生态环境学报 ›› 2023, Vol. 32 ›› Issue (2): 245-255.DOI: 10.16258/j.cnki.1674-5906.2023.02.004
徐晨(), 裴顺祥, 吴莎, 郭慧, 马淑敏, 吴迪, 章尧想, 法蕾*(
)
收稿日期:
2022-11-25
出版日期:
2023-02-18
发布日期:
2023-05-11
通讯作者:
*法蕾(1977年生),女,高级工程师,博士,主要研究方向为森林生态系统功能。E-mail: titafall@126.com作者简介:
徐晨(1996年生),女,硕士研究生,主要研究方向为森林康养。E-mail: fl050802@caf.ac.cn
基金资助:
XU Chen(), PEI Shunxiang, WU Sha, GUO Hui, MA Shumin, WU Di, ZHANG Yaoxiang, FA Lei*(
)
Received:
2022-11-25
Online:
2023-02-18
Published:
2023-05-11
Supported by:
摘要:
为明晰北京市周边不同类型森林的康养效果,对北京市九龙山不同林型内大气中的BVOCs组成及比例动态进行了研究。采用Tenax吸附管和采样泵在北京九龙山3个不同林型内进行林间大气采样,利用热脱附-气相色谱-飞行质谱仪对采集样品进行定性和定量分析,研究了包括异戊二烯、单萜、倍半萜烯在内的多种大气植物源挥发性有机化合物的变化规律及气象因素对其变化的影响。结果表明:九龙山不同森林类型林间大气的BVOCs总量浓度排序为针阔混交林>针叶林>阔叶林,混交林内BVOCs浓度相对较高,但差异性不显著。林间大气BVOCs中α-蒎烯(α-pinene)和异戊二烯(isoprene)比例较高,α-蒎烯(α-pinene)占到总量的34.75%-47.24%,异戊二烯(isoprene)占到总量的15.35%-24.93%,针叶林大气中的异戊二烯浓度较高,大于阔叶林和混交林,单萜浓度则表现为混交林>针叶林>阔叶林,倍半萜烯浓度较低,占总量的15.35%-24.93%,表现为阔叶林>混交林>针叶林,差异性不显著。同一采样时间,北京九龙山不同林型林间大气BVOCs总量差异不显著,但各样地随时间递减趋势明显,异戊二烯呈现显著的随时间下降趋势。各林型大气BVOCs受环境因素影响较大,主要是温、湿度。异戊二烯浓度与环境温度呈显著正相关。温度是影响九龙山不同林型大气主要BVOCs的关键因素。九龙山森林内大气BVOCs在8月份的浓度较高,8月进行森林康养的效果最好。
中图分类号:
徐晨, 裴顺祥, 吴莎, 郭慧, 马淑敏, 吴迪, 章尧想, 法蕾. 北京九龙山不同林型林间大气主要BVOCs组成研究[J]. 生态环境学报, 2023, 32(2): 245-255.
XU Chen, PEI Shunxiang, WU Sha, GUO Hui, MA Shumin, WU Di, ZHANG Yaoxiang, FA Lei. Study on Major Atmospheric BVOCs Composition of Different Forest Types in Jiulong Mountain, Beijing[J]. Ecology and Environment, 2023, 32(2): 245-255.
编号 | 林分类型 | 乔木 | 平均胸径 DBH/cm | 平均树高/ m | 林龄/ a | 郁闭度 |
---|---|---|---|---|---|---|
Z | 油松纯林 | 油松 | 19.3 | 9 | 54 | 0.8 |
H | 针阔混交林 | 山楂、油松 | 15 | 10.2 | 36 | 0.7 |
K | 栓皮栎纯林 | 栓皮栎 | 19 | 12.5 | 35 | 0.6 |
表1 3种典型森林群落采样地的植被概况
Table 1 Brief vegetation information of 3 plots in the typical forest communities
编号 | 林分类型 | 乔木 | 平均胸径 DBH/cm | 平均树高/ m | 林龄/ a | 郁闭度 |
---|---|---|---|---|---|---|
Z | 油松纯林 | 油松 | 19.3 | 9 | 54 | 0.8 |
H | 针阔混交林 | 山楂、油松 | 15 | 10.2 | 36 | 0.7 |
K | 栓皮栎纯林 | 栓皮栎 | 19 | 12.5 | 35 | 0.6 |
图3 不同林地异戊二烯、单萜、倍半萜烯和总BVOCs质量浓度对比图 不同字母表示组间(不同林型)差异显著(P<0.01)
Figure 3 Comparison of isoprene, monoterpene, sesquiterpene and total BVOCs concentrations in different woodlands
图5 不同时间阔叶林、针叶林、针阔混交林不同BVOCs组成比例图
Figure 5 Composition proportion of different BVOCs in broad-leaved forest, coniferous forest and coniferous broad-leaved mixed forest at different times
Spearman 相关性 | 平均温度/℃ | 平均湿度/% | 平均风速/(m·s-1) | 正离子×103/(ion·cm3) | 负离子×103/(ion·cm3) | 照度/(µmol·m-2·s-1) | |
---|---|---|---|---|---|---|---|
Z | α蒎烯 | 0.36 | 0.075 | -0.042 | -0.251 | -0.151 | 0.51 |
β蒎烯 | 0.217 | 0.133 | 0.483 | -0.067 | 0.067 | 0.4 | |
γ萜品烯 | 0.262 | 0.402 | 0.708* | 0.498 | 0.621 | 0.306 | |
柠檬烯 | 0.633 | 0.4 | 0.267 | 0.583 | 0.567 | 0.133 | |
月桂烯 | 0.276 | -0.335 | 0.159 | -0.084 | -0.142 | -0.059 | |
异戊二烯 | 0.767* | 0.700* | -0.217 | 0.733* | 0.750* | 0.183 | |
长叶烯 | 0.083 | 0.017 | 0.1 | -0.217 | -0.1 | 0.25 | |
BVOCs总量 | 0.583 | 0.45 | -0.033 | 0.417 | 0.467 | 0.283 | |
K | α蒎烯 | 0.433 | 0.067 | -0.1 | 0.133 | 0.05 | 0.067 |
β蒎烯 | 0.283 | -0.033 | 0.283 | 0.117 | 0.1 | -0.05 | |
γ萜品烯 | 0.378 | 0.681* | 0.311 | 0.218 | 0.252 | 0.168 | |
柠檬烯 | 0.167 | 0.15 | -0.283 | -0.2 | -0.1 | 0.083 | |
月桂烯 | 0.586 | 0.41 | -0.452 | 0.117 | -0.159 | -0.151 | |
异戊二烯 | 0.700* | 0.633 | -0.067 | 0.267 | 0.25 | 0.1 | |
长叶烯 | -0.217 | 0.05 | -0.167 | 0.067 | -0.1 | 0 | |
BVOCs总量 | 0.483 | 0.4 | -0.25 | -0.067 | -0.083 | 0.35 | |
H | α蒎烯 | 0.433 | 0.517 | 0.033 | 0.383 | 0.2 | -0.617 |
β蒎烯 | 0.700* | 0.633 | 0.133 | 0.750* | 0.433 | -0.750* | |
γ萜品烯 | 0.092 | 0.538 | 0.176 | 0.319 | 0.21 | -0.571 | |
柠檬烯 | 0.750* | 0.483 | -0.367 | 0.733* | 0.317 | -0.317 | |
月桂烯 | 0.569 | 0.519 | 0.017 | 0.594 | 0.351 | -0.427 | |
异戊二烯 | 0.667* | 0.750* | 0.017 | 0.533 | 0.6 | -0.433 | |
长叶烯 | 0.4 | 0.833** | 0.15 | 0.850** | 0.700* | -0.533 | |
BVOCs总量 | 0.583 | 0.717* | -0.067 | 0.633 | 0.45 | -0.467 |
表2 不同林地类型主要BVOCs与各气象参数的相关性
Table 2 Correlation between main BVOCs and meteorological parameters of different forest land types
Spearman 相关性 | 平均温度/℃ | 平均湿度/% | 平均风速/(m·s-1) | 正离子×103/(ion·cm3) | 负离子×103/(ion·cm3) | 照度/(µmol·m-2·s-1) | |
---|---|---|---|---|---|---|---|
Z | α蒎烯 | 0.36 | 0.075 | -0.042 | -0.251 | -0.151 | 0.51 |
β蒎烯 | 0.217 | 0.133 | 0.483 | -0.067 | 0.067 | 0.4 | |
γ萜品烯 | 0.262 | 0.402 | 0.708* | 0.498 | 0.621 | 0.306 | |
柠檬烯 | 0.633 | 0.4 | 0.267 | 0.583 | 0.567 | 0.133 | |
月桂烯 | 0.276 | -0.335 | 0.159 | -0.084 | -0.142 | -0.059 | |
异戊二烯 | 0.767* | 0.700* | -0.217 | 0.733* | 0.750* | 0.183 | |
长叶烯 | 0.083 | 0.017 | 0.1 | -0.217 | -0.1 | 0.25 | |
BVOCs总量 | 0.583 | 0.45 | -0.033 | 0.417 | 0.467 | 0.283 | |
K | α蒎烯 | 0.433 | 0.067 | -0.1 | 0.133 | 0.05 | 0.067 |
β蒎烯 | 0.283 | -0.033 | 0.283 | 0.117 | 0.1 | -0.05 | |
γ萜品烯 | 0.378 | 0.681* | 0.311 | 0.218 | 0.252 | 0.168 | |
柠檬烯 | 0.167 | 0.15 | -0.283 | -0.2 | -0.1 | 0.083 | |
月桂烯 | 0.586 | 0.41 | -0.452 | 0.117 | -0.159 | -0.151 | |
异戊二烯 | 0.700* | 0.633 | -0.067 | 0.267 | 0.25 | 0.1 | |
长叶烯 | -0.217 | 0.05 | -0.167 | 0.067 | -0.1 | 0 | |
BVOCs总量 | 0.483 | 0.4 | -0.25 | -0.067 | -0.083 | 0.35 | |
H | α蒎烯 | 0.433 | 0.517 | 0.033 | 0.383 | 0.2 | -0.617 |
β蒎烯 | 0.700* | 0.633 | 0.133 | 0.750* | 0.433 | -0.750* | |
γ萜品烯 | 0.092 | 0.538 | 0.176 | 0.319 | 0.21 | -0.571 | |
柠檬烯 | 0.750* | 0.483 | -0.367 | 0.733* | 0.317 | -0.317 | |
月桂烯 | 0.569 | 0.519 | 0.017 | 0.594 | 0.351 | -0.427 | |
异戊二烯 | 0.667* | 0.750* | 0.017 | 0.533 | 0.6 | -0.433 | |
长叶烯 | 0.4 | 0.833** | 0.15 | 0.850** | 0.700* | -0.533 | |
BVOCs总量 | 0.583 | 0.717* | -0.067 | 0.633 | 0.45 | -0.467 |
[1] |
CHEN W Q, XU B, MAO J W, et al., 2014. Inhibitory Effects of α-Pinene on Hepatoma Carcinoma Cell Proliferation[J]. Asian Pacific Journal of Cancer Prevention, 15(7): 3293-3297.
DOI URL |
[2] |
FEHSENFELD F, CALVERT J, FALL R, et al., 1992. Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry[J]. Global Biogeochemical Cycles, 6(4): 389-430.
DOI URL |
[3] |
GUENTHER A B, ZIMMERMAN P R, HARLEY P C, et al., 1993. Isoprene and monoterpene emission rate variability: Model evaluations and sensitivity analyses[J]. Journal of Geophysical Research: Atmospheres, 98(D7): 12609-12617.
DOI URL |
[4] |
GUENTHER A, GERON C, PIERCE T, et al., 2000. Natural emissions of non-methane volatile organic compounds, carbon monoxide, and oxides of nitrogen from North America[J]. Atmospheric Environment, 34(12-14): 2205-2230.
DOI URL |
[5] |
HARLEY P, GUENTHER A, ZIMMERMAN P, 1996. Effects of light, temperature and canopy position on net photosynthesis and isoprene emission from sweetgum (Liquidambar styraciflua) leaves[J]. Tree Physiology, 16(1-2): 25-32.
DOI URL |
[6] |
KIM D S, LEE H J, JEON Y D, et al., 2015. Alpha-pinene exhibits anti-inflammatory activity through the suppression of MAPKs and the NF-κB pathway in mouse peritoneal macrophages[J]. The American Journal of Chinese medicine, 43(4): 731-742.
DOI URL |
[7] |
LORETO F, SHARKEY T D, 1990. A gas-exchange study of photosynthesis and isoprene emission in Quercus rubra L.[J]. Planta, 182(4): 523-531.
DOI URL |
[8] |
OWEN S M, BOISSARD C, HEWITT C N, 2001. Volatile organic compounds (VOCs) emitted from 40 Mediterranean plant species: VOC speciation and extrapolation to habitat scale[J]. Atmospheric Environment, 35(32): 5393-5409.
DOI URL |
[9] |
PACIFICO F, HARRISON S P, JONES C D, et al., 2009. Isoprene emissions and climate[J]. Atmospheric Environment, 43(39): 6121-6135.
DOI URL |
[10] |
STAUDT M, LHOUTELLIER L, 2011. Monoterpene and sesquiterpene emissions from Quercus coccifera exhibit interacting responses to light and temperature[J]. Biogeosciences, 8(9): 2757-2771.
DOI URL |
[11] |
STAUDT M, SEUFERT G, 1995. Light-Dependent Emission of Monoterpenes by Holm Oak (Quercus ilex L.)[J]. Naturwissenschaften, 82(2): 89-92.
DOI URL |
[12] |
WINTERS A J, ADAMS M A, BLEBY T M, et al., 2009. Emissions of isoprene, monoterpene and short-chained carbonyl compounds from Eucalyptus spp. in southern Australia[J]. Atmospheric Environment, 43(19): 3035-3043.
DOI URL |
[13] |
WU K, YANG X Y, CHEN D A, et al., 2020. Estimation of biogenic VOC emissions and their corresponding impact on ozone and secondary organic aerosol formation in China[J]. Atmospheric Research, 231: 104656.
DOI URL |
[14] | ZARE A, CHRISTENSEN J H, GROSS A, et al., 2014. Quantifying the contributions of natural emissions to ozone and total fine PM concentrations in the Northern Hemisphere[J]. Atmospheric Chemistry and Physics, 13(6): 16775-16830. |
[15] | 白建辉, 林凤友, 万晓伟, 等, 2012. 长白山温带森林挥发性有机物的排放通量[J]. 环境科学学报, 32(3): 545-554. |
BAI J H, LIN F Y, WAN X W, et al., 2012. Volatile organic compound emission fluxes from a temperate forest in Changbai Mountain[J]. Acta Scientiae Circumstantiae, 32(3): 545-554. | |
[16] | 陈颖, 史奕, 何兴元, 2009. 沈阳市四种乔木树种BVOCs排放特征[J]. 生态学杂志, 28(12): 2410-2416. |
CHEN Y, SHI Y, HE X Y, 2009. Emission characteristics of biogenic volatile organic compounds from four tree species in Shenyang[J]. Chinese Journal of Ecology, 28(12): 2410-2416. | |
[17] | 花圣卓, 陈俊刚, 余新晓, 等, 2016. 温带典型森林树种的萜烯类化合物排放及其与环境要素的相关性[J]. 林业科学, 52(11): 19-28. |
HUA S Z, CHEN J G, YU X X, et al., 2016. Correlation between terpenes emission from typical forest tree species and environmental elements in temperate zone[J]. Scientia Silvae Sinicae, 52(11): 19-28. | |
[18] | 环境保护部, 2013. 环境空气挥发性有机物的测定吸附管采样-热脱附/气相色谱-质谱法: HJ 644-2013[S]. 北京: 中国环境科学出版社. |
Ministry of Environmental Protection, 2013. Determination of volatile organic compounds in ambient air-Adsorption tube sampling - Thermal desorption/gas chromatography-mass spectrometry method: HJ 644-2013[S]. Beijing: China Environmental Science Press. | |
[19] | 黄海梅, 郭佳, 王章玮, 等, 2018. 贵阳市大气挥发性有机物的初步分析[J]. 环境化学, 37(11): 2387-2396. |
HUANG H M, GUO J, WANG Z W, et al., 2018. Preliminary analysis of ambient volatile organic compounds in Guiyang, China[J]. Environmental Chemistry, 37(11): 2387-2396. | |
[20] | 贾凌云, 孙坤, 冯汉青, 等, 2012. 呼吸作用对叶片光合作用和异戊二烯释放的影响[J]. 植物科学学报, 30(2): 193-197. |
JIA L Y, SUN K, FENG H Q, 2012. Effects of respiration on leaf photosynthesis and isoprene release[J]. Acta Botanica Sinica, 30(2): 193-197. | |
[21] | 来雨晴, 2016. 华山松和沙地柏挥发物季节变化规律研究[D]. 北京: 北京林业大学. |
LAI Y Q, 2016. Seasonal variasions of volatile organic compounds from Pinus amandii and Juniperus sabina[D]. Beijing: Beijing Forestry University. | |
[22] | 李德文, 史奕, 何兴元, 2008. O3浓度升高对银杏及油松BVOCs排放的影响[J]. 环境科学, 29(2): 300-304. |
LI D W, SHI Y, HE X Y, 2008. Effects of elevated O3 on the volatile organic compounds emit from Ginkgo biloba and Pinus tabulaeformis[J]. Environmental Science, 29(2): 300-304. | |
[23] | 李俊仪, 田梁宇, 伦小秀, 等, 2017. 北京地区植物源挥发性有机物 (BVOCs) 排放清单[J]. 环境化学, 36(4): 776-786. |
LI J Y, TIAN L Y, LUN X X, et al., 2017. Emission inventory of botanical volatile organic compounds (BVOCs) in Beijing[J]. Environmental Chemistry, 36(4): 776-786. | |
[24] |
李少宁, 陶雪莹, 李绣宏, 等, 2022. 植物释放有益挥发性有机物研究进展[J]. 生态环境学报, 31(1): 187-195.
DOI |
LI S N, TAO X Y, LI X H, et al., 2022. Research progress of beneficial biogenic volatile organic compounds released from plants[J]. Ecology and Environmental Sciences, 31(1): 187-195. | |
[25] | 李双江, 袁相洋, 李琦, 等, 2019. 12种常见落叶果树BVOCs排放清单和排放特征[J]. 环境科学, 40(5): 2078-2085. |
LI S J, YUAN X Y, LI Q, et al., 2019. Inventory and characteristics of biogenic volatile organic compounds (BVOCs) for 12 deciduous fruit trees[J]. Environmental Science, 40(5): 2078-2085.
DOI URL |
|
[26] | 梁珍海, 2012. 南京紫金山典型森林群落及其主要树种BVOCs的组成与释放规律研究[D]. 南京: 南京林业大学. |
LIANG Z H, 2012. Study on components and emission laws of BVOCSin typical forest communities and by their main trees in Purple Mountain in Nanjing[D]. Nanjing: Nanjing Forestry University. | |
[27] | 林静, 简毅, 骆宗诗, 等, 2018. 5种康养植物芬多精成分及含量研究[J]. 四川林业科技, 39(6): 13-19. |
LIN J, JIAN Y, LUO Z S, et al., 2018. Study on the composition and content of Fendoxin in 5 healthy plants[J]. Sichuan Forestry Science and Technology, 39(6): 13-19. | |
[28] | 林威, 2019. 福州市园林植物BVOCs释放及其臭氧生成潜势对温度和光照的响应[D]. 福州: 福建农林大学. |
LIN W, 2019. Response of BVOCs release and ozone generation potential of landscape plants in Fuzhou to temperature and light[D]. Fuzhou: Fujian Agriculture and Forestry University. | |
[29] | 刘荣家, 2018. 杭州半山国家森林公园典型常绿阔叶树种及其混交林挥发性有机物释放研究[D]. 北京: 中国林业科学研究院. |
LIU R J, 2018. Study on the release of VOCs from typical evergreen broad-leaved species and their mixed Forests in Hangzhou Banshan National Forest Park[D]. Beijing: Chinese Academy of Forestry. | |
[30] | 任琴, 谢明惠, 张青文, 等, 2010. 不同温度、光照对虫害紫茎泽兰挥发物释放的影响[J]. 生态学报, 30(11): 3080-3086. |
REN Q, XIE M H, ZHANG Q W, et al., 2010. Effects of different temperature and light on the release of volatile matter from insect infested Eupatorium adenophorum[J]. Journal of Ecology, 30(11): 3080-3086. | |
[31] | 任倩倩, 庄明珠, 蔡晓明, 等, 2020. 小贯小绿叶蝉取食诱导抗、感茶树品种挥发物的释放[J]. 茶叶科学, 40(6): 795-806. |
REN Q Q, ZHUANG Z M, CAI X M, et al., 2020. The release of volatilesin resistant and susceptible tea cultivars under Empoasca onukii feeding[J]. Journal of Tea Science, 40(6): 795-806. | |
[32] | 商天其, 2018. 短时高温、CO2浓度倍增以及叶片生长阶段对香樟 (Cinnamomum camphora) 单萜释放和光合生理的影响[D]. 杭州: 浙江农林大学. |
SHANG T Q, 2018. Effects of short-term high temperature, doubled CO2 concentration and leaf growth stage on monoterpene release and photosynthetic physiology of Cinnamomum camphora[D]. Hangzhou: Zhejiang Agriculture and Forestry University. | |
[33] | 孙延军, 张伟, 王一钦, 等, 2019. 深圳地区8种常见生态公益林树种VOCs测定及其保健作用[J]. 林业与环境科学, 35(2): 67-74. |
SUN Y J, ZHANG W, WANG Y Q, et al., 2019. Determination of VOCs of 8 common ecological forest species in Shenzhen and their health care effects[J]. Forestry and Environmental Science, 35(2): 67-74. | |
[34] | 王君怡, 2020. 北京地区8种典型景观树种释放挥发性有机物 (BVOCs) 动态变化特征研究[D]. 沈阳: 沈阳农业大学. |
WANG J Y, 2020. Study on the characteristics of release BVOCs of eight typical landscape tree species in Beijing[D]. Shenyang: Shenyang Agricultural University. | |
[35] | 王茜, 任彬彬, 张中霞, 2019. 园林植物挥发物释放的影响机理[J]. 农村实用技术 (8): 87-88. |
WANG Q, REN B B, ZHANG Z X, 2019. Mechanism of volatile matter release from garden plants[J]. Rural Practical Technology (8): 87-88. | |
[36] | 王永峰, 李庆军, 2005. 陆地生态系统植物挥发性有机化合物的排放及其生态学功能研究进展[J]. 植物生态学报, 29(3): 478-496. |
WANG Y F, LI Q J, 2005. BVOCs emitted from plants of terrestrial ecosystems and their ecological functions[J]. Acta Phytoechologica Sinica, 29(3): 478-496. | |
[37] | 谢小洋, 2016. 西安市主要绿化树种VOCs 组成及释放规律研究[D]. 杨凌: 西北农林科技大学. |
XIE X Y, 2016. Research on composition and release regularities of VOCs form main landscape plants in Xi’an[D]. Yangling: Northwest A & F University. | |
[38] | 谢扬飏, 邵敏, 陆思华, 等, 2007. 北京市园林绿地植被挥发性有机物排放的估算[J]. 中国环境科学, 27(4): 498-502. |
XIE Y B, SHAO M, LU S H, et al., 2007. Estimation of volatile organic compounds emissions from green land vegetation in Beijing[J]. China Environmental Science, 27(4): 498-502. | |
[39] | 许燕, 李双江, 袁相洋, 等, 2020. 北方常见绿化树种BVOCs排放特征及其与光合作用参数的相关性[J]. 环境科学, 41(8): 3518-3526. |
XU Y, LI S J, YUAN X Y, et al., 2020. Emission characteristics of biogenic volatile compounds (BVOCs) from common greening tree species in northern China and their correlations with photosynthetic parameters[J]. Environmental Science, 41(8): 3518-3526. | |
[40] | 张蔷, 李令军, 赵文慧, 等, 2021. 北京森林BVOCs排放特征及对区域空气质量的影响[J]. 中国环境科学, 41(2): 622-632. |
ZHANG Q, LI L J, ZHAO W H, et al., 2021. Emission characteristics of VOCs from forests and its impact on regional air quality in Beijing[J]. China Environmental Science, 41(2): 622-632. | |
[41] | 赵圆圆, 包海, 李达毅, 等, 2020. 锡林郭勒草原不同植物生物源挥发性有机物排放通量[J]. 内蒙古师范大学学报 (自然科学汉文版), 49(3): 236-244. |
ZHAO Y Y, BAO H, LI D Y, et al., 2020. Biogenic volatile organic compounds emission fluxes from the different plants in Xilinggol grassland[J]. Journal of Inner Mongolia Normal University (Natural science edition), 49(3): 236-244. |
[1] | 张林, 齐实, 周飘, 伍冰晨, 张岱, 张岩. 北京山区针阔混交林地土壤有机碳含量的影响因素研究[J]. 生态环境学报, 2023, 32(3): 450-458. |
[2] | 肖以华, 付志高, 许涵, 史欣, 唐海明, 陈步峰. 城市化对珠江三角洲不同功能群植物叶片功能性状的影响[J]. 生态环境学报, 2022, 31(9): 1783-1793. |
[3] | 张博文, 秦娟, 任忠明, 陈子齐, 姚舜佳, 刘烨, 宋炎玉. 坡向对北亚热带区马尾松纯林及不同针阔混交林型林下植物多样性的影响[J]. 生态环境学报, 2022, 31(6): 1091-1100. |
[4] | 夏恩龙, 农珺清, 魏松坡, 刘希珍, 刘广路. 毛竹向阔叶林扩展过程中土壤养分变化特征[J]. 生态环境学报, 2022, 31(6): 1110-1117. |
[5] | 祁雪连, 葛晓敏, 钱壮壮, 张康, 郑旭, 钱琦, 丁晖, 唐罗忠. 武夷山天然针阔混交林与毛竹人工林土壤性质差异[J]. 生态环境学报, 2021, 30(8): 1599-1606. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||