Ecology and Environment ›› 2023, Vol. 32 ›› Issue (7): 1333-1343.DOI: 10.16258/j.cnki.1674-5906.2023.07.016
• Reviews • Previous Articles Next Articles
LI Guiying(), LIU Jianying, AN Taicheng*(
)
Received:
2023-06-21
Online:
2023-07-18
Published:
2023-09-27
Contact:
AN Taicheng
通讯作者:
安太成
作者简介:
李桂英(1971年生),女,特聘教授,博士,主要从事光催化杀菌机理,病原微生物耐药性形成机制、健康效应与控制,有机污染物环境健康效应,毒害有机物的生物降解的应用基础与研发工作。E-mail: ligy1999@gdut.edu.cn
基金资助:
CLC Number:
LI Guiying, LIU Jianying, AN Taicheng. The Formation and Resuscitation Mechanisms of Viable But Nonculturable Bacteria during Water Disinfection Processes[J]. Ecology and Environment, 2023, 32(7): 1333-1343.
李桂英, 刘建莹, 安太成. 水体消毒过程中活的不可培养细菌的形成与复苏机制研究进展[J]. 生态环境学报, 2023, 32(7): 1333-1343.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.07.016
复苏方法 | 复苏的细菌 | 复苏温度/℃ | 培养时间/h | 文献 |
---|---|---|---|---|
升高温度 | VBNC创伤弧菌 | 23 | 24 | Rao et al., |
LB肉汤 | VBNC大肠杆菌 | 37 | 32 | Chen et al., |
自诱导剂 | VBNC创伤弧菌 | 30 | 24 | Ayrapetyan et al., |
复苏促进因子 | VBNC对联苯食红球菌 | 30 | 24 | Ye et al., |
氨基酸 | VBNC大肠杆菌 | 4 | 24 | Pinto et al., |
蛋白酶 | VBNC霍乱弧菌 | 37 | 32 | Debnath et al., |
YeaZ蛋白 | VBNC哈维弧菌 | 28 | 8 | Li et al., |
丙酮酸钠 | VBNC大肠杆菌 | 37 | 5 | Vilhena et al., |
过氧化氢酶 | VBNC白喉棒状杆菌 | 室温 | 6 | Hamabata et al., |
与巨噬细胞共培养 | VBNC军团菌 | 37 | 72 | Dietersdorfer et al., |
与变形虫共培养 | VBNC幽门螺杆菌 | 37 | 2 | Dey et al., |
小鼠体内复苏 | VBNC创伤弧菌 | - | 48 | Oliver et al., |
基于扩散室的原位复苏 | VBNC创伤弧菌 | 21 | 24 | Oliver et al., |
Table 1 Resuscitation method of VBNC bacteria
复苏方法 | 复苏的细菌 | 复苏温度/℃ | 培养时间/h | 文献 |
---|---|---|---|---|
升高温度 | VBNC创伤弧菌 | 23 | 24 | Rao et al., |
LB肉汤 | VBNC大肠杆菌 | 37 | 32 | Chen et al., |
自诱导剂 | VBNC创伤弧菌 | 30 | 24 | Ayrapetyan et al., |
复苏促进因子 | VBNC对联苯食红球菌 | 30 | 24 | Ye et al., |
氨基酸 | VBNC大肠杆菌 | 4 | 24 | Pinto et al., |
蛋白酶 | VBNC霍乱弧菌 | 37 | 32 | Debnath et al., |
YeaZ蛋白 | VBNC哈维弧菌 | 28 | 8 | Li et al., |
丙酮酸钠 | VBNC大肠杆菌 | 37 | 5 | Vilhena et al., |
过氧化氢酶 | VBNC白喉棒状杆菌 | 室温 | 6 | Hamabata et al., |
与巨噬细胞共培养 | VBNC军团菌 | 37 | 72 | Dietersdorfer et al., |
与变形虫共培养 | VBNC幽门螺杆菌 | 37 | 2 | Dey et al., |
小鼠体内复苏 | VBNC创伤弧菌 | - | 48 | Oliver et al., |
基于扩散室的原位复苏 | VBNC创伤弧菌 | 21 | 24 | Oliver et al., |
[1] |
AHMED Y, ZHONG J X, YUAN Z G, et al., 2021. Simultaneous removal of antibiotic resistant bacteria, antibiotic resistance genes, and micropollutants by a modified photo-Fenton process[J]. Water Research, 197: 117075.
DOI URL |
[2] |
ALVEAR-DAZA J J, GARCíA-BARCO A, OSORIO-VARGAS P, et al., 2021. Resistance and induction of viable but non culturable states (VBNC) during inactivation of E. coli and Klebsiella pneumoniae by addition of H2O2 to natural well water under simulated solar irradiation[J]. Water Research, 188: 116499.
DOI URL |
[3] | AYRAPETYAN M, WILLIAMS T, OLIVER JAMES D, 2018. Relationship between the viable but nonculturable state and antibiotic persister cells[J]. Journal of Bacteriology, 200(20): e00249-00218. |
[4] |
AYRAPETYAN M, WILLIAMS T C, OLIVER J D, 2015. Bridging the gap between viable but non-culturable and antibiotic persistent bacteria[J]. Trends in Microbiology, 23(1): 7-13.
DOI PMID |
[5] |
AYRAPETYAN M, WILLIAMS TIFFANY C, OLIVER JAMES D, 2014. Interspecific Quorum Sensing Mediates the Resuscitation of Viable but Nonculturable Vibrios[J]. Applied and Environmental Microbiology, 80(8): 2478-2483.
DOI PMID |
[6] |
BAO Q H, BO X Y, CHEN L, et al., 2023. Comparative Analysis Using Raman Spectroscopy of the Cellular Constituents of Lacticaseibacillus paracasei Zhang in a Normal and Viable but Nonculturable State[J]. Microorganisms, 11(5): 1266.
DOI URL |
[7] |
BARI S M N, ROKY M K, MOHIUDDIN M, et al., 2013. Quorum-sensing autoinducers resuscitate dormant Vibrio cholerae in environmental water samples[J]. Proceedings of the National Academy of Sciences, 110(24): 9926-9931.
DOI URL |
[8] |
BI S Y, KARGETI M, COLIN R, et al., 2023. Dynamic fluctuations in a bacterial metabolic network[J]. Nature Communications, 14(1): 2173.
DOI PMID |
[9] |
BOARETTI M, DEL MAR LLEò M, BONATO B, et al., 2003. Involvement of RpoS in the survival of Escherichia coli in the viable but non-culturable state[J]. Environmental Microbiology, 5(10): 986-996.
DOI URL |
[10] |
BODOR A, BOUNEDJOUM N, VINCZE G E, et al., 2020. Challenges of unculturable bacteria: Environmental perspectives[J]. Reviews in Environmental Science and Bio/Technology, 19(1): 1-22.
DOI |
[11] |
BOUDREAU M A, FISHER J F, MOBASHERY S, 2012. Messenger functions of the bacterial cell wall-derived muropeptides[J]. Biochemistry, 51(14): 2974-2990.
DOI PMID |
[12] |
CAI Y W, LIU J Y, LI G Y, et al., 2022. Formation mechanisms of viable but nonculturable bacteria through induction by light-based disinfection and their antibiotic resistance gene transfer risk: A review[J]. Critical Reviews in Environmental Science and Technology, 52(20): 3651-3688.
DOI URL |
[13] | CAI Y W, SUN T, LI G Y, et al., 2021. Traditional and Emerging Water Disinfection Technologies Challenging the Control of Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes[J]. ACS ES&T Engineering, 1(7): 1046-1064. |
[14] |
CHEN M, CAI Y W, LI G Y, et al., 2022. The stress response mechanisms of biofilm formation under sub-lethal photocatalysis[J]. Applied Catalysis B: Environmental, 307: 121200.
DOI URL |
[15] |
CHEN S, LI X, WANG Y H, et al., 2018. Induction of Escherichia coli into a VBNC state through chlorination/chloramination and differences in characteristics of the bacterium between states[J]. Water Research, 142: 279-288.
DOI URL |
[16] |
CHEN X F, YIN H L, LI G Y, et al., 2019. Antibiotic-resistance gene transfer in antibiotic-resistance bacteria under different light irradiation: Implications from oxidative stress and gene expression[J]. Water Research, 149: 282-291.
DOI PMID |
[17] |
COHEN-GONSAUD M, BARTHE P, BAGNERIS C, et al., 2005. The structure of a resuscitation-promoting factor domain from Mycobacterium tuberculosis shows homology to lysozymes[J]. Nature Structural & Molecular Biology, 12(3): 270-273.
DOI |
[18] |
DALEBROUX Z D, SVENSSON S L, GAYNOR E C, et al., 2010. ppGpp Conjures Bacterial Virulence[J]. Microbiology and Molecular Biology Reviews, 74(2): 171-199.
DOI PMID |
[19] |
DEBNATH A and MIYOSHI S I, 2021. The Impact of Protease during Recovery from Viable but Non-Culturable (VBNC) State in Vibrio cholerae[J]. Microorganisms, 9(12): 2618.
DOI URL |
[20] |
DEY R, RIEGER A, BANTING G, et al., 2020. Role of amoebae for survival and recovery of ‘non-culturable’ Helicobacter pylori cells in aquatic environments[J]. Fems Microbiology Ecology, 96(10): fiaa182.
DOI URL |
[21] |
DIETERSDORFER E, KIRSCHNER A, SCHRAMMEL B, et al., 2018. Starved viable but non-culturable (VBNC) Legionella strains can infect and replicate in amoebae and human macrophages[J]. Water Research, 141: 428-438.
DOI PMID |
[22] |
DONG K, PAN H X, YANG D, et al., 2020. Induction, detection, formation, and resuscitation of viable but non-culturable state microorganisms[J]. Comprehensive Reviews in Food Science and Food Safety, 19(1): 149-183.
DOI URL |
[23] |
DöRR T, LEWIS K, VULIĆ M, 2009. SOS response induces persistence to fluoroquinolones in Escherichia coli[J]. PLOS Genetics, 5(12): e1000760.
DOI URL |
[24] |
DWORKIN J, SHAH I M, 2010. Exit from dormancy in microbial organisms[J]. Nature Reviews Microbiology, 8(12): 890-896.
DOI PMID |
[25] |
EPSTEIN S S, 2009. Microbial awakenings[J]. Nature, 457(7233): 1083.
DOI |
[26] |
EZRATY B, GENNARIS A, BARRAS F, et al., 2017. Oxidative stress, protein damage and repair in bacteria[J]. Nature Reviews Microbiology, 15(7): 385-396.
DOI PMID |
[27] |
GUO L Z, WAN K, ZHU J W, et al., 2021. Detection and distribution of vbnc/viable pathogenic bacteria in full-scale drinking water treatment plants[J]. Journal of Hazardous Materials, 406: 124335.
DOI URL |
[28] |
GUO L Z, YE C S, CUI L, et al., 2019b. Population and single cell metabolic activity of UV-induced VBNC bacteria determined by CTC-FCM and D2O-labeled Raman spectroscopy[J]. Environment International, 130: 104883.
DOI URL |
[29] |
GUO M T, KONG C, 2019a. Antibiotic resistant bacteria survived from UV disinfection: Safety concerns on genes dissemination[J]. Chemosphere, 224: 827-832.
DOI URL |
[30] |
HAMABATA T, SENOH M, IWAKI M, et al., 2021. Induction and Resuscitation of Viable but Nonculturable Corynebacterium diphtheriae[J]. Microorganisms, 9(5): 927.
DOI URL |
[31] |
HARMS A, BRODERSEN D E, MITARAI N, et al., 2018. Toxins, targets, and triggers: An overview of toxin-antitoxin biology[J]. Molecular Cell, 70(5): 768-784.
DOI PMID |
[32] |
HWANG M G, KATAYAMA H, OHGAKI S, 2006. Effect of intracellular resuscitation of Legionella pneumophila in Acanthamoeba polyphage cells on the antimicrobial properties of silver and copper[J]. Environmental Science & Technology, 40(23): 7434-7439.
DOI URL |
[33] |
IRVING S E, CHOUDHURY N R, CORRIGAN R M, 2021. The stringent response and physiological roles of (pp)pGpp in bacteria[J]. Nature Reviews Microbiology, 19(4): 256-271.
DOI PMID |
[34] |
JäGER T, ALEXANDER J, KIRCHEN S, et al., 2018. Live-dead discrimination analysis, qPCR assessment for opportunistic pathogens, and population analysis at ozone wastewater treatment plants[J]. Environmental Pollution, 232: 571-579.
DOI PMID |
[35] |
JI H, CAI Y, WANG Z, et al., 2022. Sub-lethal photocatalysis promotes horizontal transfer of antibiotic resistance genes by conjugation and transformability[J]. Water Research, 221: 118808.
DOI URL |
[36] |
JIA Y Y, YU C G, FAN J H, et al., 2020. Alterations in the Cell Wall of Rhodococcus biphenylivorans under norfloxacin stress[J]. Frontiers in Microbiology, 11: 554957.
DOI URL |
[37] |
JOELSSON A, KAN B, ZHU J, 2007. Quorum sensing enhances the stress response in vibrio cholerae[J]. Applied and Environmental Microbiology, 73(11): 3742-3746.
PMID |
[38] |
JÕERS A, VIND K, HERNÁNDEZ S B, et al., 2019. Muropeptides Stimulate Growth Resumption from Stationary Phase in Escherichia coli[J]. Scientific Reports, 9(1): 18043.
DOI |
[39] |
KARAOLIA P, MICHAEL-KORDATOU I, HAPESHI E, et al., 2018. Removal of antibiotics, antibiotic-resistant bacteria and their associated genes by graphene-based TiO2 composite photocatalysts under solar radiation in urban wastewaters[J]. Applied Catalysis B: Environmental, 224: 810-824.
DOI URL |
[40] |
KASAHARA K, LEYGEBER M, SEIFFARTH J, et al., 2023. Enabling oxygen-controlled microfluidic cultures for spatiotemporal microbial single-cell analysis[J]. Frontiers in Microbiology, 14: 1198170.
DOI URL |
[41] |
KEEP N H, WARD J M, COHEN-GONSAUD M, et al., 2006. Wake up! Peptidoglycan lysis and bacterial non-growth states[J]. Trends in Microbiology, 14(6): 271-276.
DOI PMID |
[42] |
KONG I-S, BATES T C, HüLSMANN A, et al., 2004. Role of catalase and OxyR in the viable but nonculturable state of Vibrio vulnificus[J]. Fems Microbiology Ecology, 50(3): 133-142.
DOI URL |
[43] |
LEE T H, KANG T H, 2019. DNA oxidation and excision repair pathways[J]. International Journal of Molecular Sciences, 20(23): 6092.
DOI URL |
[44] |
LI G Y, CHEN X F, YIN H L, et al., 2020. Natural sphalerite nanoparticles can accelerate horizontal transfer of plasmid-mediated antibiotic-resistance genes[J]. Environment International, 136: 105497.
DOI URL |
[45] |
LI Y, CHEN J, ZHAO M, et al., 2017. Promoting resuscitation of viable but nonculturable cells of Vibrio harveyi by a resuscitation-promoting factor-like protein YeaZ[J]. Journal of Applied Microbiology, 122(2): 338-346.
DOI PMID |
[46] | LIAO X Y, LIU D H, DING T, 2020. Nonthermal plasma induces the viable-but-nonculturable state in staphylococcus aureus via metabolic suppression and the oxidative stress response[J]. Applied and Environmental Microbiology, 86(5): e02216-02219. |
[47] |
LIN H, YE C, CHEN S, et al., 2017. Viable but non-culturable E. coli induced by low level chlorination have higher persistence to antibiotics than their culturable counterparts[J]. Environmental Pollution, 230: 242-249.
DOI URL |
[48] |
LIU W, XU Y, SLAVEYKOVA V I, 2023. Oxidative stress induced by sub-lethal exposure to copper as a mediator in development of bacterial resistance to antibiotics[J]. Science of The Total Environment, 860: 160516.
DOI URL |
[49] |
LIU Y J, CAI Y W, LI G Y, et al., 2022. Response mechanisms of different antibiotic-resistant bacteria with different resistance action targets to the stress from photocatalytic oxidation[J]. Water Research, 218: 118407.
DOI URL |
[50] |
LIU Y M, WANG C A, TYRRELL G, et al., 2009. Induction of Escherichia coli O157:H 7 into the viable but non-culturable state by chloraminated water and river water, and subsequent resuscitation[J]. Environmental Microbiology Reports, 1(2): 155-161.
DOI URL |
[51] |
MASMOUDI S, DENIS M, MAALEJ S, 2010. Inactivation of the gene katA or sodA affects the transient entry into the viable but non-culturable response of Staphylococcus aureus in natural seawater at low temperature[J]. Marine Pollution Bulletin, 60(12): 2209-2214.
DOI PMID |
[52] |
MUKAMOLOVA G V, MURZIN A G, SALINA E G, et al., 2006. Muralytic activity of Micrococcus luteus Rpf and its relationship to physiological activity in promoting bacterial growth and resuscitation[J]. Molecular Microbiology, 59(1): 84-98.
DOI PMID |
[53] |
NICHOLS D, CAHOON N, TRAKHTENBERG E M, et al., 2010. Use of Ichip for high-throughput in situ cultivation of “uncultivable” microbial species[J]. Applied and Environmental Microbiology, 76(8): 2445-2450.
DOI URL |
[54] |
OLIVER J D, BOCKIAN R, 1995b. In vivo resuscitation, and virulence towards mice, of viable but nonculturable cells of Vibrio vulnificus[J]. Applied and Environmental Microbiology, 61(7): 2620-2623.
DOI URL |
[55] | OLIVER J D, 2005. The viable but nonculturable state in bacteria[J]. Journal of Microbiology, 43: 93-100. |
[56] |
OLIVER J D, HITE F, MCDOUGALD D, et al., 1995a. Entry into, and resuscitation from, the viable but nonculturable state by Vibrio vulnificus in an estuarine environment[J]. Applied and Environmental Microbiology, 61(7): 2624-2630.
DOI URL |
[57] |
PAN H X, REN Q, 2023. Wake Up! Resuscitation of Viable but Nonculturable Bacteria: Mechanism and Potential Application[J]. Foods, 12(1): 82.
DOI URL |
[58] |
PINTO D, ALMEIDA V, ALMEIDA SANTOS M, et al., 2011. Resuscitation of Escherichia coli VBNC cells depends on a variety of environmental or chemical stimuli[J]. Journal of Applied Microbiology, 110(6): 1601-1611.
DOI URL |
[59] |
PINTO D, SANTOS M A, CHAMBEL L, 2015. Thirty years of viable but nonculturable state research: Unsolved molecular mechanisms[J]. Critical Reviews In Microbiology, 41(1): 61-76.
DOI PMID |
[60] |
PU Y Y, LI Y X, JIN X, et al., 2019. ATP-Dependent Dynamic Protein Aggregation Regulates Bacterial Dormancy Depth Critical for Antibiotic Tolerance[J]. Molecular Cell, 73(1): 143-156.
DOI PMID |
[61] |
QI Z L, LI G Y, WANG M, et al., 2022. Photoelectrocatalytic inactivation mechanism of E. coli DH5α (TET) and synergistic degradation of corresponding antibiotics in water[J]. Water Research, 215: 118240.
DOI URL |
[62] |
RAMAMURTHY T, GHOSH A, PAZHANI G P, et al., 2014. Current perspectives on viable but non-culturable (VBNC) pathogenic bacteria[J]. Frontiers in Public Health, 2: 103.
DOI PMID |
[63] |
RAO N V, SHASHIDHAR R, BANDEKAR J R, 2014. Induction, resuscitation and quantitative real-time polymerase chain reaction analyses of viable but nonculturable Vibrio vulnificus in artificial sea water[J]. World Journal of Microbiology and Biotechnology, 30(8): 2205-2212.
DOI URL |
[64] | RITTERSHAUS E S C, BAEK S H, SASSETTI C M, 2013. The Normalcy of Dormancy: Common Themes in Microbial Quiescence[J]. Cell Host & Microbe, 13(6): 643-651. |
[65] |
SEXTON D L, ST-ONGE R J, HAISER H J, et al., 2015. Resuscitation-Promoting Factors Are Cell Wall-Lytic Enzymes with Important Roles in the germination and growth of streptomyces coelicolor[J]. Journal of Bacteriology, 197(5): 848-860.
DOI PMID |
[66] |
SOUSA J M, MACEDO G, PEDROSA M, et al., 2017. Ozonation and UV254nm radiation for the removal of microorganisms and antibiotic resistance genes from urban wastewater[J]. Journal of Hazardous Materials, 323(Part A): 434-441.
DOI URL |
[67] |
SU X M, SHEN H, YAO X Y, et al., 2013. A novel approach to stimulate the biphenyl-degrading potential of bacterial community from PCBs-contaminated soil of e-waste recycling sites[J]. Bioresource Technology, 146: 27-34.
DOI PMID |
[68] | SUN H W, LI G Y, AN T C, 2017. Advances in Photocatalytic Disinfection[M]. Berlin, Heidelberg: Springer Berlin Heidelberg: 259-272. |
[69] |
SUSS J, VOLZ S, OBST U, et al., 2009. Application of a molecular biology concept for the detection of DNA damage and repair during UV disinfection[J]. Water Research, 43(15): 3705-3716.
DOI PMID |
[70] |
TREFELY S, LIU J, HUBER K, et al., 2019. Subcellular metabolic pathway kinetics are revealed by correcting for artifactual post harvest metabolism[J]. Molecular Metabolism, 30: 61-71.
DOI PMID |
[71] | VALASTYAN JULIE S, KRAML CHRISTINA M, PELCZER I, et al., 2021. Saccharomyces cerevisiae Requires CFF1 To Produce 4-Hydroxy-5-Methylfuran-3(2H)-One, a Mimic of the Bacterial Quorum-Sensing Autoinducer AI-2[J]. mBio, 12(2): e03303-03320. |
[72] | VILHENA C, KAGANOVITCH E, GRUNBERGER A, et al., 2019. Importance of pyruvate sensing and transport for the resuscitation of viable but nonculturable Escherichia coli K-12 Claudia[J]. Journal of Bacteriology, 201(3): e00610-00618. |
[73] |
WANG B Y, DAI P, DING D, et al., 2019. Affinity-based capture and identification of protein effectors of the growth regulator ppGpp[J]. Nature Chemical Biology, 15(2): 141-150.
DOI PMID |
[74] |
WANG F Y, FU Y L, LIN Z H, et al., 2023a. Neglected Drivers of Antibiotic Resistance: Survival of Extended-Spectrum β-Lactamase-Producing Pathogenic Escherichia coli from Livestock Waste through Dormancy and Release of Transformable Extracellular Antibiotic Resistance Genes under Heat Treatment[J]. Environmental Science & Technology, 57(27): 9955-9964.
DOI URL |
[75] |
WANG R H, YIN Y D, LI J S, et al., 2022. Global stable-isotope tracing metabolomics reveals system-wide metabolic alternations in aging Drosophila[J]. Nature Communications, 13(1): 3518.
DOI PMID |
[76] |
WANG X, WANG J, LIU S Y, et al., 2023b. Mechanisms of survival mediated by the stringent response in Pseudomonas aeruginosa under environmental stress in drinking water systems: Nitrogen deficiency and bacterial competition[J]. Journal of Hazardous Materials, 448: 130941.
DOI URL |
[77] |
WANG Y, CHEN Z H, ZHAO F N, et al., 2023c. Metabolome shifts triggered by chlorine sanitisation induce Escherichia coli on fresh produce into the viable but nonculturable state[J]. Food Research International, 171: 113084.
DOI URL |
[78] |
WANG Y, CLAEYS L, VAN DER HA D, et al., 2010. Effects of chemically and electrochemically dosed chlorine on Escherichia coli and Legionella beliardensis assessed by flow cytometry[J]. Applied Microbiology and Biotechnology, 87(1): 331-341.
DOI URL |
[79] |
WEI C J, ZHAO X H, 2018. Induction of Viable but Nonculturable Escherichia coli O157:H7 by Low Temperature and Its Resuscitation[J]. Frontiers in Microbiology, 9: 2728.
DOI URL |
[80] | YANG D, ZHANG Y, ZHAO L, et al., 2021. Pressure-resistant acclimation of lactic acid bacteria from a natural fermentation product using high pressure[J]. Innovative Food Science & Emerging Technologies, 69: 102660. |
[81] |
YANG D, ZHAO L, RAO L, et al., 2023. Effect of preliminary stresses on the induction of viable but non-culturable Escherichia coli O157:H7 NCTC 12900 and Staphylococcus aureus ATCC 6538[J]. Food Research International, 167(5): 112710.
DOI URL |
[82] | YE Z, LI H X, JIA Y Y, et al., 2020. Supplementing resuscitation-promoting factor (Rpf) enhanced biodegradation of polychlorinated biphenyls (PCBs) by Rhodococcus biphenylivorans strain TG9T[J]. Environmental Pollution, 263(Par A): 114488. |
[83] |
YIN H L, CAI Y W, LI G Y, et al., 2022. Persistence and environmental geochemistry transformation of antibiotic-resistance bacteria/genes in water at the interface of natural minerals with light irradiation[J]. Critical Reviews in Environmental Science and Technology, 52(13): 2270-2301.
DOI URL |
[84] |
YIN H L, CHEN X F, LI G Y, et al., 2019. Sub-lethal photocatalysis bactericidal technology cause longer persistence of antibiotic-resistance mutant and plasmid through the mechanism of reduced fitness cost[J]. Applied Catalysis B: Environmental, 245: 698-705.
DOI URL |
[85] |
YIN H L, CHEN X F, LI G Y, et al., 2021. Can photocatalytic technology facilitate conjugative transfer of ARGs in bacteria at the interface of natural sphalerite under different light irradiation?[J]. Applied Catalysis B-Environmental, 287: 119977.
DOI URL |
[86] |
YIN H L, LI G Y, CHEN X F, et al., 2020. Accelerated evolution of bacterial antibiotic resistance through early emerged stress responses driven by photocatalytic oxidation[J]. Applied Catalysis B: Environmental, 269: 118829.
DOI URL |
[87] |
YOON H K, PARK S Y, KIM C G, 2021. Comparison of the bacterial viability assessments for the disinfected quarantined water along with an effect of total residual oxidants[J]. Environmental Monitoring and Assessment, 193(12): 782.
DOI PMID |
[88] |
ZHANG J F, WANG L, SHI L, et al., 2020. Survival strategy of Cronobacter sakazakii against ampicillin pressure: Induction of the viable but nonculturable state[J]. International Journal of Food Microbiology, 334: 108819.
DOI URL |
[89] |
ZHANG S H, GUO L Z, YANG K, et al., 2018. Induction of Escherichia coli into a vbnc state by continuous-flow UVC and subsequent changes in metabolic activity at the single-cell level[J]. Frontiers in Microbiology, 9: 2243.
DOI URL |
[90] |
ZHANG S H, YE C S, LIN H R, et al., 2015. UV Disinfection Induces a Vbnc State in Escherichia coli and Pseudomonas aeruginosa[J]. Environmental Science & Technology, 49(3): 1721-1728.
DOI URL |
[91] |
ZHAO X L, DRLICA K, 2014. Reactive oxygen species and the bacterial response to lethal stress[J]. Current Opinion in Microbiology, 21: 1-6.
DOI PMID |
[92] |
ZHONG D, ZHOU Z Y, MA W C, et al., 2022. Antibiotic enhances the spread of antibiotic resistance among chlorine-resistant bacteria in drinking water distribution system[J]. Environmental Research, 211: 113045.
DOI URL |
[93] | ZHU L, SHUAI X Y, XU L K, et al., 2022. Mechanisms underlying the effect of chlorination and UV disinfection on VBNC state Escherichia coli isolated from hospital wastewater[J]. Journal of Hazardous Materials, 423(Part B): 127228. |
[94] |
陈蕾, George (Zhi) ZHOU, 2018. 污水中抗生素抗性菌及抗性基因的去除技术[J]. 生态环境学报, 27(11): 2163-2169.
DOI |
CHEN L, George (Zhi) ZHOU, 2018. Removal techniques of antibiotic resistant bacteria and resistant genes in sewage[J]. Ecology and Environmental Sciences, 27(11): 2163-2169. | |
[95] |
阳海, 安太成, 李桂英, 等, 2010. 光催化技术降解水中环境药物的研究进展[J]. 生态环境学报, 19(4): 991-999.
DOI |
YANG H, AN T C, LI G Y, et al., 2010. Recent advances in photocatalytic degradation of aquatic environmental pharmaceuticals[J]. Ecology and Environmental Sciences, 19(4): 991-999. |
[1] | ZHAO Haiying, LIU Zhiyuan, YUAN Mengxian, ZHANG Qingwen, ZHANG Qiong, CAO Jiling. Effects of Silver Nanoparticles on FTIR Spectroscopic Characterization of Maize Seedlings [J]. Ecology and Environment, 2023, 32(7): 1285-1292. |
[2] | LI Zhenguo, HAO Xingyu, HE Tianlian, JING Rui, RONG Cheng, GU Chengzhen, ZHENG Xinyu. Study on the Alleviating Effect of Bamboo Vinegar on Cadmium Toxicity of Perilla frutescens (L.) Britt. [J]. Ecology and Environment, 2023, 32(7): 1313-1324. |
[3] | WANG Jing, MENG Ke, CHEN Xuan, ZHANG Jiaen, XIANG Huimin, ZHONG Jiawen, SHI Zhaoji. Effects of Acid Rain on Yield, Quality and Physiological Characteristics of Lettuce and Brassica chinensis L. [J]. Ecology and Environment, 2023, 32(6): 1098-1107. |
[4] | HUANG Yingmei, ZHONG Songxiong, ZHU Yiwen, WANG Xiangqin, LI Fangbai. Effects and Mechanism of Element Sulfur Inhibiting Methylmercury Accumulation in Rice Plants [J]. Ecology and Environment, 2023, 32(6): 1115-1122. |
[5] | JIANG Yongwei, DING Zhenjun, YUAN Junbin, ZHANG Zheng, LI Yang, WEN Qingchun, WANG Yeyao, JIN Xiaowei. Study on Benthic Macroinvertebrates Community Structure and Water Quality Evaluation in Main Rivers of Liaoning Province [J]. Ecology and Environment, 2023, 32(5): 969-979. |
[6] | YANG Kai, YANG Jingrui, CAO Peipei, LÜ Chunhua, SUN Wenjuan, YU Lingfei, DENG Xi. Dynamic Response of Rice Plant Height, Tillering and SPAD under Elevated CO2 Concentration and Their Simulation [J]. Ecology and Environment, 2023, 32(5): 933-942. |
[7] | ZHU Yongle, TANG Jiaxi, TAN Ting, LI Yu, XIANG Biao. Contaminant Characteristic of Per- and Poly-fluorinated Substances in Maize in the Surrounding of Fluorine Chemical Park [J]. Ecology and Environment, 2023, 32(5): 1001-1006. |
[8] | ZHAO Liangxia, GAO Kun, HUANG Tingting, GAO Ye, JU Tangdan, JIANG Qiuyang, JIN Heng, XIONG Lei, TANG Zailin, GAO Canhong. The Cadmium Accumulation Characteristics of Maize Inbred Lines with High/Low Grain Cadmium Accumulation at Different Growth Stages [J]. Ecology and Environment, 2023, 32(4): 766-775. |
[9] | YANG Nie, SUN Xiaoxun, KONG Tianle, SUN Weimin, CHEN Quanyuan, GAO Pin. Response of Microbial Communities to Changes in Antimony Pollution Concentrations in Fluvial Sediment [J]. Ecology and Environment, 2023, 32(3): 609-618. |
[10] | CUI Yuanyuan, ZHANG Zhengyun, LIU Peng, ZHANG Yunchun, ZHANG Qiaoying. Morphological Characteristics and Fractal Dimension of Brassia chinensis Root System under Cadmium and Polyethylene Microplastic Stress [J]. Ecology and Environment, 2023, 32(1): 158-165. |
[11] | REN Jun, PAN Jiaxuan, TAO Ling, TONG Yunlong, WANG Ruo’an, SUN Xinni. Stabilization Remediation of Soil Polluted by Cd Using Palygorskite Modified by NaOH [J]. Ecology and Environment, 2022, 31(12): 2422-2430. |
[12] | CHEN Fuqiuxue, TANG Siqi, YUAN Hao, MA Zixuan, CHEN Tan, YANG Ting, ZHANG Bing, LIU Ying. Impacts of Polystyrene Microplastics on Seed Germination and Seedling Growth of Typical Crops [J]. Ecology and Environment, 2022, 31(12): 2382-2392. |
[13] | GUO Lifang, YANG Rui, SUN Weimin. Nitrogen-Fixing Bacteria Isolation from Mine Tailings and Their Plant Growth Promoting Properties [J]. Ecology and Environment, 2022, 31(11): 2180-2188. |
[14] | ZHOU Chunfu, YU Rui, WANG Xiang, CHUANG Shaochuang, YANG Hongxing, XIE Yue. Effects of Antibiotics on Soil Enzyme Activities in Different Soils [J]. Ecology and Environment, 2022, 31(11): 2234-2241. |
[15] | XIN Weidong, DU Yidan, LIU Huayu, YANG Yimeng, ZHAO Haozhi, YANG Dan. Responses and Biological Indications of Ground-dwelling Arthropods Diversity to Different Vegetation Restoration Patterns in Coal Gangue [J]. Ecology and Environment, 2022, 31(10): 2079-2088. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn