |
TA | 0.71±0.03bc | 0.23±0.01a |
EDTA-OA | 0.69±0.03bc | 0.16±0.03a |
EDTA-TA | 0.66±0.03c | 0.18±0.02a |
TA-OA | 0.68±0.03bc | 0.19±0.05a |
处理编号 Test label | 修复后土壤全量Cd 质量分数 w(Cd in the restored soi)/(mg∙kg−1) | 修复后土壤有效态Cd 质量分数 w(available Cd in the restored soi)/(mg∙kg−1) |
---|---|---|
CK | 0.69±0.08a | 0.46±0.06a |
EDTA | 0.65±0.08ab | 0.49±0.03a |
OA | 0.63±0.02b | 0.52±0.06a |
TA | 0.70±0.04a | 0.51±0.04a |
EDTA-OA | 0.59±0.08c | 0.47±0.03a |
EDTA-TA | 0.64±0.01ab | 0.49±0.04a |
TA-OA | 0.61±0.04bc | 0.51±0.06a |
表4 螯合剂对Cd、As复合污染土壤全量Cd和有效态Cd含量的影响
Table 4 Effects of chelating agents on the contents of total Cd and available Cd in Cd-As contaminated soil
处理编号 Test label | 修复后土壤全量Cd 质量分数 w(Cd in the restored soi)/(mg∙kg−1) | 修复后土壤有效态Cd 质量分数 w(available Cd in the restored soi)/(mg∙kg−1) |
---|---|---|
CK | 0.69±0.08a | 0.46±0.06a |
EDTA | 0.65±0.08ab | 0.49±0.03a |
OA | 0.63±0.02b | 0.52±0.06a |
TA | 0.70±0.04a | 0.51±0.04a |
EDTA-OA | 0.59±0.08c | 0.47±0.03a |
EDTA-TA | 0.64±0.01ab | 0.49±0.04a |
TA-OA | 0.61±0.04bc | 0.51±0.06a |
处理编号 Test label | 修复前土壤Cd质量分数 w(Cd in unrestored soi)/ (mg∙kg−1) | 植株地上部分Cd质量分数 w(Cd in plant aerial portion)/ (mg∙kg−1) | 植株地上部分烘干质量 m(plant aerial portion)/ (kg∙hm−2) | Cd提取量 Cd extraction quantity/ (mg∙hm−2) | 修复效率 Remediation efficiency/ % |
---|---|---|---|---|---|
CK | 0.87±0.05 | 58.53±2.24f | 4.60×103 | 2.69×105 | 13.76 |
EDTA | 0.92±0.07 | 91.59±3.31c | 4.70×103 | 4.30×105 | 20.79 |
OA | 0.90±0.11 | 79.30±2.77d | 4.59×103 | 3.64×105 | 17.97 |
TA | 0.91±0.05 | 73.63±3.02e | 4.62×103 | 3.40×105 | 16.62 |
EDTA-OA | 0.93±0.09 | 103.88±3.74a | 4.60×103 | 4.77×105 | 22.82 |
EDTA-TA | 0.90±0.08 | 95.04±2.68b | 4.68×103 | 4.45×105 | 21.96 |
TA-OA | 0.92±0.10 | 92.95±2.37c | 4.61×103 | 4.29×105 | 20.71 |
表5 施用螯合剂对Cd单一污染土壤修复效率的影响
Table 5 Effect of chelating agents on remediation performance of Sedum plumbizincicola for Cd contaminated soil
处理编号 Test label | 修复前土壤Cd质量分数 w(Cd in unrestored soi)/ (mg∙kg−1) | 植株地上部分Cd质量分数 w(Cd in plant aerial portion)/ (mg∙kg−1) | 植株地上部分烘干质量 m(plant aerial portion)/ (kg∙hm−2) | Cd提取量 Cd extraction quantity/ (mg∙hm−2) | 修复效率 Remediation efficiency/ % |
---|---|---|---|---|---|
CK | 0.87±0.05 | 58.53±2.24f | 4.60×103 | 2.69×105 | 13.76 |
EDTA | 0.92±0.07 | 91.59±3.31c | 4.70×103 | 4.30×105 | 20.79 |
OA | 0.90±0.11 | 79.30±2.77d | 4.59×103 | 3.64×105 | 17.97 |
TA | 0.91±0.05 | 73.63±3.02e | 4.62×103 | 3.40×105 | 16.62 |
EDTA-OA | 0.93±0.09 | 103.88±3.74a | 4.60×103 | 4.77×105 | 22.82 |
EDTA-TA | 0.90±0.08 | 95.04±2.68b | 4.68×103 | 4.45×105 | 21.96 |
TA-OA | 0.92±0.10 | 92.95±2.37c | 4.61×103 | 4.29×105 | 20.71 |
处理编号 Test label | 修复前土壤Cd质量分数 w(Cd in unrestored soi)/ (mg∙kg−1) | 植株地上部分Cd质量分数 w(Cd in plant aerial portion)/ (mg∙kg−1) | 植株地上部分烘干质量 m(plant aerial portion)/ (kg∙hm−2) | Cd提取量 Cd extraction quantity/ (mg∙hm−2) | 修复效率 Remediation efficiency/ % |
---|---|---|---|---|---|
CK | 0.79±0.04 | 48.34±2.09f | 4.70×103 | 2.27×105 | 12.79 |
EDTA | 0.82±0.08 | 80.98±3.55c | 4.80×103 | 3.89×105 | 21.06 |
OA | 0.80±0.07 | 77.07±3.14d | 4.69×103 | 3.61×105 | 20.09 |
TA | 0.83±0.08 | 64.18±2.87e | 4.70×103 | 3.02×105 | 16.06 |
EDTA-OA | 0.76±0.05 | 90.14±3.26a | 4.75×103 | 4.28×105 | 24.98 |
EDTA-TA | 0.81±0.06 | 81.77±2.73c | 4.73×103 | 3.87×105 | 21.14 |
TA-OA | 0.78±0.05 | 84.46±3.04b | 4.71×103 | 3.98×105 | 22.62 |
表6 施用螯合剂对Cd、As复合污染土壤修复效率的影响
Table 6 Effect of chelating agents on remediation performance of Sedum plumbizincicola for Cd-As contaminated soil
处理编号 Test label | 修复前土壤Cd质量分数 w(Cd in unrestored soi)/ (mg∙kg−1) | 植株地上部分Cd质量分数 w(Cd in plant aerial portion)/ (mg∙kg−1) | 植株地上部分烘干质量 m(plant aerial portion)/ (kg∙hm−2) | Cd提取量 Cd extraction quantity/ (mg∙hm−2) | 修复效率 Remediation efficiency/ % |
---|---|---|---|---|---|
CK | 0.79±0.04 | 48.34±2.09f | 4.70×103 | 2.27×105 | 12.79 |
EDTA | 0.82±0.08 | 80.98±3.55c | 4.80×103 | 3.89×105 | 21.06 |
OA | 0.80±0.07 | 77.07±3.14d | 4.69×103 | 3.61×105 | 20.09 |
TA | 0.83±0.08 | 64.18±2.87e | 4.70×103 | 3.02×105 | 16.06 |
EDTA-OA | 0.76±0.05 | 90.14±3.26a | 4.75×103 | 4.28×105 | 24.98 |
EDTA-TA | 0.81±0.06 | 81.77±2.73c | 4.73×103 | 3.87×105 | 21.14 |
TA-OA | 0.78±0.05 | 84.46±3.04b | 4.71×103 | 3.98×105 | 22.62 |
[1] | CHEN Y H, LI X D, LIU H Y, et al., 2002. The potential of India mustard for phytoremediation of Pb-contaminated soils with the aid of EDTA addition[J]. Journal of Nanjing Agricultural University, 25(4): 15-18. |
[2] |
GAO Y, MIAO C Y, MAO L, et al., 2010. Improvement of phytoextraction and antioxidative defense in Solanum nigrum L. under cadmium stress by application of cadmium-resistant strain and citric acid[J]. Journal of Hazardous Materials, 181(1-3): 771-777.
DOI PMID |
[3] |
GRČMAN H, VELIKONJA-BOLTA Š, VODNIK D, et al., 2001. EDTA enhanced heavy metal phytoextraction: Metal accumulation, leaching and toxicity[J]. Plant and Soil, 235(1): 105-114.
DOI URL |
[4] |
JUN K G, XIN L, HONG L J, et al., 2020. Effects of EDTA and plant growth-promoting rhizobacteria on plant growth and heavy metal uptake of hyperaccumulator Sedum alfredii Hance[J]. Journal of Environmental Sciences, 88(2): 361-369.
DOI URL |
[5] |
MCGRATH S P, ZHAO F J, LOMBI E, 2001. Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils[J]. Plant and Soil, 232(1): 207-214.
DOI URL |
[6] |
RASCIO N, NAVARI-IZZO F, 2011. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting?[J]. Plant Science, 180(2): 169-181.
DOI PMID |
[7] |
RAURET G, LÓPEZ S J F, SAHUQUILLO A, et al., 1999. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J]. Journal of Environmental Monitoring, 1(1): 57-61.
PMID |
[8] |
SILLANPÄÄ M E T, KURNIAWAN T A, LO W, 2011. Degradation of chelating agents in aqueous solution using advanced oxidation process (AOP)[J]. Chemosphere, 83(11): 1443-1460.
DOI PMID |
[9] |
VASSIL A D, KAPULNIK Y, RASKIN I, et al., 1998. The role of EDTA in lead transport and accumulation by Indian mustard[J]. Plant Physiology, 117(2): 447-453.
DOI URL |
[10] |
ZHU X D, YANG F, WEI C Y, 2015. Factors influencing the heavy metal bioaccessibility in soils were site dependent from different geographical locations[J]. Environmental Science and Pollution Research, 22(18): 13939-13949.
DOI URL |
[11] | 曹雪莹, 谭长银, 谢雨呈, 等, 2019. 土壤pH和Cd全量对伴矿景天修复效率的影响[J]. 环境科学研究, 32(9): 1604-1612. |
CAO X Y, TAN C Y, XIE Y C, et al., 2019. Effect of soil pH and total Cadmium concentration of soil on the remediation efficiency of Sedum plumbizincicola[J]. Research of Environmental Sciences, 32(9): 1604-1612. | |
[12] | 陈雅慧, 杨轶雄, 李宁锋, 等, 2021. 复合螯合剂对铺地竹铅富集及土壤环境的影响[J]. 环境科学与技术, 44(4): 140-148. |
CHEN Y H, YANG Y X, LI N F, et al., 2021. Effect of compound chelating agent on the accumulation of Pb in Sasa argenteostriata E. G. Camus and soil environment[J]. Environmental Science & Technology, 44(4): 140-148. | |
[13] | 丁雪莲, 2012. 乙二胺四乙酸辅助藜及小蓬草修复铅、镉、锰及其复合污染土壤的研究[D]. 新乡: 河南师范大学. |
DING X L, 2012. EDTA assisted phytoremediation of Chenopodium albaum and Chenopodium serotinuml for Pb, Cd, Mn and the combined contaminated soil[D]. Xinxiang: Henan Normal University. | |
[14] | 丁竹红, 胡忻, 尹大强, 等, 2009. 螯合剂在重金属污染土壤修复中应用研究进展[J]. 生态环境学报, 18(2): 777-782. |
DING Z H, HU X, YIN D Q, et al., 2009. Application of chelants in remediation of heavy metals-contaminated soil[J]. Ecology and Environmental Sciences, 18(2): 777-782. | |
[15] | 冯丹妮, 杨虎德, 马彦, 等, 2019. 土壤重金属复合污染的生态效应研究综述[J]. 甘肃农业科技 (9): 73-77. |
FENG D N, YANG H D, MA Y, et al., 2019. Ecological effects of heavy metal contaminated pollution research[J]. Gansu Agricultural Science and Technology (9): 73-77. | |
[16] | 方晓航, 仇荣亮, 曾晓雯, 等, 2005. EDTA、小分子有机酸对蛇纹岩发育土壤Ni、Co活性的影响[J]. 中山大学学报 (自然科学版), 44(4): 111-114, 128. |
FANG X H, QIU R L, ZENG X W, et al., 2005. Effect of EDTA and LMWOA on availability of Nickel and Cobalt in serpentine soil[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 44(4): 111-114, 128. | |
[17] | 葛芳芳, 王学锋, 付卫静, 等, 2017. 我国农耕土壤Cd污染与植物修复现状[J]. 环境保护科学, 43(5): 105-110. |
GE F F, WANG X F, FU W J, et al., 2017. A review of cadmium polluted agricultural soils and phytoremediation in China[J]. Environmental Protection Science, 43(5): 105-110. | |
[18] | 郭勇, 童艳君, 2012. 我国农业土壤重金属污染现状及防治对策[J]. 现代农业科技 (18): 220-221. |
GUO Y, TONG Y J, 2012. The status and protection strategy of farmland soils polluted by heavy metals[J]. Modern Agricultural Sciences and Technology (18): 220-221. | |
[19] | 韩少华, 唐浩, 黄沈发, 等, 2011. 重金属污染土壤螯合诱导植物修复研究进展[J]. 环境科学与技术, 34(S1): 157-163. |
HAN S H, TANG H, HUANG S F, et al., 2011. Review of chelate-induced phytoremediation in heavy metal contaminated soil[J]. Environmental Science & Technology, 34(S1): 157-163. | |
[20] | 何其辉, 谭长银, 曹雪莹, 等, 2018. 肥料对土壤重金属有效态及水稻幼苗重金属积累的影响[J]. 环境科学研究, 31(5): 942-951. |
HE Q H, TAN C Y, CAO X Y, et al., Effects of fertilizer on the availability of heavy metals in soil and its accumulation in rice seedling[J]. Research of Environmental Science, 31(5): 942-951. | |
[21] | 环境保护部, 国土资源, 2014. 全国土壤污染状况调查公报[J]. 中国环保产业 (5): 10-11. |
The Ministry of Environmental Protection, The Ministry of Land and Resources, 2014. Report on the national soil contamination survey[J]. China Environmental Protection Industry (5): 10-11. | |
[22] | 黄铮, 徐力刚, 徐南军, 等, 2007. 土壤作物系统中重金属污染的植物修复技术研究现状与前景[J]. 农业环境科学学报, 26(B03): 58-62. |
HUANG Z, XU L G, XU N J, et al., 2007. Current status and expectation of phytoremediation of heavy metals in Soi-Crop system[J]. Journal of Agro-Environment Science, 26(B03): 58-62. | |
[23] | 蒋萍萍, 俞果, 姚诗音, 等, 2019. 不同螯合剂强化青葙修复土壤镉污染的效应[J]. 南方农业学报, 50(11): 2443-2449. |
JIANG P P, YU G, YAO S Y, et al., 2019. Remediation effects on cadmium contaminated soil by different chelating agents enhanced Celosia argentea Linn[J]. Journal of Southern Agriculture, 50(11): 2443-2449. | |
[24] | 刘亮, 2012. EDTA对矿区废弃地栾树生长及其重金属积累特征的影响[D]. 长沙: 中南林业科技大学. |
LIU L, 2012. The effect of EDTA on the mining area soil Koelreuteria paniculata growth and heavy metal accumulation characteristics[D]. Changsha: Central South University of Forestry and Technology. | |
[25] | 李晓宝, 董焕焕, 任丽霞, 等, 2019. 螯合剂修复重金属污染土壤联合技术研究进展[J]. 环境科学研究, 32(12): 1993-2000. |
LI X B, DONG H H, REN L X, et al., 2019. Effects of chelating agent combination technologies on soil contaminated by heavy metals[J]. Research of Environmental Sciences, 32(12): 1993-2000. | |
[26] | 刘兴瑞, 刁静茹, 张淋淋, 等, 2022. 化学强化植物修复复合污染土壤研究进展[J]. 环境化学, 41(4): 1335-1347. |
LIU X R, DIAO J R, ZHANG L L, et al., 2022. Research progress on chemically enhanced phytoremediation of co-contaminated soil[J]. Environmental Chemistry, 41(4): 1335-1347. | |
[27] | 罗昱, 2021. 螯合剂及有机酸强化凤尾鸡冠花修复Pb、Cd污染土壤研究[D]. 昆明: 昆明理工大学. |
LUO Y, 2021. Study on remediation of Pb and Cd contaminated soil by chelating agents and organic acids[D]. Kunming: Kunming University of Science and Technology. | |
[28] | 龙珍, 徐海涛, 张亚平, 等, 2016. 活化剂联合植物移除污染土壤重金属的研究进展[J]. 环境工程, 34(10): 172-176, 152. |
LONG Z, XU H T, ZHANG Y P, et al., 2016. Removal of heavy metals from contaminated soil by activating agents combined with plants[J]. Environmental Engineering, 34(10): 172-176, 152. | |
[29] | 马俊俊, 吴炯, 祖艳群, 等, 2020. 不同螯合剂对香石竹 (Dianthus caryophyllus) 修复镉污染土壤的影响[J]. 江西农业学报, 32(7): 57-64. |
MA J J, WU J, ZU Y Q, et al., 2020. Effects of chelating agents on remediation of Cadmium-contaminated soil by Dianthus caryophyllus[J]. Acta Agriculturae Jiangxi, 32(7): 57-64. | |
[30] | 孙约兵, 周启星, 任丽萍, 2007. 镉超富集植物球果蔊菜对镉-砷复合污染的反应及其吸收积累特征[J]. 环境科学, 28(6): 1355-1360. |
SUN Y B, ZHOU Q X, REN L P, 2007. Growth responses of rorippa globosa and its accumulation characteristics of Cd and As under the Cd-As Combined pollution[J]. Environmental Science, 28(6): 1355-1360. | |
[31] | 卫泽斌, 陈晓红, 吴启堂, 等, 2015. 可生物降解螯合剂GLDA诱导东南景天修复重金属污染土壤的研究[J]. 环境科学, 36(5): 1864-1869. |
WEI Z B, CHEN X H, WU Q T, et al., 2015. Enhanced phytoextraction of heavy metals from contaminated soils using Sedum alfredii Hance with biodegradable chelate GLDA[J]. Environmental Science, 36(5): 1864-1869. | |
[32] | 熊梓烨, 廉晶晶, 皮文, 等, 2020. 镉污染土壤植物修复技术研究进展[J]. 绿色科技 (24): 92-94. |
XIONG Z Y, LIAN J J, PI W, et al., 2020. Advances in phytoremediation of cadmium contaminated soil[J]. Journal of Green Science and Technology (24): 92-94. | |
[33] | 张根柱, 张社奇, 邵丽, 等, 2011. 外源柠檬酸对黄土高原塿土土壤养分的影响[J]. 西北林学院学报, 26(2): 47-51. |
ZHANG G Z, ZHANG S Q, SHAO L, et al., 2011. Effects of exogenous citric on nutrients of old manured loessal soil[J]. Journal of Northwest Forestry University, 26(2): 47-51. | |
[34] | 朱凰榕, 周良华, 阳峰, 等, 2019. 两种景天修复Cd/Zn污染土壤效果的比较[J]. 生态环境学报, 28(2): 403-410. |
ZHU H R, ZHOU L H, YANG F, et al., 2019. Phytoremediation effects and contrast of Sedum alfredii and Sedum plumbizincicola on Cd/Zn contaminated soil[J]. Ecology and Environmental Sciences, 28(2): 403-410. | |
[35] | 张继舟, 王宏韬, 袁磊, 等, 2013. 重金属污染土壤的植物修复技术研究[J]. 中国农学通报, 29(14): 134-139. |
ZHANG J Z, WANG H T, YUAN L, et al., 2013. Research on phytoremediation of soil contaminated by heavy metals[J]. Chinese Agricultural Science Bulletin, 29(14): 134-139. | |
[36] | 张譞, 李晔, 胡进, 等, 2013. 三种螯合剂对土壤重金属Cd和Zn形态变化的研究[J]. 科学技术与工程, 13(21): 6184-6188. |
ZHANG X, LI Y, HU J, et al., 2013. Effects of three chelate on the form distribution of Cd and Zn in soil[J]. Science Technology and Engineering, 13(21): 6184-6188. |
[1] | 赵良侠, 高坤, 黄婷婷, 高也, 琚唐丹, 蒋秋阳, 金珩, 熊蕾, 汤在琳, 高灿红. 玉米籽粒高/低镉积累自交系不同生育期的镉累积特性研究[J]. 生态环境学报, 2023, 32(4): 766-775. |
[2] | 杨耀东, 陈玉梅, 涂鹏飞, 曾清如. 经济作物轮作模式下镉污染农田修复潜力[J]. 生态环境学报, 2023, 32(3): 627-634. |
[3] | 刘抗旱, 郑刘根, 张理群, 丁丹, 单士锋. 复合型植物源活化剂强化蜈蚣草修复砷污染土壤的效应研究[J]. 生态环境学报, 2023, 32(3): 635-642. |
[4] | 谢洁芬, 章家恩, 危晖, 刘自强, 陈璇. 土壤中微塑料复合污染研究进展与展望[J]. 生态环境学报, 2022, 31(12): 2431-2440. |
[5] | 俞龙生, 李卫, 许铭宇, 林泽帆. 赤霉素浸种对2种矿区修复先锋植物种子萌发和幼苗生长的影响[J]. 生态环境学报, 2022, 31(11): 2225-2233. |
[6] | 刘娟, 张乃明, 袁启慧. 不同钝化剂对铅镉复合污染土壤钝化效果及影响因素研究[J]. 生态环境学报, 2021, 30(8): 1732-1741. |
[7] | 丛超, 杨宁柯, 王海娟, 王宏镔. 吲哚乙酸和激动素配合施用提高蜈蚣草和龙葵对砷、镉富集的田间试验[J]. 生态环境学报, 2021, 30(6): 1299-1309. |
[8] | 李富荣, 王琳清, 李文英, 吴志超, 王旭. 水芹对重金属的吸收累积及其应用研究进展[J]. 生态环境学报, 2021, 30(12): 2423-2430. |
[9] | 茹淑华, 赵欧亚, 侯利敏, 肖广敏, 王策, 孙世友, 张国印, 王凌, 刘蕾. 8种钝化剂产品对不同镉污染土壤理化性质和镉有效性的影响[J]. 生态环境学报, 2021, 30(10): 2085-2092. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||