生态环境学报 ›› 2021, Vol. 30 ›› Issue (8): 1599-1606.DOI: 10.16258/j.cnki.1674-5906.2021.08.006
祁雪连1(), 葛晓敏2, 钱壮壮1, 张康1, 郑旭1, 钱琦1, 丁晖2, 唐罗忠1,*(
)
收稿日期:
2021-03-03
出版日期:
2021-08-18
发布日期:
2021-11-03
通讯作者:
* 唐罗忠,教授,主要从事森林培育理论与技术研究。E-mail: luozhongtang@njfu.edu.cn作者简介:
祁雪连(1996年生),女,硕士,主要开展森林生态系统土壤学研究。E-mail: 1479674671@qq.com
基金资助:
QI Xuelian1(), GE Xiaomin2, QIAN Zhuangzhuang1, ZHANG Kang1, ZHENG Xu1, QIAN Qi1, DING Hui2, TANG Luozhong1,*(
)
Received:
2021-03-03
Online:
2021-08-18
Published:
2021-11-03
摘要:
为探究武夷山高海拔天然针阔混交林改造成毛竹人工林后土壤性质的变化规律及其原因,为今后制定天然林保护和人工林可持续经营方案提供参考,在福建省武夷山市星村镇桐木村选择相邻的天然针阔混交林和毛竹人工林(50年前由天然针阔混交林改造而来)为研究对象,采集两种林分的表层土壤(0—10 cm)和亚表层土壤(10—20 cm),分析了土壤碳氮磷钾等主要元素全量、土壤无机氮含量、微生物量碳和微生物量氮含量,以及脲酶和过氧化氢酶活性等指标。结果表明,天然针阔混交林改造成毛竹林后表层土壤和亚表层土壤的pH、电导率、有机碳、全氮、全磷和有效磷含量显著降低(P<0.05),土壤全钾含量显著提高(P<0.05);表层土壤微生物碳氮含量及亚表层土壤微生物碳含量显著提高(P<0.05),而亚表层土壤的微生物氮含量则无明显变化(P>0.05);表层土壤和亚表层土壤的铵态氮含量显著降低(P<0.05),硝态氮含量虽然显著上升(P<0.05),但硝态氮含量占无机氮总量的比例极小;表层土壤和亚表层土壤的脲酶活性分别降低7.4%和19.2%(P<0.05),过氧化氢酶活性呈下降趋势,但下降幅度不显著(P>0.05)。武夷山天然针阔混交林改造成毛竹人工林后,土壤酸化、土壤脲酶和过氧化氢酶活性降低、碳氮磷等元素含量减少,土壤肥力总体下降。
中图分类号:
祁雪连, 葛晓敏, 钱壮壮, 张康, 郑旭, 钱琦, 丁晖, 唐罗忠. 武夷山天然针阔混交林与毛竹人工林土壤性质差异[J]. 生态环境学报, 2021, 30(8): 1599-1606.
QI Xuelian, GE Xiaomin, QIAN Zhuangzhuang, ZHANG Kang, ZHENG Xu, QIAN Qi, DING Hui, TANG Luozhong. Differences of Soil Properties between Natural Mixed Coniferous and Broad-leaved Forest and Moso Bamboo Plantation in Wuyi Mountains[J]. Ecology and Environment, 2021, 30(8): 1599-1606.
土层 Soil layer/ cm | 林分类型 Stand type | pH | 电导率Conductivity γ/(μs∙cm-1) | 碳质量分数w(C)/ (g∙kg-1) | 全氮 质量分数 w(total nitrogen)/ (g∙kg-1) | w(C)/ w(N) | 全磷 质量分数 w(total phosphorus)/ (g∙kg-1) | 全钾 质量分数 w(total potassium)/ (g∙kg-1) | 有效磷 质量分数 w(available phosphorus)/ (mg∙kg-1) | 速效钾 质量分数 w(available potassium)/ (mg∙kg-1) |
---|---|---|---|---|---|---|---|---|---|---|
0-10 | 针阔混交林MCB | 4.37±0.07a | 99.5±1.7a | 121.62±0.02a | 4.03±0.01a | 30.18±0.59a | 0.68±0.01a | 3.53±0.01b | 3.19±0.01a | 110.60±0.47b |
毛竹林MB | 3.82±0.03b | 87.8±0.4b | 111.23±0.07b | 3.22±0.02b | 34.54±2.53a | 0.56±0.01b | 4.89±0.02a | 2.88±0.10b | 121.55±0.77a | |
10-20 | 针阔混交林MCB | 4.43±0.01a | 53.8±1.7a | 70.38±0.10a | 2.42±0.03a | 29.08±3.93a | 0.50±0.01a | 3.57±0.01b | 1.04±0.20a | 68.99±0.08a |
毛竹林MB | 4.24±0.01b | 50.9±0.5a | 60.76±0.03b | 2.03±0.01b | 29.93±1.95a | 0.43±0.01b | 6.21±0.01a | 0.89±0.05a | 70.23±1.05a |
表1 针阔混交林与毛竹林的土壤基本性质
Table 1 Soil properties in mixed coniferous and broad-leaved forest and moso bamboo plantation
土层 Soil layer/ cm | 林分类型 Stand type | pH | 电导率Conductivity γ/(μs∙cm-1) | 碳质量分数w(C)/ (g∙kg-1) | 全氮 质量分数 w(total nitrogen)/ (g∙kg-1) | w(C)/ w(N) | 全磷 质量分数 w(total phosphorus)/ (g∙kg-1) | 全钾 质量分数 w(total potassium)/ (g∙kg-1) | 有效磷 质量分数 w(available phosphorus)/ (mg∙kg-1) | 速效钾 质量分数 w(available potassium)/ (mg∙kg-1) |
---|---|---|---|---|---|---|---|---|---|---|
0-10 | 针阔混交林MCB | 4.37±0.07a | 99.5±1.7a | 121.62±0.02a | 4.03±0.01a | 30.18±0.59a | 0.68±0.01a | 3.53±0.01b | 3.19±0.01a | 110.60±0.47b |
毛竹林MB | 3.82±0.03b | 87.8±0.4b | 111.23±0.07b | 3.22±0.02b | 34.54±2.53a | 0.56±0.01b | 4.89±0.02a | 2.88±0.10b | 121.55±0.77a | |
10-20 | 针阔混交林MCB | 4.43±0.01a | 53.8±1.7a | 70.38±0.10a | 2.42±0.03a | 29.08±3.93a | 0.50±0.01a | 3.57±0.01b | 1.04±0.20a | 68.99±0.08a |
毛竹林MB | 4.24±0.01b | 50.9±0.5a | 60.76±0.03b | 2.03±0.01b | 29.93±1.95a | 0.43±0.01b | 6.21±0.01a | 0.89±0.05a | 70.23±1.05a |
图2 针阔混交林与毛竹林的土壤微生物量碳氮质量分数 误差线表示标准差(n=3)。MCB表示针阔混交林,MB表示毛竹林。图中不同小写字母表示同层土壤不同林分之间的差异达显著水平(P<0.05)。下同
Fig. 2 Mass fractions of soil microbial carbon and nitrogen in mixed coniferous and broad-leaved forest and moso bamboo plantation The error line represents the standard deviation (n=3). MCB stands for mixed coniferous and broad-leaved forest, MB stands for moso bamboo plantation. Different lowercase letters in the figure indicate the difference between different forest in the same soil layer reach a significant level (P<0.05). The same as below
pH | 电导率Conductivity | 碳含量Carbon content | 全氮 含量 Total nitrogen content | 全磷含量 Total phosphorus content | 全钾含量Total potassium content | 土壤C/N比Soil C/N ratio | 微生物碳含量MBC | 微生物氮含量MBN | 微生物 C/N比MBC/ MBN ratio | 铵态氮 含量Ammonium nitrogen content | 硝态氮 含量 Nitrate nitrogen content | 有效磷含量Available phosphorus content | 速效钾 含量Available potassium content | 脲酶 活性Urease activity | 过氧化氢酶 活性Catalase activity | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 1 | |||||||||||||||
电导率 Conductivity | -0.319 | 1 | ||||||||||||||
碳含量 Carbon content | -0.342 | 0.995** | 1 | |||||||||||||
全氮含量 Total nitrogen content | -0.104 | 0.974* | 0.970* | 1 | ||||||||||||
全磷含量 Total phosphorus content | 0.028 | 0.931 | 0.930 | 0.990* | 1 | |||||||||||
全钾含量 Total potassium content | -0.439 | -0.429 | -0.475 | -0.594 | -0.690 | 1 | ||||||||||
土壤C/N比 Soil C/N ratio | -0.970* | 0.514 | 0.544 | 0.323 | 0.201 | 0.220 | 1 | |||||||||
微生物碳含量 MBC | -0.726 | 0.815 | 0.794 | 0.666 | 0.553 | 0.154 | 0.802 | 1 | ||||||||
微生物氮含量 MBN | -0.842 | 0.755 | 0.783 | 0.608 | 0.506 | -0.049 | 0.946 | 0.877 | 1 | |||||||
微生物C/N比 MBC/MBN ratio | 0.087 | 0.015 | -0.082 | -0.030 | -0.075 | 0.600 | -0.188 | 0.270 | -0.215 | 1 | ||||||
铵态氮含量 Ammonium nitrogen content | -0.049 | 0.925 | 0.941 | 0.976* | 0.985* | -0.739 | 0.287 | 0.542 | 0.580 | -0.236 | 1 | |||||
硝态氮含量 Nitrate nitrogen content | -0.230 | -0.822 | -0.827 | -0.929 | -0.972* | 0.825 | -0.008 | -0.342 | -0.330 | 0.171 | -0.960* | 1 | ||||
有效磷含量 Available phosphorus content | -0.400 | 0.996** | 0.996** | 0.953* | 0.901 | -0.395 | 0.590 | 0.845 | 0.812 | -0.024 | 0.907 | -0.780 | 1 | |||
速效钾含量 Available potassium content | -0.636 | 0.933 | 0.942 | 0.833 | 0.752 | -0.216 | 0.789 | 0.920 | 0.939 | -0.071 | 0.784 | -0.592 | 0.961* | 1 | ||
脲酶活性 Urease activity | -0.236 | 0.959* | 0.979* | 0.968* | 0.952* | -0.638 | 0.462 | 0.662 | 0.723 | -0.250 | 0.982* | -0.890 | 0.957* | 0.882 | 1 | |
过氧化氢酶活性 Catalase activity | -0.355 | 0.994** | 0.998** | 0.966* | 0.925 | -0.471 | 0.557 | 0.798 | 0.793 | -0.092 | 0.938 | -0.820 | 0.996** | 0.946 | 0.979* | 1 |
表2 针阔混交林与毛竹林土壤不同性质之间的相关性分析
Table 2 Correlation analysis among different properties of soil in mixed coniferous and broad-leaved forest and moso bamboo plantation
pH | 电导率Conductivity | 碳含量Carbon content | 全氮 含量 Total nitrogen content | 全磷含量 Total phosphorus content | 全钾含量Total potassium content | 土壤C/N比Soil C/N ratio | 微生物碳含量MBC | 微生物氮含量MBN | 微生物 C/N比MBC/ MBN ratio | 铵态氮 含量Ammonium nitrogen content | 硝态氮 含量 Nitrate nitrogen content | 有效磷含量Available phosphorus content | 速效钾 含量Available potassium content | 脲酶 活性Urease activity | 过氧化氢酶 活性Catalase activity | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 1 | |||||||||||||||
电导率 Conductivity | -0.319 | 1 | ||||||||||||||
碳含量 Carbon content | -0.342 | 0.995** | 1 | |||||||||||||
全氮含量 Total nitrogen content | -0.104 | 0.974* | 0.970* | 1 | ||||||||||||
全磷含量 Total phosphorus content | 0.028 | 0.931 | 0.930 | 0.990* | 1 | |||||||||||
全钾含量 Total potassium content | -0.439 | -0.429 | -0.475 | -0.594 | -0.690 | 1 | ||||||||||
土壤C/N比 Soil C/N ratio | -0.970* | 0.514 | 0.544 | 0.323 | 0.201 | 0.220 | 1 | |||||||||
微生物碳含量 MBC | -0.726 | 0.815 | 0.794 | 0.666 | 0.553 | 0.154 | 0.802 | 1 | ||||||||
微生物氮含量 MBN | -0.842 | 0.755 | 0.783 | 0.608 | 0.506 | -0.049 | 0.946 | 0.877 | 1 | |||||||
微生物C/N比 MBC/MBN ratio | 0.087 | 0.015 | -0.082 | -0.030 | -0.075 | 0.600 | -0.188 | 0.270 | -0.215 | 1 | ||||||
铵态氮含量 Ammonium nitrogen content | -0.049 | 0.925 | 0.941 | 0.976* | 0.985* | -0.739 | 0.287 | 0.542 | 0.580 | -0.236 | 1 | |||||
硝态氮含量 Nitrate nitrogen content | -0.230 | -0.822 | -0.827 | -0.929 | -0.972* | 0.825 | -0.008 | -0.342 | -0.330 | 0.171 | -0.960* | 1 | ||||
有效磷含量 Available phosphorus content | -0.400 | 0.996** | 0.996** | 0.953* | 0.901 | -0.395 | 0.590 | 0.845 | 0.812 | -0.024 | 0.907 | -0.780 | 1 | |||
速效钾含量 Available potassium content | -0.636 | 0.933 | 0.942 | 0.833 | 0.752 | -0.216 | 0.789 | 0.920 | 0.939 | -0.071 | 0.784 | -0.592 | 0.961* | 1 | ||
脲酶活性 Urease activity | -0.236 | 0.959* | 0.979* | 0.968* | 0.952* | -0.638 | 0.462 | 0.662 | 0.723 | -0.250 | 0.982* | -0.890 | 0.957* | 0.882 | 1 | |
过氧化氢酶活性 Catalase activity | -0.355 | 0.994** | 0.998** | 0.966* | 0.925 | -0.471 | 0.557 | 0.798 | 0.793 | -0.092 | 0.938 | -0.820 | 0.996** | 0.946 | 0.979* | 1 |
[1] | ASHAGRIE Y, ZECH W, 2010. Dynamics of dissolved nutrients in forest floor leachates: Comparison of a natural forest ecosystem with monoculture tree species plantations in south-east Ethiopia[J]. Ecohydrology & Hydrobiology, 10(2): 183-190. |
[2] |
CHERUBIN M R, FRANCO A L C, CERRI C E P, et al., 2015. Sugarcane expansion in Brazilian tropical soils-effects of land use change on soil chemical attributes[J]. Agriculture Ecosystems & Environment, 211: 173-184.
DOI URL |
[3] |
DEMESSIE A, SINGH B R, LAL R, 2011. Soil carbon and nitrogen stocks under plantations in Gambo District, Southern Ethiopia[J]. Journal of Sustainable Forestry, 30(6): 496-517.
DOI URL |
[4] |
FERNANDEZ-ROMERO M L, LOZANO-GARCIA B, PARRAS- ALCANTARA L, 2014. Topography and land use change effects on the soil organic carbon stock of forest soils in Mediterranean natural areas[J]. Agriculture, Ecosystems & Environment, 195: 1-9.
DOI URL |
[5] |
GE X M, DENG S P, ZHU L, et al., 2018. Response of nitrogen mineralization dynamics and biochemical properties to litter amendments to soils of a poplar plantation[J]. Journal of Forestry Research, 29(4): 915-924.
DOI URL |
[6] |
KASEL S, BENNETT L T, 2007. Land-use history, forest conversion, and soil organic carbon in pine plantations and native forests of south eastern Australia[J]. Geoderma, 137(3-4): 401-413.
DOI URL |
[7] |
MARCOS J A, MARCOS E, TABOADA A, et al., 2007. Comparison of community structure and soil characteristics in different aged Pinus sylvestris plantations and a natural pine forest[J]. Forest Ecology and Management, 247(1-3): 35-42.
DOI URL |
[8] |
ZHOU Z C, ZHANG X Y, GAN Z T, 2015. Changes in soil organic carbon and nitrogen after 26 years of farmland management on the Loess Plateau of China[J]. Journal of Arid Land, DOI: 10.1007/s40333-015-0051-y.
DOI |
[9] | 陈涵兮, 海龙, 黄利民, 等, 2019. 坡向对毛竹林土壤养分及其生态化学计量特征的影响[J]. 应用生态学报, 30(9): 2915-2922. |
CHEN H X, HAI L, HUANG L M, et al., 2019. Effects of slope direction on soil nutrient and its ecological stoichiometry in bamboo forest[J]. Chinese Journal of Applied Ecology, 30(9): 2915-2922. | |
[10] |
陈钦程, 徐福利, 王渭玲, 等, 2015. 秦岭北麓华北落叶松林地土壤有效性钾含量变化[J]. 植物学报, 50(4): 482-489.
DOI |
CHEN Q C, XU F L, WANG W L, et al., 2015. Seasonal dynamics in soil content of effective potassium for different ages of larix principis-rupprechtii in the northern foot of the Qinling Mountains[J]. Chinese Bulletin of Botany, 50(4): 482-489. | |
[11] | 董国涛, 杨胜天, 白娟, 等, 2012. 海南岛中部山区热带天然林与人工橡胶林土壤特性对比研究[J]. 热带地理, 32(1): 11-15. |
DONG G T, YANG S T, BAI J, et al., 2012. Comparison of soil properties between tropical natural forest and rubber plantation in the central mountainous areas of Hainan island[J]. Tropical Geography, 32(1): 11-15. | |
[12] | 杜红霞, 刘增文, 潘开文, 等, 2016. 外源性C、N干扰对森林土壤酶活性的影响[J]. 西北林学院学报, 21(2): 35-38. |
DU H X, LIU Z W, PAN K W, et al., 2016. Effects of external source C, N disturbances on enzymes activities of forest soil[J]. Journal of Northwest forestry university, 21(2): 35-38. | |
[13] | 方丽娜, 杨效东, 杜杰, 2011. 土地利用方式对西双版纳热带森林土壤微生物生物量碳的影响[J]. 应用生态学报, 22(4): 837-844. |
FANG L N, YANG X D, DU J, 2011. Effects of land use pattern on soil microbial biomass carbon in Xishuangbanna[J]. Chinese Journal of Applied Ecology, 22(4): 837-844. | |
[14] | 龚伟, 胡庭兴, 王景燕, 等, 2011. 川南天然常绿阔叶林人工更新后土壤氮库与微生物的季节变化[J]. 生态学报, 31(7): 1763-1771. |
GONG W, HU T X, WANG J X, et al., 2011. Seasonal variation of soil nitrogen pools and microbes under natural evergreen broadleaved forest and its artificial regeneration forests in Southern Sichuan Province, China[J]. Acta Ecologica Sinica, 31(7): 1763-1771. | |
[15] | 龚珊珊, 廖善刚, 2009. 桉树人工林与天然林土壤养分的对比研究[J]. 江苏林业科技, 36(3): 1-4. |
GONG S S, LIAO S G, 2009. Soil nutrient characteristics in eucalypt plantation and natural forest[J]. Journal of Jiangsu Forestry Science & Technology, 36(3): 1-4. | |
[16] | 惠亚梅, 巨天珍, 贾丽, 等, 2015. 秦岭西段北坡森林土壤微生物群落及生境特征[J]. 江苏农业科学, 43(1): 322-326. |
HUI Y M, JU T Z, JIA L, et al., 2015. Characteristics of forest soil microbial communities and habitats on the Northern Slope of the western Qinling Mountains[J]. Jiangsu Agricultural Sciences, 43(1): 322-326. | |
[17] | 马晓雪, 龚伟, 胡庭兴, 等, 2010. 天然林及坡耕地转变为巨桉林后土壤养分含量变化[J]. 四川农业大学学报, 28(1): 56-60. |
MA X X, GONG W, HU T X, et al., 2010. Effects of conversion of natural forest and slope farmland to eucalyptus grandis plantation on soil nutrients[J]. Journal of Sichuan Agricultural University, 28(1): 56-60. | |
[18] | 彭舜磊, 王得祥, 赵辉, 等, 2008. 我国人工林现状与近自然经营途径探讨[J]. 西北林学院学报, 23(2): 184-188. |
PENG S L, WANG D Y, ZHAO H, et al., 2008. Discussion the status quality of plantation and near nature forestry management in China[J]. Journal of Northwest forestry university, 23(2): 184-188. | |
[19] | 商素云, 李永夫, 姜培坤, 等, 2012. 天然灌木林改造成板栗林对土壤碳库和氮库的影响[J]. 应用生态学报, 23(3): 659-665. |
SHANG S Y, LI Y F, JIANG P S, et al., 2012. Effects of the conversion from native shrub forest to Chinese chestnut plantation on soil carbon and nitrogen pools[J]. Chinese Journal of Applied Ecology, 23(3): 659-665. | |
[20] | 施政, 汪家社, 何容, 等, 2008. 武夷山不同海拔土壤呼吸及其主要调控因子[J]. 生态学杂志, 27(4): 563-568. |
SHI Z, WANG J S, HE R, et al., 2008. Soil respiration and its regulating factor along an elevation gradient in Wuyi Mountain of Southeast China[J]. Chinese Journal of Ecology, 27(4): 563-568. | |
[21] | 孙凤霞, 张伟华, 徐明岗, 等, 2010. 长期施肥对红壤微生物生物量碳氮和微生物碳源利用的影响[J]. 应用生态学报, 21(11): 2792-2798. |
SUN F X, ZHANG W H, XU M G, et al., 2010. Effects of long-term fertilization on microbial biomass carbon and nitrogen and on carbon source utilization of microbes in a red soil[J]. Chinese Journal of Applied Ecology, 21(11): 2792-2798. | |
[22] | 王国兵, 郭娇娇, 曹国华, 等, 2016. 不同施肥模式对杨树人工林土壤微生物生物量C、N、P的影响[J]. 南京林业大学学报(自然科学版), 40(5): 9-13. |
WANG G B, GUO J J, CAO G H, et al., 2016. Effects of different fertilization regimes on soil microbial biomass C, N, P under poplar plantation[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 40(5): 9-13. | |
[23] | 王莹, 王彦梅, 陈龙池, 2010. 湖南会同地区森林植被转变对土壤微生物生物量碳和酶活性的影响[J]. 生态学杂志, 29(5): 905-909. |
WANG Y, WANG Y M, CHEN L C, 2010. Effects of forest vegetation change on soil microbial biomass carbon and enzyme activities in Huitong, Hunan Province[J]. Chinese Journal of Ecology, 29(5): 905-909. | |
[24] | 吴秀坤, 李永梅, 李朝丽, 等, 2013. 纳版河流域土地利用方式对土壤总有机碳以及活性有机碳的影响[J]. 生态环境学报, 22(1): 6-11. |
WU X K, LI Y M, LI Z L, et al., 2013. Effects of land use type on soil total organic carbon and soil labile organic carbon in Naban River watershed[J]. Ecology and Environmental Sciences, 22(1): 6-11. | |
[25] | 肖鹏, 李永夫, 姜培坤, 等, 2012. 常绿阔叶林改造成雷竹林对土壤活性碳库与氮库的影响[J]. 湖北农业科学, 51(21): 4739-4744. |
XIAO P, LI Y F, JIANG P K, et al., 2012. Effect of Conversion from Evergreen Broad-leaved Forest to Phyllostachys violascens cv. Prevernalis Forest on Soil Labile Carbon and Nitrogen Pools[J]. Hubei Agricultural Sciences, 51(21): 4739-4744. | |
[26] | 杨萌, 岳天, 李永夫, 等, 2017. 常绿阔叶林改造为板栗林对土壤氮磷钾库及酶活性的影响[J]. 自然资源学报, 32(5): 765-777. |
YANG M, YUE T, LI Y F, et al., 2017. Effects of converting evergreen broad-leaved forests to Chinese chestnut forests on soil nitrogen, phosphorous and potassium pools and enzyme activity[J]. Journal of Natural Resources, 32(5): 765-777. | |
[27] | 杨玉盛, 董彬, 谢锦升, 等, 2004. 森林土壤呼吸及其对全球变化的响应[J]. 生态学报, 24(3): 583-591. |
YANG Y S, DONG B, XIE J S, et al., 2004. Soil respiration of forest ecosystems and its respondence to global change[J]. Acta Ecologica Sinica, 24(3): 583-591. | |
[28] | 杨玉盛, 郭剑芬, 林鹏, 等, 2005. 格氏栲天然林与人工林粗木质残体碳库及养分库[J]. 林业科学, 41(3): 7-11. |
YANG Y S, GUO J F, LIN P, et al., 2005. Carbon and nutrient pools of coarse woody debris in a natural forest and plantation in subtropical China[J]. Scientia Silvae Sinicae, 41(3): 7-11. | |
[29] | 闫美芳, 张新时, 江源, 等, 2010. 主要管理措施对人工林土壤碳的影响[J]. 生态学杂志, 29(11): 2265-2271. |
YAN M F, ZHANG X S, JIANG Y, et al., 2010. Effects of management practices on forest plantation soil carbon: A review[J]. Chinese Journal of Ecology, 29(11): 2265-2271. | |
[30] | 岳天, 李永夫, 肖永恒, 等, 2016. 天然常绿阔叶林改造为板栗林对土壤有机碳库的影响[J]. 应用生态学报, 27(7): 2181-2188. |
YUE T, LI Y F, XIAO Y H, et al., 2016. Effects of conversion of evergreen broad-leaved forest to Chinese chestnut plantation on soil organic carbon pools[J]. Chinese Journal of Applied Ecology, 27(7): 2181-2188. | |
[31] | 张彪, 高人, 杨玉盛, 等, 2010. 万木林自然保护区不同林分土壤可溶性有机氮含量[J]. 应用生态学报, 21(7): 1635-1640. |
ZHANG B, GAO R, YANG Y S, et al., 2010. Soil soluble organic nitrogen content in different forest stands in Wanmulin Nature Reserve[J]. Chinese Journal of Applied Ecology, 21(7): 1635-1640. | |
[32] | 张佳奇, 余坤勇, 刘健, 等, 2019. 毛竹叶片重要营养元素的光谱敏感波段分析[J]. 西北林学院学报, 34(1): 77-82. |
ZHANG J Q, YU K Y, LIU J, et al., 2019. Spectral sensitive band analysis of important nutrient elements of Phyllostachys pubescens leaves[J]. Journal of Northwest forestry university, 34(1): 77-82. | |
[33] | 张凯, 郑华, 陈法霖, 等, 2015. 桉树取代马尾松对土壤养分和酶活性的影响[J]. 土壤学报, 52(3): 646-653. |
ZHANG K, ZHENG H, CHEN F L, et al., 2015. Impacts of replacement of pinus with eucalyptus on soil nutrients and enzyme activities[J]. Acta Pedologica Sinica, 52(3): 646-653. | |
[34] | 张涛, 李永夫, 姜培坤, 等, 2012. 长期集约经营对雷竹林土壤碳氮磷库特征的影响[J]. 土壤学报, 49(6): 1170-1177. |
ZHANG T, LI Y F, JIANG P S, et al., 2012. Effect of long-term intensive management of phyllostachys praecox stands on carbon, nitrogen, and phosphorus pools in the soil[J]. Acta Pedologica Sinica, 49(6): 1170-1177. | |
[35] | 章宪, 钟羡芳, 2014. 天然林转换为竹林对土壤碳氮含量及物理性质的影响[J]. 聊城大学学报(自然科学版), 27(2): 60-63. |
ZHANG X, ZHONG X F, 2014. Study on carbon, nitrogen and physical properties of natural forest (Castanopsis Carlesii) and bamboo plantation[J]. Journal of Liaocheng University (Natural Sciences Edition), 27(2): 60-63. | |
[36] | 张希彪, 上官周平, 2006. 黄土丘陵区油松人工林与天然林养分分布和生物循环比较[J]. 生态学报, 26(2): 373-382. |
ZHANG X B, SHANGGUAN Z P, 2006. Nutrient distributions and bio-cycle patterns in both natural and artificial Pinus tabulaeformis forests in Hilly Loess Regions[J]. Acta Ecologica Sinica, 26(2): 373-382.
DOI URL |
|
[37] | 张洋洋, 邓智文, 荣俊冬, 等, 2019. 毛竹林施肥研究进展[J]. 世界竹藤通讯, 17(5): 58-62. |
ZHANG Y Y, DENG Z W, RONG J D, et al., 2019. Research progressin fertilization of phyllostachys edulis forest[J]. World Bamboo and Rattan, 17(5): 58-62. | |
[38] | 张洋洋, 凡莉莉, 徐文达, 等, 2020. 带状采伐后不同时期毛竹林恢复和土壤养分特征[J]. 西北植物学报, 40(8): 1407-1413. |
ZHANG Y Y, FAN L L, XU W D, et al., 2020. Restoration characteristics and soil nutrient content of Phyllostachys edulis forests after strip clear cutting[J]. Acta Botanica Boreali-Occidentalia Sinica, 40(8): 1407-1413. | |
[39] | 周焱, 徐宪根, 阮宏华, 等, 2008. 武夷山不同海拔高度土壤有机碳矿化速率的比较[J]. 生态学杂志, 27(11): 1901-1907. |
ZHOU Y, XU X G, RUAN H H, et al., 2008. Mineralization rates of soil organic carbon along an elevation gradient in Wuyi Mountain of Southeast China[J]. Chinese Journal of Ecology, 27(11): 1901-1907. |
[1] | 张林, 齐实, 周飘, 伍冰晨, 张岱, 张岩. 北京山区针阔混交林地土壤有机碳含量的影响因素研究[J]. 生态环境学报, 2023, 32(3): 450-458. |
[2] | 徐晨, 裴顺祥, 吴莎, 郭慧, 马淑敏, 吴迪, 章尧想, 法蕾. 北京九龙山不同林型林间大气主要BVOCs组成研究[J]. 生态环境学报, 2023, 32(2): 245-255. |
[3] | 张博文, 秦娟, 任忠明, 陈子齐, 姚舜佳, 刘烨, 宋炎玉. 坡向对北亚热带区马尾松纯林及不同针阔混交林型林下植物多样性的影响[J]. 生态环境学报, 2022, 31(6): 1091-1100. |
[4] | 喻阳华, 吴银菇, 宋燕平, 李一彤. 不同林龄顶坛花椒林地土壤微生物浓度与生物量化学计量特征[J]. 生态环境学报, 2022, 31(6): 1160-1168. |
[5] | 段文军, 李达, 李冲. 5种不同林龄尾巨桉人工林林下植物多样性及其影响因素分析[J]. 生态环境学报, 2022, 31(5): 857-864. |
[6] | 梁蕾, 马秀枝, 韩晓荣, 李长生, 张志杰. 模拟增温下凋落物对大青山油松人工林土壤温室气体通量的影响[J]. 生态环境学报, 2022, 31(3): 478-486. |
[7] | 宋瑞朋, 杨起帆, 郑智恒, 习丹. 3种林下植被类型对杉木人工林土壤有机碳及其组分特征的影响[J]. 生态环境学报, 2022, 31(12): 2283-2291. |
[8] | 肖军, 雷蕾, 曾立雄, 李肇晨, 马成功, 肖文发. 不同经营模式对华北油松人工林碳储量的影响[J]. 生态环境学报, 2022, 31(11): 2134-2142. |
[9] | 宋贤冲, 蔡雪梅, 陈韬, 潘文, 石媛媛, 唐健, 曹继钊. 不同萌芽代次桉树根际和非根际土壤养分的变化特征[J]. 生态环境学报, 2021, 30(9): 1814-1820. |
[10] | 闫东锋, 张妍妍, 吕康婷, 周梦丽, 王婷, 赵宁. 太行山南麓不同海拔梯度天然林优势树种生态位特征[J]. 生态环境学报, 2021, 30(8): 1571-1580. |
[11] | 赵丽, 郭春燕, 张文军, 王晓江, 刘平生. 扎兰屯地区典型天然林群落特征及其相关性分析[J]. 生态环境学报, 2021, 30(7): 1353-1359. |
[12] | 邓慧颖, 陈立新, 余永江, 王宏. 武夷山市臭氧分布特征及其与气象要素关系分析[J]. 生态环境学报, 2021, 30(7): 1428-1435. |
[13] | 王一荃, 周璋, 李意德, 陈德祥, 张涛, 杨繁. 不同热带森林空气负离子浓度评价研究[J]. 生态环境学报, 2021, 30(5): 898-906. |
[14] | 周笛轩, 林永标, 汪雁佳, 刘占锋, 周丽霞. 南亚热带不同人工林生态系统服务功能评估[J]. 生态环境学报, 2021, 30(5): 907-919. |
[15] | 王皓月, 郭月峰, 徐雅洁, 祁伟, 卜繁靖, 祁慧娟. 九峰山不同林分类型生态恢复植被-土壤系统耦合关系评价[J]. 生态环境学报, 2021, 30(12): 2309-2316. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||