Ecology and Environment ›› 2023, Vol. 32 ›› Issue (11): 2062-2071.DOI: 10.16258/j.cnki.1674-5906.2023.11.016
• Reviews • Previous Articles Next Articles
Received:
2023-04-07
Online:
2023-11-18
Published:
2024-01-17
作者简介:
高晓宇(1992年生),女,博士研究生,研究方向为抗生素抗性基因的环境行为及阻控。E-mail: gxy1010gxy@tongji.edu.cn
基金资助:
CLC Number:
GAO Xiaoyu, WANG Lei. The Accumulation, Transfer and Elimination of Antibiotic Resistance Genes in Soil: A Review[J]. Ecology and Environment, 2023, 32(11): 2062-2071.
高晓宇, 王磊. 抗生素抗性基因在土壤中积累、转移与消减的研究进展[J]. 生态环境学报, 2023, 32(11): 2062-2071.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.11.016
地区 | 土壤利用类型 | ARGs来源 | ARGs | ARGs/16S rRNA | 参考文献 |
---|---|---|---|---|---|
山东 | 蔬菜大棚 | 有机肥 | tetW, tetM, tetO, tetT | 3.70×10−5-1.25×102 | Zhao et al., |
山东 | 蔬菜大棚 | 有机肥 | sul1, sul2 | 3.97×10−3-9.94×102 | Zhao et al., |
江西/湖南 | 水稻 | 有机肥 | tetA, tetG, tetM, tetO, tetQ, tetW | 2.43×10−7-2.44×10−3 | Tang et al., |
江西/湖南 | 水稻 | 有机肥 | sul1, sul2 | 2.28×10−5-5.95×10−3 | Tang et al., |
安徽 | 小麦/大豆轮作 | 牛粪/猪粪 | 38种ARGs | 9.86×10−6-1.38×10−1 | Peng et al., |
北京/天津/浙江 | ‒ | 猪粪 | tetM, tetO, tetQ, tetW | 6.68×10−8-2.41×10−2 | Wu et al., |
福建 | 农田/菜地 | 猪粪 | tetO, tetW, tetM, tetA, tetX | 1.01 ×10−6-1.70×10−2 | Huang et al., |
30省 | 农田 | ‒ | sul1, sul2 | 4.90×10−8-1.10×10−2 | Zhou et al., |
30省 | 农田 | ‒ | tetM, tetW, tetQ, tetO, tetT, tetB/P | 7.03×10−8-8.80×10−2 | Zhou et al., |
上海 | 农田 | 堆肥 | sul1, sul2 | 2.37×10−5-4.23×10−2 | Ji et al., |
‒ | 菜地 | 粪便 | sul1, sul2 | 10−4-10−3 | Wang et al., |
‒ | 菜地 | 粪便 | tetM, tetO, tetW, tetB/P | 10−5-10−3 | Wang et al., |
Table 1 Abundance of some selected ARGs in manure application soils from different regions of China
地区 | 土壤利用类型 | ARGs来源 | ARGs | ARGs/16S rRNA | 参考文献 |
---|---|---|---|---|---|
山东 | 蔬菜大棚 | 有机肥 | tetW, tetM, tetO, tetT | 3.70×10−5-1.25×102 | Zhao et al., |
山东 | 蔬菜大棚 | 有机肥 | sul1, sul2 | 3.97×10−3-9.94×102 | Zhao et al., |
江西/湖南 | 水稻 | 有机肥 | tetA, tetG, tetM, tetO, tetQ, tetW | 2.43×10−7-2.44×10−3 | Tang et al., |
江西/湖南 | 水稻 | 有机肥 | sul1, sul2 | 2.28×10−5-5.95×10−3 | Tang et al., |
安徽 | 小麦/大豆轮作 | 牛粪/猪粪 | 38种ARGs | 9.86×10−6-1.38×10−1 | Peng et al., |
北京/天津/浙江 | ‒ | 猪粪 | tetM, tetO, tetQ, tetW | 6.68×10−8-2.41×10−2 | Wu et al., |
福建 | 农田/菜地 | 猪粪 | tetO, tetW, tetM, tetA, tetX | 1.01 ×10−6-1.70×10−2 | Huang et al., |
30省 | 农田 | ‒ | sul1, sul2 | 4.90×10−8-1.10×10−2 | Zhou et al., |
30省 | 农田 | ‒ | tetM, tetW, tetQ, tetO, tetT, tetB/P | 7.03×10−8-8.80×10−2 | Zhou et al., |
上海 | 农田 | 堆肥 | sul1, sul2 | 2.37×10−5-4.23×10−2 | Ji et al., |
‒ | 菜地 | 粪便 | sul1, sul2 | 10−4-10−3 | Wang et al., |
‒ | 菜地 | 粪便 | tetM, tetO, tetW, tetB/P | 10−5-10−3 | Wang et al., |
[1] |
ARNOLD B J, HUANG I T, HANAGE W P, 2022. Horizontal gene transfer and adaptive evolution in bacteria[J]. Nature Reviews Microbiology, 20(4): 206-218.
DOI |
[2] |
BILLARD-POMARES T, FOUTEAU S, JACQUET M E, et al., 2014. Characterization of a P1-Like bacteriophage carrying an SHV-2 extended-spectrum -lactamase from an escherichia coli strain[J]. Antimicrobial Agents and Chemotherapy, 58(11): 6550-6557.
DOI URL |
[3] |
BLUM S A E, LORENZ M G, WACKERNAGEL W, 1997. Mechanism of retarded DNA degradation and prokaryotic origin of DNases in nonsterile soils[J]. Systematic and Applied Microbiology, 20(4): 513-521.
DOI URL |
[4] |
CALERO-CACERES W, YE M, BALCAZAR J L, 2019. Bacteriophages as environmental reservoirs of antibiotic resistance[J]. Trends in Microbiology, 27(7): 570-577.
DOI URL |
[5] |
CHEE-SANFORD J C, MACKIE R I, KOIKE S, et al., 2009. Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste[J]. Journal Of Environmental Quality, 38(3): 1086-1108.
DOI URL |
[6] |
CHEN C Q, LI J, CHEN P P, et al., 2014. Occurrence of antibiotics and antibiotic resistances in soils from wastewater irrigation areas in Beijing and Tianjin, China[J]. Environmental Pollution, 193: 94-101.
DOI PMID |
[7] |
CHEN Q L, FAN X T, ZHU D, et al., 2018. Effect of biochar amendment on the alleviation of antibiotic resistance in soil and phyllosphere of Brassica chinensis L.[J]. Soil Biology and Biochemistry, 119: 74-82.
DOI URL |
[8] |
CHEN Q L, HU H W, YAN Z Z, et al., 2022. Cross-biome antibiotic resistance decays after millions of years of soil development[J]. The ISME journal, 16(7): 1864-1867.
DOI URL |
[9] |
CHENG W X, LI J, WU Y, et al., 2016. Behavior of antibiotics and antibiotic resistance genes in eco-agricultural system: A case study[J]. Journal Of Hazardous Materials, 304: 18-25.
DOI PMID |
[10] |
CHO I, BLASER M J, 2012. The human microbiome: at the interface of health and disease[J]. Nature Reviews Genetics, 13(4): 260-270.
DOI PMID |
[11] |
COTTELL J L, WEBBER M A, PIDDOCK L J, 2012. Persistence of transferable extended-spectrum-beta-lactamase resistance in the absence of antibiotic pressure[J]. Antimicrob Agents Chemother, 56(9): 4703-4706.
DOI URL |
[12] |
CUI E P, GAO F, LIU Y, et al., 2018. Amendment soil with biochar to control antibiotic resistance genes under unconventional water resources irrigation: Proceed with caution[J]. Environmental Pollution, 240: 475-484.
DOI URL |
[13] |
DAVIES J, DAVIES D, 2010. Origins and evolution of antibiotic resistance[J]. Microbiology and Molecular Biology Reviews, 74(3): 417-433.
DOI PMID |
[14] |
DE VRIES J, WILFRIED W, 2004. Microbial horizontal gene transfer and the DNA release from transgenic crop plants[J]. Plant and Soil, 266(1): 91-104.
DOI URL |
[15] |
DONG P Y, WANG H, FANG T T, et al., 2019. Assessment of extracellular antibiotic resistance genes (eARGs) in typical environmental samples and the transforming ability of eARG[J]. Environment International, 125: 90-96.
DOI PMID |
[16] |
DUAN M L, LI H C, GU J, et al., 2017. Effects of biochar on reducing the abundance of oxytetracycline, antibiotic resistance genes, and human pathogenic bacteria in soil and lettuce[J]. Environmental Pollution, 224: 787-795.
DOI PMID |
[17] |
ENNIS C J, EVANS A G, ISLAM M, et al., 2012. Biochar: Carbon sequestration, land remediation, and impacts on soil microbiology[J]. Critical Reviews in Environmental Science and Technology, 42(22): 2311-2364.
DOI URL |
[18] |
FAN X T, LI H, CHEN Q L, et al., 2019. Fate of antibiotic resistant pseudomonas putida and broad host range plasmid in natural soil microcosms[J]. Frontiers in Microbiology, 10: 194.
DOI URL |
[19] |
FORSBERG K J, PATEL S, GIBSON M K, et al., 2014. Bacterial phylogeny structures soil resistomes across habitats[J]. Nature, 509(7502): 612-616.
DOI |
[20] |
GUO A Y, PAN C R, MA J Y, et al., 2020. Linkage of antibiotic resistance genes, associated bacteria communities and metabolites in the wheat rhizosphere from chlorpyrifos-contaminated soil[J]. Science of The Total Environment, 741(2): 140457.
DOI URL |
[21] |
HAN B H, MA L, YU Q L, et al., 2022. The source, fate and prospect of antibiotic resistance genes in soil: A review[J]. Frontiers In Microbiology, 13: 976657.
DOI URL |
[22] |
HAN X M, HU H W, CHEN Q L, et al., 2018. Antibiotic resistance genes and associated bacterial communities in agricultural soils amended with different sources of animal manures[J]. Soil Biology & Biochemistry, 126: 91-102.
DOI URL |
[23] |
HAO H, SHI D Y, YANG D, et al., 2019. Profiling of intracellular and extracellular antibiotic resistance genes in tap water[J]. Journal Of Hazardous Materials, 365: 340-345.
DOI PMID |
[24] |
HE L Y, LIU Y S, SU H C, et al., 2014. Dissemination of antibiotic resistance genes in representative broiler feedlots environments: Identification of indicator ARGs and correlations with environmental variables[J]. Environmental Science & Technology, 48(22): 13120-13129.
DOI URL |
[25] |
HE X L, XU Y B, CHEN J L, et al., 2017. Evolution of corresponding resistance genes in the water of fish tanks with multiple stresses of antibiotics and heavy metals[J]. Water Research, 124: 39-48.
DOI PMID |
[26] |
HEUER H, SCHMITT H, SMALLA K, 2011. Antibiotic resistance gene spread due to manure application on agricultural fields[J]. Current Opinion in Microbiology, 14(3): 236-243.
DOI PMID |
[27] |
HILL K E, TOP E M, 1998. Gene transfer in soil systems using microcosms[J]. FEMS Microbiology Ecology, 25(4): 319-329.
DOI URL |
[28] |
HOLMES A H, MOORE, L S P, SUNDSFJORD A, et al., 2016. Understanding the mechanisms and drivers of antimicrobial resistance[J]. Lancet, 387(10014): 176-187.
DOI PMID |
[29] |
HUANG X, LIU C X, LI K, et al., 2013. Occurrence and distribution of veterinary antibiotics and tetracycline resistance genes in farmland soils around swine feedlots in Fujian Province, China[J]. Environmental Science and Pollution Research, 20(12): 9066-9074.
DOI URL |
[30] |
HVISTENDAHL M, 2012. Public health. China takes aim at rampant antibiotic resistance[J]. Science, 336(6083): 795.
DOI PMID |
[31] |
HYDER S L, STREITFELD M M, 1978. Transfer of erythromycin resistance from clinically isolated lysogenic strains of streptococcus pyogenes via their endogenous phage[J]. Journal of Infectious Diseases, 138(3): 281-286.
PMID |
[32] | JI X L, SHEN Q H, LIU F, et al., 2012. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China[J]. Journal of Hazardous Materials, 235-236: 178-185. |
[33] |
JOHNSTON C, MARTIN B, FICHANT G, et al., 2014. Bacterial transformation:distribution, shared mechanisms and divergent control[J]. Nature Reviews Microbiology, 12(3): 181-196.
DOI |
[34] |
KITTREDGE H A, DOUGHERTY K M, EVANS S E, 2022. Dead but not forgotten: How extracellular DNA, moisture, and space modulate the horizontal transfer of extracellular antibiotic resistance genes in soil[J]. Applied and Environmental Microbiology, 88(7): e0228021.
DOI URL |
[35] |
KORTRIGHT K E, CHAN B K, KOFF J L, et al., 2019. Phage therapy: A renewed approach to combat antibiotic-resistant bacteria[J]. Cell Host Microbe, 25(2): 219-232.
DOI PMID |
[36] |
LERMINIAUX N A, CAMERON A, 2019. Horizontal transfer of antibiotic resistance genes in clinical environments[J]. Canadian Journal of Microbiology, 65(1): 34-44.
DOI PMID |
[37] |
LI B, CHEN Z, ZHANG F, et al., 2020. Abundance, diversity and mobility potential of antibiotic resistance genes in pristine Tibetan Plateau soil as revealed by soil metagenomics[J]. FEMS Microbiology Ecology, 96(10): fiaa172.
DOI URL |
[38] |
LI T T, LI R C, CAO Y F, et al., 2022. Soil antibiotic abatement associates with the manipulation of soil microbiome via long-term fertilizer application[J]. Journal of hazardous materials, 439: 129704.
DOI URL |
[39] |
LI J J, XIN Z H, ZHANG Y Z, et al., 2017. Long-term manure application increased the levels of antibiotics and antibiotic resistance genes in a greenhouse soil[J]. Applied Soil Ecology, 121: 193-200.
DOI URL |
[40] |
LI H Z, ZHANG D D, YANG K, et al., 2020. Phenotypic tracking of antibiotic resistance spread via transformation from environment to clinic by reverse D2O single-cell raman probing[J]. Analytical Chemistry, 92(23): 15472-15479.
DOI URL |
[41] |
LIU J Y, GU J, WANG X J, et al., 2019. Evaluating the effects of coal gasification slag on the fate of antibiotic resistant genes and mobile genetic elements during anaerobic digestion of swine manure[J]. Bioresource Technology, 271: 24-29.
DOI PMID |
[42] | LIU M F, ZHANG L, HUANG L, et al., 2017. Use of natural transformation to establish an easy knockout method in riemerella anatipestifer[J]. Applied and Environmental Microbiology, 83(9): e00127-17. |
[43] |
LIU Z S, ZHAO Y X, ZHANG B F, et al., 2023. Deterministic effect of pH on shaping soil resistome revealed by metagenomic analysis[J]. Environmental science & technology. 57(2): 985-996.
DOI URL |
[44] |
LUBY E, IBEKWE A M, ZILLES J, et al., 2016. Molecular methods for assessment of antibiotic resistance in agricultural ecosystems: Prospects and challenges[J]. Journal of Environmental Quality, 45(2): 441-453.
DOI PMID |
[45] |
KHANNA M, STOTZKY M, 1992. Transformation of bacillus subtilis by DNA bound on montmorillonite and effect of DNase on the transforming Ability of Bound DNA[J]. Applied and Environmental Microbiology, 58(6): 1930-1939.
DOI PMID |
[46] |
MA Y, WILSON C A, NOVAK J T, et al., 2011. Effect of various sludge digestion conditions on sulfonamide, macrolide, and tetracycline resistance genes and class I integrons[J]. Environmental Science & Technology, 45(18): 7855-7861.
DOI URL |
[47] |
MARTI R, TIEN Y C, MURRAY R, et al., 2014. Safely coupling livestock and crop production systems: how rapidly do antibiotic resistance genes dissipate in soil following a commercial application of swine or dairy manure?[J]. Applied and Environmental Microbiology, 80(10): 3258-3265.
DOI PMID |
[48] |
MARTÍNEZ J L, 2008. Antibiotics and antibiotic resistance genes in natural environments[J]. Science, 321(5887): 365-367.
DOI PMID |
[49] |
MATTHIESSEN L, BERGSTROM R, DUSTDAR S, et al., 2016. Increased momentum in antimicrobial resistance research[J]. Lancet, 388(10047): 865.
DOI PMID |
[50] |
MANZONI S, SCHIMEL J P, PORPORATO A, 2012. Responses of soil microbial communities to water stress: Results from a meta-analysis[J]. Ecology, 93(4): 930-938.
DOI PMID |
[51] |
MAO D Q, LUO Y, MATHIEU J, WANG Q, et al., 2014. Persistence of extracellular DNA in river sediment facilitates antibiotic resistance gene propagation[J]. Environmental Science &Technology, 48(1): 71-78.
DOI URL |
[52] |
MACEDO G, OLESEN A K, MACCARIO L et al., 2022. Horizontal gene transfer of an IncP1 plasmid to soil bacterial community introduced by Escherichia coli through manure amendment in soil microcosms[J]. Environmental Science & Technology, 56(16): 11398-11408.
DOI URL |
[53] |
MUNIR M, XAGORARAKI I, 2011. Levels of antibiotic resistance genes in manure, biosolids, and fertilized soil[J]. Journal Of Environmental Quality, 40(1): 248-255.
PMID |
[54] |
MUSOVIC S, DECHESNE A, SORENSEN J, et al., 2010. Novel assay to assess permissiveness of a soil microbial community toward receipt of mobile genetic elements[J]. Applied and Environmental Microbiology, 76(14): 4813-4818.
DOI PMID |
[55] |
MUURINEN J, STEDTFELD R, KARKMAN A, et al., 2017. Influence of manure application on the environmental resistome under finnish agricultural practice with restricted antibiotic use[J]. Environmental Science & Technology, 51(11): 5989-5999.
DOI URL |
[56] |
NEGREANU Y, PASTERNAK Z, JURKEVITCH E, 2012. Impact of treated wastewater irrigation on antibiotic resistance in agricultural soils[J]. Environmental science & technology, 46(9): 4800-4808.
DOI URL |
[57] |
PAN M, CHU L M, 2018. Occurrence of antibiotics and antibiotic resistance genes in soils from wastewater irrigation areas in the Pearl River Delta region, southern China[J]. Science of The Total Environment, 624: 145-152.
DOI URL |
[58] |
PENG S, FENG Y Z, WANG Y M, et al., 2017. Prevalence of antibiotic resistance genes in soils after continually applied with different manure for 30 years[J]. Journal of Hazardous Materials, 340: 16-25.
DOI PMID |
[59] |
QIAN X, GU J, SUN W, et al., 2018. Diversity, abundance, and persistence of antibiotic resistance genes in various types of animal manure following industrial composting[J]. Journal Of Hazardous Materials, 344: 716-722.
DOI PMID |
[60] | QIAN X, GUNTURU S, GUO J R, et al., 2020. Metagenomic analysis reveals the shared and distinct features of the soil resistome across tundra, temperate prairie and tropical ecosystems[J]. Microbiome 9(1): 6530. |
[61] |
QIAN X, SUN W, GU J, et al., 2016. Reducing antibiotic resistance genes, integrons, and pathogens in dairy manure by continuous thermophilic composting[J]. Bioresource Technology, 220: 425-432.
DOI PMID |
[62] |
RAYNER C, MUNCKHOF W J, 2005. Antibiotics currently used in the treatment of infections caused by Staphylococcus aureus[J]. Internal Medicine Journal, 35(Suppl 2): 3-16.
DOI URL |
[63] |
RIBER L, POULSEN P H, AL-SOUD W A, et al., 2014. Exploring the immediate and long-term impact on bacterial communities in soil amended with animal and urban organic waste fertilizers using pyrosequencing and screening for horizontal transfer of antibiotic resistance[J]. FEMS Microbiol Ecol, 90(1): 206-224.
DOI PMID |
[64] |
ROSS J, TOPP E, 2015. Abundance of antibiotic resistance genes in bacteriophage following soil fertilization with dairy manure or municipal biosolids, and evidence for potential transduction[J]. Applied and Environmental Microbiology, 81(22): 7905-7913.
DOI PMID |
[65] | SAEKI K, KUNITO T, SAKAI M, 2010. Effects of pH, ionic strength, and solutes on DNA adsorption by andosols[J]. Biology & Fertility of Soils, 46(5): 531-535. |
[66] | SCALLAN E, HOEKSTRA R M, MAHON B E, et al., 2015. An assessment of the human health impact of seven leading foodborne pathogens in the United States using disability adjusted life years[J]. Epidemiology & Infection, 143(13): 2795-2804. |
[67] |
SHUANG P, FENG Y Z, WANG Y M, et al., 2017. Prevalence of antibiotic resistance genes in soils after continually applied with different manure for 30 years[J]. Journal of Hazardous Materials, 340: 16-25.
DOI PMID |
[68] | SHEN C, ZHONG L L, YANG Y, et al., 2020. Dynamics of mcr-1 prevalence and mcr-1-positive Escherichia coli after the cessation of colistin use as a feed additive for animals in China: a prospective cross-sectional and whole genome sequencing-based molecular epidemiological study[J]. The Lancet Microbe, 1(1): 34-43. |
[69] |
LEE G H, STOZKY G, 1999. Transformation and survival of donor, recipient, and transformants of Bacillus subtilis in vitro and in soil[J]. Soil Biology and Biochemistry, 31(11): 1499-1508.
DOI URL |
[70] |
SCHMIEGER H, SCHICKLMAIER P, 1999. Transduction of multiple drug resistance of Salmonella enterica serovar typhimurium DT104[J]. FEMS Microbiology Letters, 1999, 170(1): 251-256.
PMID |
[71] |
SIROIS S H, BUCKLEY D H, 2019. Factors governing extracellular DNA degradation dynamics in soil[J]. Environmental Microbiology Reports, 11(2): 173-184.
DOI PMID |
[72] |
SKOLD O, 2000. Sulfonamide resistance: Mechanisms and trends[J]. Drug resistance updates. 3(3): 155-160.
DOI URL |
[73] |
SUN J T, JIN L, HE T T, et al., 2020. Antibiotic resistance genes (ARGs) in agricultural soils from the Yangtze River Delta, China[J]. Science of The Total Environment, 740: 140001.
DOI URL |
[74] |
SUN M M, YE M, JIAO W T, et al., 2018. Changes in tetracycline partitioning and bacteria/phage-comediated ARGs in microplastic-contaminated greenhouse soil facilitated by sophorolipid[J]. Journal Of Hazardous Materials, 345: 131-139.
DOI PMID |
[75] |
SUN M M, YE M, ZHANG Z Y, et al., 2019. Biochar combined with polyvalent phage therapy to mitigate antibiotic resistance pathogenic bacteria vertical transfer risk in an undisturbed soil column system[J]. Journal Of Hazardous Materials, 365: 1-8.
DOI PMID |
[76] | SU H C, LIU Y S, PAN C G, et al., 2017. Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: From drinking water source to tap water[J]. Science of the Total Environment, 616-617: 453-461. |
[77] |
TANG X J, LOU C L, WANG S X, et al., 2015. Effects of long-term manure applications on the occurrence of antibiotics and antibiotic resistance genes (ARGs) in paddy soils: Evidence from four field experiments in south of China[J]. Soil Biology and Biochemistry, 90: 179-187.
DOI URL |
[78] | UDIKOVIC-KOLIC N, WICHMANN F, BRODERICK N A, et al., 2014. Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization[J]. Proceedings of the National Academy of Sciences of the United States of America, 111(42): 15202-15207. |
[79] |
WANG F H, QIAO M, SU J Q, et al., 2014. High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation[J]. Environmental Science & Technology, 48(16): 9079-9085.
DOI URL |
[80] |
WANG F H, QIAO M, CHEN Z, et al., 2015. Antibiotic resistance genes in manure-amended soil and vegetables at harvest[J]. Journal of Hazardous Materials, 299: 215-221.
DOI URL |
[81] |
WU N, QIAO M, ZHANG B, et al., 2010. Abundance and diversity of tetracycline resistance genes in soils adjacent to representative swine feedlots in China[J]. Environmental Science & Technology, 44(18): 6933-6939.
DOI URL |
[82] |
WU Y, CUI E P, ZUO Y R, et al., 2018. Fate of antibiotic and metal resistance genes during two-phase anaerobic digestion of residue sludge revealed by metagenomic approach[J]. Environmental Science and Pollution Research, 25(14): 13956-13963.
DOI |
[83] |
XU H, CHEN Z Y, HUANG R Y, et al., 2021. Antibiotic resistance gene-carrying plasmid spreads into the plant endophytic bacteria using soil bacteria as carriers[J]. Environmental Science & Technology, 55(15): 10462-10470.
DOI URL |
[84] |
XIAO K Q, LI B, MA L P, et al., 2016. Metagenomic profiles of antibiotic resistance genes in paddy soils from South China[J]. FEMS Microbiology Ecology, 92(3): fiw023.
DOI URL |
[85] |
XIE W Y, MCGRATH S P, SU J Q, et al., 2016. Long-term impact of field applications of sewage sludge on soil antibiotic resistome[J]. Environmental Science & Technology, 50(23): 12602-12611.
DOI URL |
[86] |
YANG Y Y, LIU G H, YE C, et al., 2019. Bacterial community and climate change implication affected the diversity and abundance of antibiotic resistance genes in wetlands on the Qinghai-Tibetan Plateau[J]. Journal of Hazardous Materials, 361: 283-293.
DOI PMID |
[87] |
YUAN K, WANG X W, CHEN X, et al., 2019a. Occurrence of antibiotic resistance genes in extracellular and intracellular DNA from sediments collected from two types of aquaculture farms[J]. Chemosphere, 234: 520-527.
DOI URL |
[88] |
YUAN Q B, YU P F, CHENG Y, et al., 2022. Chlorination (but not UV disinfection) generates cell debris that increases extracellular antibiotic resistance gene transfer via proximal adsorption to recipients and upregulated transformation genes[J]. Environmental Science & Technology, 56(23): 17166-17176.
DOI URL |
[89] |
YUAN Q B, HUANG Y M, WU W B, et al., 2019b. Redistribution of intracellular and extracellular free & adsorbed antibiotic resistance genes through a wastewater treatment plant by an enhanced extracellular DNA extraction method with magnetic beads[J]. Environment International, 131: 104986.
DOI URL |
[90] | ZAREI-BAYGI A, SMITH A L, 2021. Intracellular versus extracellular antibiotic resistance genes in the environment: Prevalence, horizontal transfer, and mitigation strategies[J]. Environment International, 319: 124181. |
[91] |
ZHANG H C, CHANG F Y, SHI P, et al., 2019b. Antibiotic resistome alteration by different disinfection strategies in a full-scale drinking water treatment plant deciphered by metagenomic assembly[J]. Environmental Science & Technology, 53(4): 2141-2150.
DOI URL |
[92] |
ZHANG J Y, SUI Q W, TONG J, et al., 2018b. Soil types influence the fate of antibiotic-resistant bacteria and antibiotic resistance genes following the land application of sludge composts[J]. Environment International, 118: 34-43.
DOI URL |
[93] |
ZHANG Q Q, YING G G, PAN C G, et al., 2015. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 49(11): 6772-6782.
DOI URL |
[94] |
ZHANG Y T, HAO X Y, THOMAS B W, et al., 2023. Soil antibiotic resistance genes accumulate at different rates over four decades of manure application[J]. Journal Of Hazardous Materials, 443(Part B): 130136.
DOI URL |
[95] |
ZHANG Y, LI A L, DAI T J, et al., 2018a. Cell-free DNA: A neglected source for antibiotic resistance genes spreading from WWTPs[J]. Environmental Science & Technology, 52(1): 248-257.
DOI URL |
[96] |
ZHANG Y J, HU H W, CHEN Q L, et al., 2019a. Transfer of antibiotic resistance from manure-amended soils to vegetable microbiomes[J]. Environment International, 130: 104912.
DOI URL |
[97] |
ZHANG Y P, SNOW D D, PARKER D, et al., 2013. Intracellular and extracellular antimicrobial resistance genes in the sludge of livestock waste management structures[J]. Environmental Science & Technology, 47(18): 10206-10213.
DOI URL |
[98] |
ZHAO X, WANG J H, ZHU L S, et al., 2019. Field-based evidence for enrichment of antibiotic resistance genes and mobile genetic elements in manure-amended vegetable soils[J]. Science of The Total Environment, 654: 906-913.
DOI URL |
[99] |
ZHENG D S, YIN G Y, LIU M, et al., 2022. Global biogeography and projection of soil antibiotic resistance genes[J]. Science Advances, 8(46): eabq8015.
DOI URL |
[100] |
ZHOU X, QIAO M, SU J Q, et al., 2019. Turning pig manure into biochar can effectively mitigate antibiotic resistance genes as organic fertilizer[J]. Science of The Total Environment, 649: 902-908.
DOI URL |
[101] | ZHOU Y T, NIU L L, ZHU S Y, et al., 2017. Occurrence, abundance, and distribution of sulfonamide and tetracycline resistance genes in agricultural soils across China[J]. Science of The Total Environment, 599-600: 1977-1983. |
[102] |
ZHU D, XIANG Q, YANG X R, et al., 2019. Trophic transfer of antibiotic resistance genes in a soil detritus food chain[J]. Environmental Science & Technology, 53(13): 7770-7781.
DOI URL |
[103] | ZHU Y G, JOHNSON T A, SU J Q, et al., 2013. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. Proceedings of the National Academy of Sciences of the United States of America, 110(9): 3435-3440. |
[104] |
冀秀玲, 刘芳, 沈群辉, 等, 2011. 养殖场废水中磺胺类和四环素抗生素及其抗性基因的定量检测[J]. 生态环境学报, 20(5): 927-933.
DOI |
JI X L, LIU F, SHEN Q H, et al., 2011. Quantitative detection of sulfonamides and tetracycline antibiotics and resistance genes in sewage farms[J]. Ecology and Environmental Sciences, 20(5): 927-933. | |
[105] |
胡雪莹, 张越, 郭雅杰, 等, 2022. 不同施肥处理农田土壤中噬菌体与细菌携带抗生素抗性基因的比较[J]. 生物技术通报, 38(9): 116-126.
DOI |
HU X Y, ZHANG Y, GUO Y J, et al., 2022. Comparison in antibiotic resistance genes carried by bacteriophages and bacteria in farmland soil amended with different fertilizers[J]. Biotechnology Bulletin, 38(9): 116-126. | |
[106] | 王娜, 郭欣妍, 单正军, 等, 2021. 农田土壤抗生素污染管控建议[J]. 中国工程科学, 23(1): 167-173. |
WANG N, GUO X Y, SHAN Z J, et al., 2021. Suggestions for management and control of antibiotics in farmland soil in China[J]. Chinese Journal of Engineering Science, 23(1): 167-173. |
[1] | TANG Zhiwei, WENG Ying, ZHU Xiatong, CAI Hongmei, DAI Wenci, WANG Pengna, ZHENG Baoqiang, LI Jincai, CHEN Xiang. Meta-analysis of Soil Microbial Mass Carbon and Its Influencing Factors in Farmland in China under Straw Return [J]. Ecology and Environment, 2023, 32(9): 1552-1562. |
[2] | LI Hang, CHEN Jinping, DING Zhaohua, SHU Yang, WEI Jiangsheng, ZHAO Pengwu, ZHOU Mei, WANG Yuxuan, LIANG Chihao, ZHANG Yichao. Effects of Fire Disturbance on Soil Nitrogen Fractions and Functional Genes of Nitrogen Cycling in Soil of Larix gmelinii Forests [J]. Ecology and Environment, 2023, 32(9): 1563-1573. |
[3] | FANG Yuan, LIANG Zhong, ZHANG Yutao, SHI Qingdong, SUN Xuejiao, LI Jimei, LI Xiang, DONG Zhentao. Characteristics of Altitudinal Gradient Changes in Water Retention of Tianshan Spruce Forest Ecosystems [J]. Ecology and Environment, 2023, 32(9): 1574-1584. |
[4] | SONG Simeng, LIN Dongmei, ZHOU Hengyu, LUO Zongzhi, ZHANG Lili, YI Chao, LIN Hui, LIN Xingsheng, LIU Bin, SU Dewei, ZHENG Dan, YU Shikui, LIN Zhanxi. Effects of Planting Cenchrus fungigraminus on Plant Species Diversity and Soil Physicochemical Properties in the Ulan Buh Desert [J]. Ecology and Environment, 2023, 32(9): 1595-1605. |
[5] | LIANG Xin, HAN Yafeng, ZHENG Ke, WANG Xugang, CHEN Zhihuai, DU Juan. Effects of Fe3O4 on Soil Carbon Mineralization in Paddy Field [J]. Ecology and Environment, 2023, 32(9): 1615-1622. |
[6] | LIU Han, WANG Ping, SUN Luyuan, QING Wenjing, CHEN Xiaofen, CHEN Jin, ZHOU Guopeng, LIANG Ting, LIU Jia, LI Yanli. Effects of Winter Green Manure Planting on Soil Microbial Biomass Carbon, Nitrogen, and Enzyme Activity in Red Soil Young Citrus Orchard [J]. Ecology and Environment, 2023, 32(9): 1623-1631. |
[7] | NING Jian, CHENG Xiaobo, SU Chaoli, TANG Zeping, YU Zefeng. Analysis of Soil Radioactivity Levels around NORM Facilities in Guangdong Province [J]. Ecology and Environment, 2023, 32(9): 1692-1699. |
[8] | JIANG Yishan, SUN Yingtao, ZHANG Gan, LUO Chunling. Pattern and Influencing Factors of Forest Soil Microbial Communities in Different Climate Types in China [J]. Ecology and Environment, 2023, 32(8): 1355-1364. |
[9] | WANG Yuqin, SONG Meiling, ZHOU Rui, WANG Hongsheng. Effects of Spread of Ligularia virgaurea on Soil Physicochemical Properties and Enzyme Activities in Alpine Meadow [J]. Ecology and Environment, 2023, 32(8): 1384-1391. |
[10] | GU Meiying, TANG Guangmu, ZHANG Yunshu, HUANG Jian, ZHANG Zhidong, ZHANG Lijuan, ZHU Jing, TANG Qiyong, CHU Min, XU Wanli. Effects of Organic Fertilizers and Biochar on Microorganism Community Characteristics in Saline-alkali Sandy Soil of Xinjiang [J]. Ecology and Environment, 2023, 32(8): 1392-1404. |
[11] | LIU Chen, BAI Xuedong, ZHAO Haichao, HUANG Zhihong, LIU Songtao, LU Haibo, LIU Zigang, LIU Xueling. The Effect Mechanism of Spring Maize Straw Returning Method on Soil DOM Spectral Characteristics in Cold and Arid Regions of China [J]. Ecology and Environment, 2023, 32(8): 1419-1432. |
[12] | LIU Bingyu, WANG Yipei, YAO Zuofang, YANG Gairen, XU Xiaonan, DENG Yusong, HUANG Yuhan. Risk Assessment and Safe Consumption Analysis of Heavy Metals under Different Planting Patterns of Biogas Slurry [J]. Ecology and Environment, 2023, 32(8): 1507-1515. |
[13] | FAN Wanyi, TU Chen, WANG Shunyang, WU Xinyou, LI Xuanzhen, LUO Yongming. Cadmium Accumulation Characteristics and Pollution Reduction Potential of Different Tobacco Species in Lightly Contaminated Farmland Soils [J]. Ecology and Environment, 2023, 32(8): 1516-1524. |
[14] | CHEN Dongdong, HUO Lili, ZHAO Liang, CHEN Xin, SHU Min, HE Fuquan, ZHANG Yukun, ZHANG Li, LI Qi. Contribution of Water and Heat Factors to Spatial Variability of Soil Microbial Biomass Carbon and Nitrogen in Qinghai Alpine Grassland: Based on Enhanced Regression Tree Model [J]. Ecology and Environment, 2023, 32(7): 1207-1217. |
[15] | ZHAO Xuli, YAO Yutian, CHEN Chao, HUANG Xinqi, MENG Tianzhu. Response of Soil pH and SO42- Content to Remediation by Reductive Soil Disinfestation in Degraded Greenhouse Vegetable Soil [J]. Ecology and Environment, 2023, 32(7): 1218-1225. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn