Ecology and Environment ›› 2025, Vol. 34 ›› Issue (4): 593-607.DOI: 10.16258/j.cnki.1674-5906.2025.04.009
• Research Article【Environmental Science】 • Previous Articles Next Articles
ZHANG Yaping1,*(), MO Cuiling1, LI Yingpeng2, XU Ke1
Received:
2024-10-18
Online:
2025-04-18
Published:
2025-04-24
Contact:
ZHANG Yaping
通讯作者:
张亚平
作者简介:
张亚平(1978年生),教授,博士,主要从事环境科学与工程技术研究。E-mail: ypzhang@jmu.edu.cn
基金资助:
CLC Number:
ZHANG Yaping, MO Cuiling, LI Yingpeng, XU Ke. Effects of Levofloxacin Exposure on Intestinal Microbes of Zebrafish[J]. Ecology and Environment, 2025, 34(4): 593-607.
张亚平, 莫璀玲, 李迎鹏, 徐棵. 左氧氟沙星暴露对斑马鱼肠道微生物的影响[J]. 生态环境学报, 2025, 34(4): 593-607.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.04.009
[1] | ALMEIDA A, MITCHELL A L, BOLAND M, et al., 2019, A new genomic blueprint of the human gut microbiota[J]. Nature, 568: 499-504. |
[2] | AVISHEK B, JAWAHAR T A, GADADHAR D, et al., 2024. Intestinal Histopathological Aberrations in Oreochromis niloticus Juveniles upon Dietary Florfenicol Administration[J]. Bulletin of Environmental Contamination and Toxicology, 112(4): 50-50. |
[3] | BELL A G, MCMURTRIE J, BOLAÑOS L M, et al., 2024. Influence of host phylogeny and water physicochemistry on microbial assemblages of the fish skin microbiome[J]. FEMS Microbiology Ecology, 100(3): fiae021. |
[4] | CHEN J Y, LI Q Y, TAN C Y, et al., 2023. Effects of enrofloxacin’s exposure on the gut microbiota of Tilapia fish (Oreochromis niloticus)[J]. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 46(2): 101077. |
[5] | CHOUHAN U, GAMAD U, CHOUDHARI J, 2023. Metagenomic analysis of soybean endosphere microbiome to reveal signatures of microbes for health and disease[J]. Journal of Genetic Engineering and Biotechnology, 21(1): 84. |
[6] | COPPER J E, BUDGEON LR, FOUTZ C A, et al., 2018. Comparative analysis of fixation and embedding techniques for optimized histological preparation of zebrafish[J]. Comparative Biochemistry & Physiology Part C: Toxicology & Pharmacology, 208: 38-46. |
[7] | CRUMEYROLLE-ARIAS M, JAGLIN M, BRUNEAU A, et al., 2014. Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats[J]. Psychoneuroendocrinology, 42: 207-217. |
[8] | FEI L, SONG K G, CHEN W C, et al., 2023. Longitudinal analysis of changes in the gut microbiota of zebrafish following acute spring viremia of carp virus infection[J]. Aquaculture, 572: 739499. |
[9] | FEI S Z, KANG J M, OU M, et al., 2024. Effects of essential amino acids supplementation in a low-protein diet on growth performance, intestinal health and microbiota of juvenile blotched snakehead (Channa maculata)[J]. Fish and Shellfish Immunology, 149: 109555. |
[10] | GHANBARI M, KNEIFEL W, DOMIG, K J, 2015. A new view of the fish gut microbiome: Advances from next-generation sequencing[J]. Aquaculture, 448: 464-475. |
[11] |
GHOSH S, PRAMANIK S, 2021. Structural diversity, functional aspects and future therapeutic applications of human gut microbiome[J]. Archives of microbiology, 203(9): 5281-5308.
DOI PMID |
[12] | GRENNI P, ANCONA V, CARACCIOLO A B, 2017. Ecological effects of antibiotics on natural ecosystems: A review[J]. Microchemical Journal, 136: 25-39. |
[13] | GUI M B, WANG Y N, XUE Y T, et al., 2023. TCM syndrome differentiation in colorectal cancer patients assisted by differences in gut microbiota: An exploratory study[J]. Heliyon, 9(11): e21057. |
[14] | GUO H H, XUE S H, NASIR M, et al., 2021. Impacts of cadmium addition on the alteration of microbial community and transport of antibiotic resistance genes in oxytetracycline contaminated soil[J]. Journal of Environmental Science, 99: 51-58. |
[15] | GUPTA S, FERNANDES J, KIRON V, 2019. Antibiotic-induced perturbations are manifested in the dominant intestinal bacterial phyla of Atlantic salmon[J]. Microorganisms, 7(8): 233. |
[16] | HE R C, ZHAO L M, XU X J, et al., 2020. Aryl hydrocarbon receptor is required for immune response in Epinephelus coioides and Danio rerio infected by Pseudomonas plecoglossicida[J]. Fish & Shellfish Immunology, 97: 564-570. |
[17] | HOU J Y, ZHANG L L, XU W H, et al., 2024. Glycometabolic disorder induced by chronic exposure to low-concentration imidacloprid in zebrafish[J]. Science of the Total Environment, 937: 173421. |
[18] | HU J M, ZUO J N, LI J B, et al., 2022. Effects of secondary polyethylene microplastic exposure on crucian (Carassius carassius) growth, liver damage, and gut microbiome composition[J]. Science of the Total Environment, 802: 149736. |
[19] | HUANG M Y, LIU Y, DUAN R Y, et al., 2024. Effects of continuous and pulse lead exposure on the swimming behavior of tadpoles revealed by brain-gut axis analysis[J]. Journal of Hazardous Materials, 465: 133267. |
[20] | HUO X M, XU Y, HUANG F, et al., 2023. Watershed land-use heterogeneity affecting spatial patterns of fish community structure in Han River basin, China[J]. Journal of Cleaner Production, 423: 138884. |
[21] | IMAI K, KODANA M, OMACHI R, et al., 2024. A fatal case of peritonitis caused by Dysgonomonas capnocytophagoides harboring the novel metallo-beta-lactamase gene blaDYB-1[J]. International Journal of Infectious Diseases, 147: 107174. |
[22] | JIA J, CHENG M Q, XUE X, et al., 2020. Characterization of tetracycline effects on microbial community, antibiotic resistance genes and antibiotic resistance of Aeromonas spp. in gut of goldfish Carassius auratus Linnaeus[J]. Ecotoxicology and Environmental Safety, 191: 110182. |
[23] | JIAO X, GUO Z Y, LIU B L, et al., 2023. Toxic effects of perfluorocaproic acid (PFHxA) on crucian carp (Carassius auratus) and the response of the intestinal microbial community[J]. Comparative Biochemistry and Physiology, Part C, 271: 109683. |
[24] | JIN Y X, XIA J Z, PAN Z H, et al., 2018. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish[J]. Environmental Pollution, 235: 322-329. |
[25] | KIM A, KIM N, ROH H J, et al., 2019. Administration of antibiotics can cause dysbiosis in fish gut[J]. Aquaculture, 512: 734330. |
[26] | KOHL K D, ETAN D C, JOSÉ G B, et al., 2022. Gut microbial ecology of five species of sympatric desert rodents in relation to herbivorous and insectivorous feeding strategies[J]. Integrative & Comparative Biology, 62(2): 237-251. |
[27] | LEE H, YOON S, HWANG P Y, et al., 2023. Microbiota dysbiosis associated with type 2 diabetes-like effects caused by chronic exposure to a mixture of chlorinated persistent organic pollutants in zebrafish[J]. Environmental Pollution, 334: 122108. |
[28] | LI G X, LÜ M, YU H T, et al., 2025. Integration of physiology, microbiota and metabolomics reveals toxic response of zebrafish gut to co-exposure to polystyrene nanoplastics and arsenic[J]. Aquatic Toxicology, 278: 107172. |
[29] | LI M X, CHEN X, SONG C, et al., 2024a. Sub-chronically exposing zebrafish to environmental levels of methomyl induces dysbiosis and dysfunction of the gut microbiota[J]. Environmental Research, 261: 119674. |
[30] | LI M, LIANG H, YANG H W, et al., 2024b. Deciphering the gut microbiome of grass carp through multi-omics approach[J]. Microbiome, 12(1): 2. |
[31] | LIN W T, QIN Y J, REN Y, 2024. Fluntrazepam and its metabolites compromise zebrafish nervous system functionality: An integrated microbiome, metabolome, and geomic analysis[J]. Environmental Pollution, 341: 122949. |
[32] | LIU C R, PAN K Q, XU H Z, et al., 2024a. The effects of enrofloxacin exposure on responses to oxidative stress, intestinal structure and intestinal microbiome community of largemouth bass (Micropterus salmoides)[J]. Chemosphere, 348: 140751. |
[33] | LIU Y Q, LI X H, LI Y F, et al., 2022a. Gut microbiomes of cyprinid fish exhibit host-species symbiosis along gut trait and diet[J]. Frontiers in Microbiology, 13: 936601. |
[34] | LIU Y, HUANG H J, FAN J T, et al., 2022b. Effects of dietary non-starch polysaccharides level on the growth, intestinal flora and intestinal health of juvenile largemouth bass Micropterus salmoides[J]. Aquaculture, 557: 738343. |
[35] | LIU Y, WANG J Q, DING J, et al., 2024b. Effects of hypoxia stress on oxidative stress, apoptosis and microorganisms in the intestine of large yellow croaker (Larimichthys crocea)[J]. Aquaculture, 581: 740444. |
[36] | MASELLI K M, GEE K, ISANI M, et al., 2020. Broad-spectrum antibiotics alter the microbiome, increase intestinal fxr, and decrease hepatic steatosis in zebrafish short bowel syndrome[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology, 319(2): G212-G226. |
[37] | MEDINA-FELIX D, VARGAS-ALBORES F, GARIBAY-VALDEZ E, et al., 2024. Gastrointestinal dysbiosis induced by Nocardia sp. Infection in tilapia[J]. Comparative Biochemistry and Physiology Part D: Genomics & Proteomics, 49: 101154. |
[38] | MING J C, FU Z Y, MA Z H, et al., 2020. The effect of sulfamonomethoxine treatment on the gut microbiota of Nile tilapia (Oreochromis niloticus)[J]. Microbiology Open, 9(11): e1116. |
[39] | MUKHERJEE S, BHATTACHARYA R, SARKAR O, et al., 2024. Gut microbiota perturbation and subsequent oxidative stress in gut and kidney tissues of zebrafish after individual and combined exposure to inorganic arsenic and fluoride[J]. Science of the Total Environment, 957: 177519. |
[40] |
NAVARRETE P, MARDONES P, OPAZO R, et al., 2008. Oxytetracycline treatment reduces bacterial diversity of intestinal microbiota of Atlantic salmon[J]. Journal of Aquatic Animal Health, 20(3): 177-183.
DOI PMID |
[41] | PAMANJI R, KUMARESHAN T N, PRIYA S L, et al., 2024. Exploring the impact of antibiotics, microplastics, nanoparticles, and pesticides on zebrafish gut microbiomes: Insights into composition, interactions, and health implications[J]. Chemosphere, 349: 140867. |
[42] | QI M Y, MA X D, LIANG B, et al., 2022. Complete genome sequences of the antibiotic sulfamethoxazole-mineralizing bacteria Paenarthrobacter sp. P27 and Norcardiodes sp. N27[J]. Environmental Research, 204(Part B): 112013. |
[43] | QI X Y, XU H Z, LONG J F, et al., 2024. The effect of Astragalus polysacchaides on the repair of adverse effects in largemouth bass (Micropterus salmoides) under enrofloxacin stress[J]. Aquaculture, 592: 741216. |
[44] | QIAN M R, WANG J M, JI X F, et al., 2021. Sub-chronic exposure to antibiotics doxycycline, oxytetracycline or florfenicol impacts gut barrier and induces gut microbiota dysbiosis in adult zebrafish (Daino rerio)[J]. Ecotoxicology and Environmental Safety, 221: 112464. |
[45] | QIU W H, LIU T, LIU X J, et al., 2022. Enrofloxacin induces intestinal microbiotamediated immunosuppression in zebrafish[J]. Environmental Science & Technology, 56(12): 8428-8437. |
[46] | SHI F, HUANG Y, YANG M X, et al., 2022. Antibiotic-induced alternations in gut microflora are associated with the suppression of immune-related pathways in grass carp (Ctenopharyngodon idellus)[J]. Frontiers in Immunology, 13: 970125. |
[47] | SHI Y H, CHEN C, HAN Z M, et al., 2023. Combined exposure to microplastics and amitriptyline caused intestinal damage, oxidative stress and gut microbiota dysbiosis in zebrafish (Danio rerio)[J]. Aquatic Toxicology, 260: 106589. |
[48] | SHI Y H, CHEN C, WU X Y, et al., 2022. Exposure to amitriptyline induces persistent gut damages and dysbiosis of the gut microbiota in zebrafish (Danio rerio)[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 260: 109417. |
[49] |
SONG Z W, FENG S, ZHOU X C, et al., 2023. Taxonomic identification of bile salt hydrolase-encoding lactobacilli: Modulation of the enterohepatic bile acid profile[J]. iMeta, 2(3): e128.
DOI PMID |
[50] | SULLIVAN-BROWN J, BISHER ME, BURDINE R D, 2011. Embedding, serial sectioning and staining of zebrafish embryos using JB-4 resin[J]. Nature Protocols, 6(1): 46-55. |
[51] | TAN S, XU X W, CHENG H, et al., 2022. The alteration of gut microbiome community play an important role in mercury biotransformation in largemouth bass[J]. Environmental Research, 204(Part A): 112026. |
[52] | TANG J L, WANG W Q, JIANG Y H, et al., 2021. Diazinon exposure produces histological damage, oxidative stress, immune disorders and gut microbiota dysbiosis in crucian carp (Carassius auratus gibelio)[J]. Environmental Pollution, 269: 116129. |
[53] | TIAN D D, ZHANG W X, LU L Z, et al., 2024. Enrofloxacin exposure undermines gut health and disrupts neurotransmitters along the microbiota-gut-brain axis in zebrafish[J]. Chemosphere, 356: 141971. |
[54] | USMAN S, ABDULL RAZIS A F, SHAARI K, 2022. Polystyrene microplastics induce gut microbiome and metabolome changes in Javanese medaka fish (Oryzias javanicus Bleeker, 1854)[J]. Toxicology Reports, 9: 1369-1379. |
[55] | WANG F, LU Y S, CAO J M, 2022. Dynamics impacts of oxytetracycline on growth performance, intestinal health and antibiotic residue of grouper in exposure and withdrawal treatment[J]. Ecotoxicology and Environmental Safety, 247: 114203. |
[56] | WANG X W, LU T, YANG B, et al., 2024. Exposure to resorcinol bis (diphenyl phosphate) induces colonization of alien microorganisms with potential impacts on the gut microbiota and metabolic disruption in male zebrafish[J]. Science of the Total Environment, 932: 172892. |
[57] |
WONG J H S, HUONG K H, SHAFIE N A H, et al., 2021. Genetic incorporation of oil-utilizing ability in Cupriavidus malaysiensis USMAA2-4 for sustainable polyhydroxyalkanoates production from palm olein and 1-pentanol[J]. Journal of Biotechnology, 337: 71-79.
DOI PMID |
[58] | WU D N, ZHOU H L, HU Z X, et al., 2023. Multiple effects of ZnO nanoparticles on goldfish (Carassius auratus): Skin mucus, gut microbiota and stable isotope composition[J]. Environmental Pollution, 329: 121651. |
[59] |
XIAO C Q, HAN Y, LIU Y, et al., 2018. Relationship between fluoroquinolone structure and neurotoxicity revealed by zebrafish neurobehavior[J]. Chemical Research in Toxicology, 31(4): 238-250.
DOI PMID |
[60] | YAN B, SUN Y M, FU K Y, et al., 2023. Effects of glyphosate exposure on gut-liver axis: Metabolomic and mechanistic analysis in grass carp (Ctenopharyngodon idellus)[J]. Science of the Total Environment, 902: 166062. |
[61] | YANG J M, CAO Z H, TANG H B, et al., 2024a. Exposure to high concentrations of triphenyl phosphate altered functional performance, liver metabolism and intestinal bacterial composition of aquatic turtles[J]. Ecotoxicology and Environmental Safety, 279: 116488. |
[62] | YANG Y M, YAN C, LI A F, et al., 2024b. Effects of the plastic additive 2,4-di-tert-butylphenol on intestinal microbiota of zebrafish[J]. Journal of Hazardous Materials, 469: 133987. |
[63] | YUAN Y, SEPÚLVEDA M S, BI B L, et al., 2023. Acute polyethylene microplastic (PE-MPs) exposure activates the intestinal mucosal immune network pathway in adult zebrafish (Danio rerio)[J]. Chemosphere, 311(Part 1): 137048. |
[64] | YUN X, ZHOU J, WANG J T, et al., 2023. Biological toxicity effects of florfenicol on antioxidant, immunity and intestinal flora of zebrafish (Danio rerio)[J]. Ecotoxicology and Environmental Safety, 265: 115520. |
[65] | ZHAI W Y, WANG Q, ZHU X P, et al., 2023. Pathogenic infection and microbial composition of yellow catfish (Pelteobagrus fulvidraco) challenged by Aeromonas veronii and Proteus mirabilis[J]. Aquaculture and Fisheries, 8(2): 166-173. |
[66] | ZHANG B J, HAO B Z, HAN M L, et al., 2024a. Impacts of pyraclostrobin on intestinal health and the intestinal microbiota in common carp (Cyprinus carpio L.)[J]. Pesticide Biochemistry and Physiology, 199: 105762. |
[67] | ZHANG X L, CHEN J J, WANG G D, et al., 2022. Interactive effects of fluoride and and seleno-L-methionine at environmental related concentrations on zebrafish (Danio rerio) liver via the gut-liver axis[J]. Fish and shellfish Immunology, 127: 690-702. |
[68] | ZHANG Z Y, WANG T, XU M, et al., 2024b. Deciphering the pancreatic cancer microbiome in Mainland China: Impact of Exiguobacterium/ Bacillus ratio on tumor progression and prognostic significance[J]. Pharmacological Research, 204: 107197. |
[69] | ZHAO H J, ZHANG Y, HOU L L, et al., 2023. Effects of environmentally relevant cypermethrin and sulfamethoxazole on intestinal health, microbiome, and liver metabolism in grass carp[J]. Aquatic Toxicology, 265: 106760. |
[70] | ZHAO N, LIU Y T, GUO J M, et al., 2024. Glucose dependent resistance associated with intestinal microbiota facilitate teleost to survive bacterial infection[J]. Aquaculture, 587: 740865. |
[71] | ZHAO X L, LI P, ZHANG S Q, et al., 2021. Effects of environmental norfloxacin concentrations on the intestinal health and function of juvenile common carp and potential risk to humans[J]. Environmental Pollution, 287: 117612. |
[72] | ZHENG Y, WANG Y F, ZHENG Y F, et al., 2022. Exposed to Sulfamethoxazole induced hepatic lipid metabolism disorder and intestinal microbiota changes on zebrafish (Danio rerio)[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 253: 109245. |
[73] |
ZHOU L, LIMBU S M, SHEN M L, et al., 2018. Environmental concentrations of antibiotics impair zebrafish gut health[J]. Environmental Pollution, 235: 245-254.
DOI PMID |
[74] | ZHOU S H, LIN H J, LIU Z Y, et al., 2024. The impact of co-exposure to polystyrene microplastics and norethindrone on gill histology, antioxidant capacity, reproductive system, and gut microbiota in zebrafish (Danio rerio)[J]. Aquatic Toxicology, 273: 107018. |
[75] | 陈美群, 潘瑛子, 牟振波, 等, 2019. 西藏3种冷水鱼皮肤病灶中潜在病原微生物分析[J]. 西南农业学报, 32(9): 2245-2252. |
CHEN M Q, PAN Y Z, MOU Z B, et al., 2019. Analysis of potential pathogenic microorganisms in skin lesions of three cold-water fish species in Tibet[J]. Southwest Journal of Agricultural Sciences, 32(9): 2245-2252. | |
[76] | 冯宇希, 冯乃宪, 陈昕, 等, 2020. 环境污染物与肠道菌群互作关系的研究进展[J]. 生态毒理学报, 15(4): 99-111. |
FENG Y X, FENG N X, CHEN X, et al., 2020. Interaction between environmental pollutants and gut microbiota: A review[J]. Asian Journal of Ecotoxicology, 15(4): 99-111. | |
[77] | 李晓华, 2018. 规模化猪场粪污中典型抗生素归趋行为及抗性基因扩散特征研究[D]. 北京: 中国农业科学院. |
LI X H, 2018. Migration characteristics of the typical antibiotics and spread of antibiotic resistance genes in the environment of large-scale swine feedlots[D]. Beijing: Chinese Academy of Agricultural Sciences. | |
[78] | 马阳光, 赵可欣, 董武, 等, 2024. 环境浓度多西环素对斑马鱼焦虑行为、认知记忆能力的影响与肠道菌群变化的关联[J]. 水生生物学报, 48(5): 762-771. |
MA Y G, HAO K X, DONG W, et al., 2024. Association between the effects of environmental concentration doxycycline on anxiety behavior, cognitive memory and changes in gut microbiota in zebrafish[J]. Journal of Hydrobiology, 48(5): 762-771. | |
[79] | 梅敏华, 2023. 海口市北部河湖水体抗生素污染特征及生态风险评价[D]. 海口: 海南师范大学. |
MEI M H, 2023. Pollution characteristics and ecological risk assessment of antibiotics in rivers and lakes in northern Haikou City[D]. Haikou: Hainan Normal University. | |
[80] | 覃一书, 保欣晨, 汪洁, 等, 2021. 不同饮食习惯下镉摄入对肠道菌群结构的影响[J]. 中国环境科学, 41(8): 3896-3905. |
QIN Y S, BAO X C, WANG J, et al., 2021. Effect of cadmium intake on the structure of gut microbiota under different dietary habits[J]. China Environmental Science, 41(8): 3896-3905. | |
[81] |
宋超, 陈家长, 胡庚东, 等, 2017. 除草剂氟乐灵及其降解过程对斑马鱼氧化应激状况的影响[J]. 生态环境学报, 26(3): 468-472.
DOI |
SONG C, CHEN J C, HU G D, et al., 2017. Effects of herbicidetrifluralin and its degradation on the oxidative stress of zebrafish[J]. Ecology and Environmental Sciences, 26(3): 468-472. | |
[82] | 王春玲, 冯广达, 姚青, 等, 2019. 粘细菌基因组学研究进展[J]. 微生物学通报, 46(9): 2394-2403. |
WANG C L, FENG G D, YAO Q, et al., 2019. Research progress in genomics of myxobacteria[J]. Microbiology China, 46(9): 2394-2403. | |
[83] | 王嘉琪, 2022. 艾叶对斑马鱼肝损伤的缓解效果研究[D]. 晋中: 山西农业大学: 33-36. |
WANG J Q, 2022. Study on the alleviating effect of Artemisia mugwort leaves on zebrafish liver injury[D]. Jinzhong: Shanxi Agricultural University: 33-36. | |
[84] | 熊小波, 孙博琳, 秦静婷, 等, 2020. 磺胺甲恶唑对赤子爱胜蚓肠道微生物群落的影响[J]. 环境科学学报, 40(11): 4207-4214. |
XIONG X B, SUN B L, QIN J T, et al., 2020. Effects of sulfamethoxazole on Eisenia fetida gut microbiota[J]. Acta Scientiae Circumstantiae, 40(11): 4207-4214. | |
[85] | 张冉冉, 郭晓霞, 2023. 低脂饮食对糖尿病大鼠肠道菌群结构的影响[J]. 生物医学转化, 4(2): 78-87. |
ZHANG R R, GUO X X, 2023. Effect of low-fat diet on intestinal microbiota structure in diabetic rats[J]. Biomedical Translation, 4(2): 78-87. | |
[86] | 张钊, 2023. 体表菌群在三代虫感染中的作用研究[D]. 咸阳西北农林科技大学: 37-40. |
ZHAO Z, 2023. Study of the role of body surface microbiota in third-generation infection[D]. Xianyang: Northwest A & F University: 37-40. |
[1] | NING Jing, WANG Chun, LU Guanling, WEI Lu. Exposure of Zebrafish to Cadmium and Melatonin Induces Changes in Gut Organization, Oxidative Damage, and Microbial Diversity [J]. Ecology and Environment, 2025, 34(1): 77-88. |
[2] | LIN Yulan, CHEN Houpu, YU Wenhao, WANG Baoying, ZHANG Yang, ZHANG Jinbo, CAI Zucong, ZHAO Jun. Effects of Reductive Soil Disinfestation on Common Antibiotics and Their Antibiotic Resistance Genes in Soil [J]. Ecology and Environment, 2024, 33(7): 1107-1116. |
[3] | LI Danyi, HUANG Xianting, LI Jichao, LI Yingjie, YAN Jiapu, LIN Wei. Advances in the Removal of Antibiotics from Water by Graphene Oxide and Its Composites [J]. Ecology and Environment, 2024, 33(1): 144-155. |
[4] | LI Guiying, LIU Jianying, AN Taicheng. The Formation and Resuscitation Mechanisms of Viable But Nonculturable Bacteria during Water Disinfection Processes [J]. Ecology and Environment, 2023, 32(7): 1333-1343. |
[5] | ZHOU Yongkang, YU Shengpin, LI Jiale, DONG Yihui, WANG Meng, ZHAO Qiling, LI Yeyu. Research Progress on Adsorption Behavior and Mechanism of Antibiotics in Soil [J]. Ecology and Environment, 2023, 32(11): 2072-2082. |
[6] | PENG Shuang, SONG Dan, WANG Yiming, LIN Xiangui. Transfer of Tetracycline Resistance Gene to Human Pathogenic Bacteria in Soil [J]. Ecology and Environment, 2023, 32(11): 1978-1987. |
[7] | GAO Xiaoyu, WANG Lei. The Accumulation, Transfer and Elimination of Antibiotic Resistance Genes in Soil: A Review [J]. Ecology and Environment, 2023, 32(11): 2062-2071. |
[8] | CONG Xin, WANG Yu, LI Yao, HE Yangyang. Adsorption Characteristics of Biochars and Graphene Oxide/biochar Composites for Antibiotics from Aqueous Solution [J]. Ecology and Environment, 2022, 31(2): 326-334. |
[9] | XIE Xudong, HOU Zhihao, LI Nan, YUE Cuixia, LI Ya, YANG Fangshe. Occurrence, Distribution and Ecological Risk of Antibiotics in Sediments and Soils over the Four Areas Below the Heihe-Tengchong Line of China [J]. Ecology and Environment, 2021, 30(5): 1023-1033. |
[10] | ZHANG Kai, GUO Ziwei, WANG Qian, HAN Ya, LI Kuangjia, ZHANG Zhongshuai. Distribution Pattern of Antibiotic Resistant Bacteria in Water Supply Reservoirs of Central China [J]. Ecology and Environment, 2021, 30(5): 1017-1022. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn