Ecology and Environment ›› 2021, Vol. 30 ›› Issue (5): 1023-1033.DOI: 10.16258/j.cnki.1674-5906.2021.05.015
• Research Articles • Previous Articles Next Articles
XIE Xudong1,2(), HOU Zhihao1, LI Nan1,2,*(
), YUE Cuixia1, LI Ya1, YANG Fangshe1
Received:
2020-07-28
Online:
2021-05-18
Published:
2021-08-06
Contact:
LI Nan
解旭东1,2(), 侯智昊1, 李楠1,2,*(
), 岳翠霞1, 李雅1, 杨方社1
通讯作者:
李楠
作者简介:
解旭东(1995年生),男,硕士研究生,主要研究方向为环境中抗生素的分布与风险评价。E-mail:jiexudong@stumail.nwu.edu.cn
基金资助:
CLC Number:
XIE Xudong, HOU Zhihao, LI Nan, YUE Cuixia, LI Ya, YANG Fangshe. Occurrence, Distribution and Ecological Risk of Antibiotics in Sediments and Soils over the Four Areas Below the Heihe-Tengchong Line of China[J]. Ecology and Environment, 2021, 30(5): 1023-1033.
解旭东, 侯智昊, 李楠, 岳翠霞, 李雅, 杨方社. 中国胡焕庸线下方四区域沉积物和土壤中抗生素污染特征及生态风险评价[J]. 生态环境学报, 2021, 30(5): 1023-1033.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2021.05.015
所属类别 Category | 抗生素名称 Antibiotics | 缩写 Abbreviation | CAS号 No.CAS | 使用类别 Utilization | 敏感物种/推导方式 Sensitive species/derivation | logKow | PNECwate/ (ng∙L-1) | 参考文献 Reference |
---|---|---|---|---|---|---|---|---|
磺胺类 Sulfonamides (SAs) | 磺胺嘧啶 Sulfadiazine | SDZ | 68-35-9 | common | S. capricornutum | -0.09 | 2200 | Wang et al., |
磺胺甲噻二唑 Sulfamethizole | SMZ | 144-82-1 | common | NOEC of chronic toxicity | 0.54 | 10000 | 魏晓东, (Wei, | |
磺胺甲恶唑 Sulfamethoxazole | SMX | 723-46-6 | human | NOEC of chronic toxicity | 0.89 | 10000 | 魏晓东, (Wei, | |
甲氧苄啶 Trimethoprim | TMP | 738-70-5 | human | NOEC of chronic toxicity | 0.91 | 160000 | 魏晓东, (Wei, | |
四环素类 Tetracyclines (TCs) | 土霉素 Oxytetracycline | OTC | 79-57-2 | common | NOEC of chronic toxicity | -0.9 | 50000 | 魏晓东, (Wei, |
四环素 Tetracycline | TC | 60-54-8 | common | NOEC of chronic toxicity | -1.3 | 44000 | 魏晓东, (Wei, | |
金霉素 Chlortetracycline | CTC | 57-62-5 | veterinary | C. pyrenoidosa | -0.62 | 9310 | 武旭跃等, (Wu et al., | |
氟喹诺酮类 Fluoroquinolones (FQs) | 诺氟沙星 Norfloxacin | NOR | 70458-96-7 | common | Selenastrum reinsch | -1.03 | 48300 | 张姚姚等, (Zhang et al., |
环丙沙星 Ciprofloxacin | CIP | 85721-33-1 | human | Platymonas subcordiformis | 0.28 | 28700 | 张姚姚等, (Zhang et al., | |
氧氟沙星 Ofloxacin | OFL | 82419-36-1 | common | Pseudokirchneriella subcapitata | -0.39 | 1080 | 赵腾辉等, (Zhao et al., | |
恩诺沙星 Enrofloxacin | ENR | 93106-60-6 | common | Platymonas subcordiformis | 0.7 | 19800 | 张姚姚等, (Zhang et al., | |
大环内酯类 Macrolides (MCs) | 罗红霉素 Roxithromycin | ROX | 80214-83-1 | human | NOEC of chronic toxicity | 2.75 | 100 | 魏晓东, (Wei, |
红霉素 Erythromycin | ERY | 114-07-8 | common | NOEC of chronic toxicity | 3.06 | 103 | 魏晓东, (Wei, |
Table 1 Basic and toxicological information of antibiotics
所属类别 Category | 抗生素名称 Antibiotics | 缩写 Abbreviation | CAS号 No.CAS | 使用类别 Utilization | 敏感物种/推导方式 Sensitive species/derivation | logKow | PNECwate/ (ng∙L-1) | 参考文献 Reference |
---|---|---|---|---|---|---|---|---|
磺胺类 Sulfonamides (SAs) | 磺胺嘧啶 Sulfadiazine | SDZ | 68-35-9 | common | S. capricornutum | -0.09 | 2200 | Wang et al., |
磺胺甲噻二唑 Sulfamethizole | SMZ | 144-82-1 | common | NOEC of chronic toxicity | 0.54 | 10000 | 魏晓东, (Wei, | |
磺胺甲恶唑 Sulfamethoxazole | SMX | 723-46-6 | human | NOEC of chronic toxicity | 0.89 | 10000 | 魏晓东, (Wei, | |
甲氧苄啶 Trimethoprim | TMP | 738-70-5 | human | NOEC of chronic toxicity | 0.91 | 160000 | 魏晓东, (Wei, | |
四环素类 Tetracyclines (TCs) | 土霉素 Oxytetracycline | OTC | 79-57-2 | common | NOEC of chronic toxicity | -0.9 | 50000 | 魏晓东, (Wei, |
四环素 Tetracycline | TC | 60-54-8 | common | NOEC of chronic toxicity | -1.3 | 44000 | 魏晓东, (Wei, | |
金霉素 Chlortetracycline | CTC | 57-62-5 | veterinary | C. pyrenoidosa | -0.62 | 9310 | 武旭跃等, (Wu et al., | |
氟喹诺酮类 Fluoroquinolones (FQs) | 诺氟沙星 Norfloxacin | NOR | 70458-96-7 | common | Selenastrum reinsch | -1.03 | 48300 | 张姚姚等, (Zhang et al., |
环丙沙星 Ciprofloxacin | CIP | 85721-33-1 | human | Platymonas subcordiformis | 0.28 | 28700 | 张姚姚等, (Zhang et al., | |
氧氟沙星 Ofloxacin | OFL | 82419-36-1 | common | Pseudokirchneriella subcapitata | -0.39 | 1080 | 赵腾辉等, (Zhao et al., | |
恩诺沙星 Enrofloxacin | ENR | 93106-60-6 | common | Platymonas subcordiformis | 0.7 | 19800 | 张姚姚等, (Zhang et al., | |
大环内酯类 Macrolides (MCs) | 罗红霉素 Roxithromycin | ROX | 80214-83-1 | human | NOEC of chronic toxicity | 2.75 | 100 | 魏晓东, (Wei, |
红霉素 Erythromycin | ERY | 114-07-8 | common | NOEC of chronic toxicity | 3.06 | 103 | 魏晓东, (Wei, |
抗生素 Antibiotics | 沉积物主成分 Principal components in sediments | 土壤中主成分 Principal components in soil | |||||
---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC1’ | PC2’ | PC3’ | ||
SDZ | 0.997 | 0.038 | -0.03 | 0.021 | 0.316 | -0.104 | |
SMZ | 0.451 | 0.772 | 0.184 | -0.024 | 0.174 | 0.023 | |
SMX | 0.073 | -0.056 | -0.427 | -0.021 | 0.292 | 0.02 | |
TMP | 0.996 | 0.05 | -0.026 | 0.046 | 0.315 | -0.083 | |
OTC | 0.958 | 0.011 | 0.276 | -0.037 | -0.02 | 0.336 | |
TC | 0.709 | -0.027 | 0.668 | 0.052 | 0.059 | 0.283 | |
CTC | 0.705 | 0.745 | 0.132 | -0.077 | -0.086 | 0.354 | |
NOR | 0.996 | 0.048 | 0.038 | 0.266 | -0.001 | -0.092 | |
CIP | 0.996 | 0.058 | 0.006 | 0.291 | 0.017 | -0.079 | |
OFL | 0.99 | 0.11 | -0.02 | 0.234 | -0.003 | 0.056 | |
ENR | -0.187 | 0.818 | -0.169 | 0.202 | -0.106 | 0.085 | |
ROX | 0.996 | 0.062 | -0.014 | 0.217 | 0.013 | -0.251 | |
ERY | 0.069 | -0.001 | 0.966 | - | - | - | |
Variance contribution ratio | 60.01 | 13.77 | 12.03 | 34.07 | 27.76 | 16.07 | |
Cumulative variance contribution ratio | 60.01 | 73.78 | 86.08 | 34.07% | 61.83 | 77.90 |
Table 2 Rotation distribution matrix of antibiotics in sediment andsoil
抗生素 Antibiotics | 沉积物主成分 Principal components in sediments | 土壤中主成分 Principal components in soil | |||||
---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC1’ | PC2’ | PC3’ | ||
SDZ | 0.997 | 0.038 | -0.03 | 0.021 | 0.316 | -0.104 | |
SMZ | 0.451 | 0.772 | 0.184 | -0.024 | 0.174 | 0.023 | |
SMX | 0.073 | -0.056 | -0.427 | -0.021 | 0.292 | 0.02 | |
TMP | 0.996 | 0.05 | -0.026 | 0.046 | 0.315 | -0.083 | |
OTC | 0.958 | 0.011 | 0.276 | -0.037 | -0.02 | 0.336 | |
TC | 0.709 | -0.027 | 0.668 | 0.052 | 0.059 | 0.283 | |
CTC | 0.705 | 0.745 | 0.132 | -0.077 | -0.086 | 0.354 | |
NOR | 0.996 | 0.048 | 0.038 | 0.266 | -0.001 | -0.092 | |
CIP | 0.996 | 0.058 | 0.006 | 0.291 | 0.017 | -0.079 | |
OFL | 0.99 | 0.11 | -0.02 | 0.234 | -0.003 | 0.056 | |
ENR | -0.187 | 0.818 | -0.169 | 0.202 | -0.106 | 0.085 | |
ROX | 0.996 | 0.062 | -0.014 | 0.217 | 0.013 | -0.251 | |
ERY | 0.069 | -0.001 | 0.966 | - | - | - | |
Variance contribution ratio | 60.01 | 13.77 | 12.03 | 34.07 | 27.76 | 16.07 | |
Cumulative variance contribution ratio | 60.01 | 73.78 | 86.08 | 34.07% | 61.83 | 77.90 |
[1] |
BACKHAUS T, FAUST M, 2012. Predictive environmental risk assessment of chemical mixtures: A conceptual framework[J]. Environmental Science & Technology, 46(5): 2564-2573.
DOI URL |
[2] | BOXALL A B A, 2004a. When synthetic chemicals degrade in the environment[J]. Environmental Science & Technology:38(19): 368-375. |
[3] |
BOXALL A B A, 2004b. The environmental side effects of medication[J]. Embo Reports, 5(12): 1110-1116.
DOI URL |
[4] |
BOXALL A B A, JOHNSON P, SMITH E J, et al., 2006. Uptake of veterinary medicines from soils into plants[J]. Journal of Agriculture and Food Chemistry, 54(6): 2288-2297.
DOI URL |
[5] |
CHEN C Q, ZHENG L, ZHOU J L, et al., 2017. Persistence and risk of antibiotic residues and antibiotic resistance genes in major mariculture sites in southeast China[J]. Science of the Total Environment, 580(15): 1175-1184.
DOI URL |
[6] |
CHEN H Y, JING L J, TENG Y G, et al., 2018. Characterization of antibiotics in a large-scale river system of China: Occurrence pattern, spatiotemporal distribution and environmental risks[J]. Science of the Total Environment, 618(15): 409-418.
DOI URL |
[7] |
CONDE C M, ALVAREZ E C, PARADELO N R, et al., 2018. Occurrence of tetracyclines and sulfonamides in manures, agricultural soils and crops from different areas in Galicia (NW Spain)[J]. Journal of Cleaner Production, 197(Part 1): 491-500.
DOI URL |
[8] | DEAN R G, 1974. Compatibility of borrow material for beach fills[J]. Coastal Engineering Proceedings, 1(14): 1319-1333. |
[9] |
GUO X Y, FENG C H, GU E X, et al., 2019. Spatial distribution, source apportionment and risk assessment of antibiotics in the surface water and sediments of the Yangtze estuary[J]. Science of the Total Environment, 671(25): 548-557.
DOI URL |
[10] |
HAMSCHER G, SCZESNY S, HÖPER H, et al., 2002. Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry[J]. Analytical Chemistry, 74(7): 1509-1518.
DOI URL |
[11] |
HERNANDO M, MEZCUA M, FERNÁNDEZ-ALBA A, et al., 2006. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments[J]. Talanta, 69(2): 334-342.
DOI URL |
[12] |
HU Y, MATHEMA B, WANG W B, et al., 2011. Population-based investigation of fluoroquinolones resistant tuberculosis in rural Eastern China[J]. Tuberculosis, 91(3): 238-243.
DOI URL |
[13] |
HU Y, YAN X, SHEN Y, et al., 2018. Antibiotics in surface water and sediments from Hanjiang River, Central China: Occurrence, behavior and risk assessment[J]. Ecotoxicology and Environmental Safety, 157(15): 150-158.
DOI URL |
[14] |
JIANG Y H, LI M X, GUO C S, et al., 2014. Distribution and ecological risk of antibiotics in a typical effluent-receiving river (Wangyang River) in North China[J]. Chemosphere, 112: 267-274.
DOI URL |
[15] |
KAESEBERG T, ZHANG J, SCHUBERT S, et al., 2018. Sewer sediment-bound antibiotics as a potential environmental risk: adsorption and desorption affinity of 14 antibiotics and one metabolite[J]. Environmental Pollution, 239: 638-647.
DOI URL |
[16] |
KAFAEI R, PAPARI F, SEYEDABADI M, et al., 2018. Occurrence, distribution, and potential sources of antibiotics pollution in the water-sediment of the northern coastline of the Persian Gulf, Iran[J]. Science of the Total Environment, 627(15): 703-712.
DOI URL |
[17] | KIM K R, OWENS G, KWON S I, et al., 2011. Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment[J]. Water, Air, & Soil Pollution, 214(1): 163-174. |
[18] |
KIM S, CARLSON K, 2007. Temporal and spatial trends in the occurrence of human and veterinary antibiotics in aqueous and river sediment matrices[J]. Environmental Science & Technology, 41(1): 50-57.
DOI URL |
[19] | KLEIN E Y, VAN BOECKEL T P, MARTINEZ E M, et al., 2018. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015[J]. Proceedings of the National Academy of Sciences of the United States of America, 115(15): E3463-E3470. |
[20] |
KÜMMERER K, 2009. Antibiotics in the aquatic environment: A review part I[J]. Chemosphere, 75(4): 417-434.
DOI URL |
[21] | LI C, CHEN J Y, WANG J H, et al., 2015. Occurrence of antibiotics in soils and manures from greenhouse vegetable production bases of Beijing, China and an associated risk assessment[J]. Science of the Total Environment, 521-522: 101-107. |
[22] |
LI W H, SHI Y L, GAO L H, et al., 2012. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian lake in North China[J]. Chemosphere, 89(11): 1307-1315.
DOI URL |
[23] |
LI Y X, ZHANG X L, LI W, et al., 2013. The residues and environmental risks of multiple veterinary antibiotics in animal faeces[J]. Environmental Monitoring and Assessment, 185(3): 2211-2220.
DOI URL |
[24] |
PAN X, QIANG Z M, BEN W W, et al., 2011. Simultaneous determination of three classes of antibiotics in the suspended solids of swine wastewater by ultrasonic extraction, solid-phase extraction and liquid chromatography-mass spectrometry[J]. Journal of Environmental Sciences, 23(10): 1729-1737.
DOI URL |
[25] |
SAYEN S, ROCHA C, SILVA C, et al., 2019. Enrofloxacin and copper plant uptake by phragmites Australis from a liquid digestate: single versus combined application[J]. Science of the Total Environment, 664(10): 188-202.
DOI URL |
[26] |
SHARMA V K, JOHNSON N, CIZMAS L, et al., 2016. A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes[J]. Chemosphere, 150: 702-714.
DOI URL |
[27] |
SIEDLEWICZ G, BIAłK-BIELIŃSKA A, BORECKA M, et al., 2018. Presence, concentrations and risk assessment of selected antibiotic residues in sediments and near-bottom waters collected from the Polish coastal zone in the southern Baltic Sea—summary of 3years of studies[J]. Marine Pollution Bulletin, 129(2): 787-801.
DOI URL |
[28] |
THIELE-BRUHN S, 2003. Pharmaceutical antibiotic compounds in soils—a review[J]. Journal of Plant Nutrition and Soil Science, 166(2): 145-167.
DOI URL |
[29] |
WANG H, CHU Y X, FANG C R, 2017. Occurrence of veterinary antibiotics in swine manure from large-scale feedlots in Zhejiang province, China[J]. Bulletin of Environmental Contamination and Toxicology, 98(4): 472-477.
DOI URL |
[30] |
WANG L, QIANG Z M, LI Y G, et al., 2017. An insight into the removal of fluoroquinolones in activated sludge process: sorption and biodegradation characteristics[J]. Journal of Environmental Sciences, 56: 263-271.
DOI URL |
[31] |
YAN Z Y, LIU Y H, YAN K, et al., 2017. Bisphenol analogues in surface water and sediment from the shallow Chinese freshwater lakes: occurrence, distribution, source apportionment, and ecological and human health risk[J]. Chemosphere, 184: 318-328.
DOI URL |
[32] |
ZHANG Q Q, YING G G, PAN C G, et al., 2015. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 49(11): 6772-6782.
DOI URL |
[33] |
ZHAO F K, YANG L, CHEN L D, et al., 2019. Soil contamination with antibiotics in a typical peri-urban area in Eastern China: seasonal variation, risk assessment, and microbial responses[J]. Journal of Environmental Sciences (China), 79(5): 200-212.
DOI URL |
[34] | 陈丽红, 张瑜, 丁婷婷, 等, 2020. 红霉素水生生物基准推导和对中国部分水体生态风险初步评估[J]. 生态环境学报, 29(8): 1610-1616. |
CHEN L H, ZHANG Y, DING T T, et al., 2020. Development of Aquatic Life Criteria for Erythromycin and Preliminary Assessment for the Ecological Risk of Some Water Bodies in China[J]. Ecology and Environmental Sciences, 29(8): 1610-1616. | |
[35] | 丁惠君, 钟家有, 吴亦潇, 等, 2017. 鄱阳湖流域南昌市城市湖泊水体抗生素污染特征及生态风险分析[J]. 湖泊科学, 29(4): 848-858. |
DING H J, ZHONG J Y, WU Y X, et al., 2017. Characteristics and ecological risk assessment of antibiotics in five city lakes in Nanchang City Lake Poyang Cathment[J]. Journal of Lake Sciences, 29(4): 848-858.
DOI URL |
|
[36] | 高俊红, 王兆炜, 张涵瑜, 等, 2016. 兰州市污水处理厂中典型抗生素的污染特征研究[J]. 环境科学学报, 36(10): 3765-3773. |
GAO J H, WANG Z W, ZHANG H Y, et al., 2016. Occurrence and the fate of typical antibiotics in sewage treatment plants in Lanzhou[J]. Acta Scientiae Circumstantiae, 36(10): 3765-3773. | |
[37] | 李宗宸, 2017. 河流沉积物吸附四环素类抗生素的行为规律研究[D]. 上海: 东华大学. |
LI Z C, 2017. On the adsorption behaviors and bules of tetraclines on river sediment[D]. Shanghai: Donghua University. | |
[38] | 刘叶新, 周志洪, 区晖, 等, 2018. 珠江广州河段沉积物中典型抗生素的污染特征[J]. 华南师范大学学报(自然科学版), 50(4): 48-54. |
LIU Y X, ZHOU Z H, QU H, et al., 2018. Occurrence of Typical Antibiotics in Sediments of Guangzhou Section of the Pearl River[J]. Journal of South China Normal University (Natural Science Edition), 50(4): 48-54. | |
[39] | 刘玉芳, 2012. 四环素类抗生素在土壤中的迁移转化模拟研究[D]. 广州: 暨南大学. |
LIU Y F, 2012. The Study on Environmental behavior of Tetracycline Antibiotics in Soils[D]. Guangzhou: Ji’nan University. | |
[40] | 朴海善, 陶澍, 胡海瑛, 等, 1999. 根据水/辛醇分配系数 (KOW) 估算有机化合物的吸着系数(KOC)[J]. 环境科学与技术, 87(4): 8-13. |
PIAO H S, TAO P, HU H Y, et al., 1999. Estimation of sorption coefficients of organic compounds withKOW[J]. Department of Urban and Environmental Sciences, 87(4): 8-13. | |
[41] | 秦晓鹏, 刘菲, 王广才, 等, 2015. 抗生素在土壤/沉积物中吸附行为的研究进展[J]. 水文地质工程地质, 42(3): 142-148. |
QIN X P, LIU F, WANG G C, 2015. Adsorption of antibiotics in soils/sediments: A review[J]. Chinese Journal of Antibiotics, 42(3): 142-148. | |
[42] | 石浩, 2014. 沉积物中20种抗生素残留的分析方法及其应用[D]. 上海: 华东师范大学. |
SHI H, 2014. The analysis method of twenty antibiotics in the sediment and its application[D]. Shanghai: East China Normal University. | |
[43] | 王丹, 隋倩, 赵文涛, 等, 2014. 中国地表水环境中药物和个人护理品的研究进展[J]. 科学通报, 59(9): 743-751. |
WANG D, SUI Q, ZHAO W T, et al., 2014. Pharmaceutical and personal care products in the surface water of China: A review[J]. Chinese Science Bulletin, 59(9): 743-751. | |
[44] | 王嘉玮, 魏红, 杨小雨, 等, 2017. 渭河西安段磺胺类抗生素的分布特征及生态风险评价[J]. 环境化学, 36(12): 2574-2583. |
WANG J W, WEI H, YANG X Y, et al., 2017. Occurrence and ecological risk of sulfonamide antibiotics in the surface water of the Weihe Xi’an section[J]. Environmental Chemistry, 36(12): 2574-2583. | |
[45] | 王云鹏, 马越, 2008. 养殖业抗生素的使用及其潜在危害[J]. 中国抗生素杂志, 33(9): 519-523. |
WANG Y P, MA Y, 2008. Potential public hazard of using antibiotics in livestock industry[J]. Chinese Journal of Antibiotics, 33(9): 519-523. | |
[46] | 魏晓东, 2018. 广州典型排放源废水和河流水体中抗生素的污染特征研究[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所) |
WEI X D, 2018. Contamination of antibiotics in typical emission sources and a river in Guangzhou[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences. | |
[47] | 武旭跃, 邹华, 朱荣, 等, 2016. 太湖贡湖湾水域抗生素污染特征分析与生态风险评价[J]. 环境科学, 37(12): 4596-4604. |
WU X Y, ZOU H, ZHU R, et al., 2016. Occurrence,Distribution and Ecological Risk of Aantibiotics in Surface Waterof the Gonghu Bay, Taihu Lake[J]. Environmental Science, 37(12): 4596-4604. | |
[48] | 杨雪娇, 2018. 氟喹诺酮类抗生素不良反应及合理用药分析[J]. 北方药学, 15(12): 151-152. |
YANG X J, 2018. Analysis of adverse reactions and rational drug use of fluoroquinolones[J]. Journal of North Pharmacy, 15(12): 151-152. | |
[49] | 杨煜东, 陈东辉, 黄满红, 2010. 环境中抗生素的来源及其生态影响研究进展[J]. 环境科学与管理, 35(1): 140-143. |
YANG Y D, CHEN D H, HUANG M H, 2010. The source of Antibiotics in the Environment and Progress of Its Ecological Impact Research[J]. Environmental Science and Management, 35(1): 140-143. | |
[50] | 尹春艳, 骆永明, 滕应, 等, 2012. 典型设施菜地土壤抗生素污染特征与积累规律研究[J]. 环境科学, 33(8): 2810-2816. |
YIN C Y, LUO Y M, TENG Y, et al., 2012. Pollution Characteristics and Accumulation of Antibiotics in Typical Protected Vegetable Soils[J]. Environmental Science, 33(8): 2810-2816. | |
[51] | 于继侗, 司继松, 王林, 等, 2018. 一种工业制药废渣的处理系统: 201820336093.9 [P]. |
YU J D, SI J S, WANG L, et al., 2018. A treatment system for industrial pharmaceutical waste residue: 201820336093.9 [P]. | |
[52] | 张晓娇, 柏杨巍, 张远, 等, 2017. 辽河流域地表水中典型抗生素污染特征及生态风险评估[J]. 环境科学, 38(11): 4553-4561. |
ZHANG X J, BAI Y W, ZHANG Y, et al., 2017. Occurrence, Distribution, and Ecological Risk of Antibiotics in Surface Water in the Liaohe River Basin, China[J]. Environmental Science, 38(11): 4553-4561. | |
[53] | 张姚姚, 杨再福, 汪涛, 等, 2018. 地表水中氟喹诺酮类抗生素的生态风险评价与水质基准研究[J]. 环境与健康杂志, 35(6): 531-535. |
ZHANG Y Y, YANG Z F, WANG T, et al., 2018. Risk assessment and water quality criteria of fluoroquinolones in surface water[J]. Journal of Environment and Health, 35(6): 531-535. | |
[54] | 赵腾辉, 陈奕涵, 韩巍, 等, 2016. 东江上游典型抗生素污染特征及生态风险评价[J]. 生态环境学报, 25(10): 1707-1713. |
ZHAO H T, CHEN Y H, HAN W, et al., 2016. The contamination characteristics and ecological risk assessment of typical antibiotics in the upper reaches of the Dongjiang River[J]. Ecology and Environmental Sciences, 25(10): 1707-1713. | |
[55] | 周长铭, 2018. 探究我国生物制药技术的现状及趋势[J]. 中外企业家, 593(3): 103. |
ZHOU C M, 2018. To explore the current situation and trend of biopharmaceutical technology in China[J]. Chinese and Foreign Entrepreneurs, 593(3): 103. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn