Ecology and Environment ›› 2024, Vol. 33 ›› Issue (7): 1107-1116.DOI: 10.16258/j.cnki.1674-5906.2024.07.012
• Research Article [Environmental Science] • Previous Articles Next Articles
LIN Yulan1(), CHEN Houpu1, YU Wenhao1, WANG Baoying1,2, ZHANG Yang2, ZHANG Jinbo1,3,4, CAI Zucong1,3,4, ZHAO Jun1,3,4,*(
)
Received:
2024-03-26
Online:
2024-07-18
Published:
2024-09-04
Contact:
ZHAO Jun
林于蓝1(), 陈厚朴1, 于文豪1, 王宝英1,2, 张杨2, 张金波1,3,4, 蔡祖聪1,3,4, 赵军1,3,4,*(
)
通讯作者:
赵军
作者简介:
林于蓝(1999年生),女,硕士研究生,主要研究方向为土壤微生物与抗生素污染修复。E-mail: yllin613@163.com
基金资助:
CLC Number:
LIN Yulan, CHEN Houpu, YU Wenhao, WANG Baoying, ZHANG Yang, ZHANG Jinbo, CAI Zucong, ZHAO Jun. Effects of Reductive Soil Disinfestation on Common Antibiotics and Their Antibiotic Resistance Genes in Soil[J]. Ecology and Environment, 2024, 33(7): 1107-1116.
林于蓝, 陈厚朴, 于文豪, 王宝英, 张杨, 张金波, 蔡祖聪, 赵军. 强还原处理对土壤中常见抗生素及其抗性基因的影响研究[J]. 生态环境学报, 2024, 33(7): 1107-1116.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.07.012
基因类型 | 引物 | 序列 (5′-3′) | |
---|---|---|---|
细菌 | 16S rRNA | Eub338F | ACTCCTACGGGAGGCAGCAG |
Eub518R | ATTACCGCGGCTGCTGG | ||
磺胺类 ARGs | sul1 | sul1-f | CACCGGAAACATCGCTGCA |
sul1-r | AAGTTCCGCCGCAAGGCT | ||
四环素类 ARGs | tetM | tetM-f | GGAGCGATTACAGAATTAGGAAGC |
tetM-f | TCCATATGTCCTGGCGTGTC | ||
tetG | tetG-f | GCTCGGTGGTATCTCTGCTC | |
tetG-r | AGCAACAGAATCGGGAACAC | ||
多药类 ARGs | qacH | qacH-f | GTCGGTGTTGCTTATGCAGTCT |
qacH-r | CAACCAGGCAATGGCTGTAA | ||
msrE | msrE-f | CGGCAGATGGTCTGAGCTTAAA | |
msrE-r | CGCACTCTTCCTGCATAAAGGA | ||
可移动遗传元件 MGEs | IS26 | IS26-f | ATGGATGAAACCTACGTGAAGGTC |
IS26-r | CGGTACTTAATCTGTCGGTGTTCA | ||
IS6100 | IS6100-f | CGCACCGGCTTGATCAGTA | |
IS6100-f | CTGCCACGCTCAATACCGA | ||
intl1 | intl1-f | GCCTTGATGTTACCCGAGAG | |
intl1-r | GATCGGTCGAATGCGTGT |
Table 1 Primers used in PCR quantifications
基因类型 | 引物 | 序列 (5′-3′) | |
---|---|---|---|
细菌 | 16S rRNA | Eub338F | ACTCCTACGGGAGGCAGCAG |
Eub518R | ATTACCGCGGCTGCTGG | ||
磺胺类 ARGs | sul1 | sul1-f | CACCGGAAACATCGCTGCA |
sul1-r | AAGTTCCGCCGCAAGGCT | ||
四环素类 ARGs | tetM | tetM-f | GGAGCGATTACAGAATTAGGAAGC |
tetM-f | TCCATATGTCCTGGCGTGTC | ||
tetG | tetG-f | GCTCGGTGGTATCTCTGCTC | |
tetG-r | AGCAACAGAATCGGGAACAC | ||
多药类 ARGs | qacH | qacH-f | GTCGGTGTTGCTTATGCAGTCT |
qacH-r | CAACCAGGCAATGGCTGTAA | ||
msrE | msrE-f | CGGCAGATGGTCTGAGCTTAAA | |
msrE-r | CGCACTCTTCCTGCATAAAGGA | ||
可移动遗传元件 MGEs | IS26 | IS26-f | ATGGATGAAACCTACGTGAAGGTC |
IS26-r | CGGTACTTAATCTGTCGGTGTTCA | ||
IS6100 | IS6100-f | CGCACCGGCTTGATCAGTA | |
IS6100-f | CTGCCACGCTCAATACCGA | ||
intl1 | intl1-f | GCCTTGATGTTACCCGAGAG | |
intl1-r | GATCGGTCGAATGCGTGT |
抗生素 类型 | 处理 方式 | 抗生素降解率/% | 多元方差分析 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
d7 | p | d14 | p | d28 | p | 处理时间 | 处理方式 | 处理时间×处理方式 | |||
四环素 | RCS | −11.3±9.45 | ns | 3.15±5.03 | ns | 33.5±11.6 | ns | *** | ns | * | |
RSR | −7.03±5.98 | −2.11±1.73 | 57.2±9.16 | ||||||||
土霉素 | RCS | −1.26±12.8 | ns | 17.0±11.5 | ns | 44.7±11.8 | ns | *** | ns | ns | |
RSR | −14.4±7.64 | 27.5±0.81 | 39.9±7.65 | ||||||||
磺胺 嘧啶 | RCS | 42.6±6.44 | ns | 2.95±8.47 | ns | 45.2±20.9 | ns | ** | ns | ns | |
RSR | 43.2±5.94 | 32.3±21.7 | 64.8±3.40 | ||||||||
磺胺 甲恶唑 | RCS | 88.3±5.64 | ns | 100±0 | ns | 100±0 | ns | *** | ns | ns | |
RSR | 91.6±1.43 | 100±0 | 100±0 |
Table 2 Degradation rates of antibiotics by RSD treatment compared to CK treatment
抗生素 类型 | 处理 方式 | 抗生素降解率/% | 多元方差分析 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
d7 | p | d14 | p | d28 | p | 处理时间 | 处理方式 | 处理时间×处理方式 | |||
四环素 | RCS | −11.3±9.45 | ns | 3.15±5.03 | ns | 33.5±11.6 | ns | *** | ns | * | |
RSR | −7.03±5.98 | −2.11±1.73 | 57.2±9.16 | ||||||||
土霉素 | RCS | −1.26±12.8 | ns | 17.0±11.5 | ns | 44.7±11.8 | ns | *** | ns | ns | |
RSR | −14.4±7.64 | 27.5±0.81 | 39.9±7.65 | ||||||||
磺胺 嘧啶 | RCS | 42.6±6.44 | ns | 2.95±8.47 | ns | 45.2±20.9 | ns | ** | ns | ns | |
RSR | 43.2±5.94 | 32.3±21.7 | 64.8±3.40 | ||||||||
磺胺 甲恶唑 | RCS | 88.3±5.64 | ns | 100±0 | ns | 100±0 | ns | *** | ns | ns | |
RSR | 91.6±1.43 | 100±0 | 100±0 |
处理方式 | 细菌数量/(lg copies∙g−1) | ||
---|---|---|---|
d7 | d14 | d28 | |
CK | 9.51±0.03Ac | 9.65±0.10Ac | 9.62±0.12Ab |
RCS | 10.4±0.04Aa | 10.5±0.04Aa | 10.6±0.15Aa |
RSR | 10.3±0.05Ab | 10.3±0.02Ab | 10.5±0.01Aa |
Table 3 Changes in bacterial populations in different treatments
处理方式 | 细菌数量/(lg copies∙g−1) | ||
---|---|---|---|
d7 | d14 | d28 | |
CK | 9.51±0.03Ac | 9.65±0.10Ac | 9.62±0.12Ab |
RCS | 10.4±0.04Aa | 10.5±0.04Aa | 10.6±0.15Aa |
RSR | 10.3±0.05Ab | 10.3±0.02Ab | 10.5±0.01Aa |
[1] |
AZANU D, MORTEY C, DARKO G, et al., 2016. Uptake of antibiotics from irrigation water by plants[J]. Chemosphere, 157: 107-114.
DOI PMID |
[2] | BARRAUD O, BACLET M C, DENIS F, et al., 2010. Quantitative multiplex real-time PCR for detecting class 1, 2 and 3 integrons[J]. Journal of Antimicrobial Chemotherapy, 65(8): 1642-1645. |
[3] | BERENDONK T U, MANAIA C M, MERLIN C, 2015. Tackling antibiotic resistance: The environmental framework Nature Reviews[J] Microbiology, 13(5): 310-317. |
[4] | BÍLKOVÁ Z, MALA J, HRICH K, 2019. Fate and behaviour of veterinary sulphonamides under denitrifying conditions[J]. Science of The Total Environment, 695: 133824. |
[5] | CHEN Y L, YANG K J, YE Y, et al., 2021. Reductive soil disinfestation attenuates antibiotic resistance genes in greenhouse vegetable soils[J]. Journal of Hazardous Materials, 420: 126632. |
[6] |
DORSCH M, LANE D, STACKEBRANDT E, 1992. Towards a phylogeny of the genus Vibrio based on 16S rRNA sequences[J]. International Journal of Systematic Bacteriology, 42(1): 58-63.
PMID |
[7] | FORSBERG K J, PATEL S, GIBSON M K, et al., 2014. Bacterial phylogeny structures soil resistomes across habitats[J]. Nature, 509: 612-616. |
[8] | GILLINGS M R, GAZE W H, PRUDEN A, et al., 2015. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution[J]. The ISME Journal, 9(6): 1269-1279. |
[9] | HARMER C J, HALL R M, 2016. IS26-Mediated formation of transposons carrying antibiotic resistance genes[J]. mSphere, 1(2): e00038-16. |
[10] | JAGTAP U B, 2017. Antibiotics in the soil: Sources, environmental issues, and bioremediation[M]. Switzerland: Springer International Publishing: 387-395. |
[11] |
JI X L, SHEN Q H, LIU F, et al., 2012. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China[J]. Journal of Hazardous Materials, 235-236: 178-185.
DOI PMID |
[12] | KIRCHHELLE C, 2018. Pharming animals: A global history of antibiotics in food production (1935-2017)[J]. Palgrave Communications, 4(1): 1-13. |
[13] | LENG Y F, BAO J G, CHANG G F, et al., 2016. Biotransformation of tetracycline by a novel bacterial strain Stenotrophomonas maltophilia DT1[J]. Journal of Hazardous Materials, 318: 125-133. |
[14] | LIU L L, KONG J J, CUI H L, et al., 2016. Relationships of decomposability and C/N ratio in different types of organic matter with suppression of Fusarium oxysporum and microbial communities during reductive soil disinfestation[J]. Biological Control, 101: 103-113. |
[15] | MOGHADAM A A, SHUAI W T, HARTMANN E M, 2023. Anthropogenic antimicrobial micropollutants and their implications for agriculture[J]. Current Opinion in Biotechnology, 80: 102902. |
[16] | STEDTFELD R D, GUO X P, STEDTFELD T M, et al., 2018. Primer set 2.0 for highly parallel qPCR array targeting antibiotic resistance genes and mobile genetic elements[J]. FEMS Microbiology Ecology, 94(9): fly130. |
[17] |
VON W C J H, JOHN P, VAN N J M, et al., 2016. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer[J]. Frontiers in Microbiology, 7: 173.
DOI PMID |
[18] | YAMAMOTO T, WAN T W, KHOKHLOVA O, et al., 2019. Methicillin-resistant Staphylococcus Aureus in community settings: Spread of drug resistance and uncontrollable infections[J]. Medical University, 2(4): 115-124. |
[19] | YANG B, YU Y L, LIU H, et al., 2022. Natural N-doped carbon quantum dots derived from straw and adhered onto TiO2 nanospheres for enhancing the removal of antibiotics and resistance genes[J]. ACS Omega, 8(1): 718-725. |
[20] | ZHANG Y, GU A Z, HE M, et al., 2017. Subinhibitory concentrations of disinfectants promote the horizontal transfer of multidrug resistance genes within and across genera[J]. Environmental Science & Technology, 51(1): 570-580. |
[21] | ZHANG S, LU Y X, ZHANG J J, et al., 2020. Constructed wetland revealed efficient sulfamethoxazole removal but enhanced the spread of antibiotic resistance genes[J]. Molecules, 25(4): 834. |
[22] | ZHAO J, NI T, LI J, et al., 2016. Effects of organic-inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice-wheat cropping system[J]. Applied Soil Ecology, 99: 1-12. |
[23] | ZHU N, LONG Y J, KAN Z X, et al., 2023. Reduction of mobile genetic elements determines the removal of antibiotic resistance genes during pig manure composting after thermal pretreatment[J]. Bioresource Technology, 387: 129672. |
[24] | 蔡祖聪, 张金波, 黄新琦, 等, 2015. 强还原土壤灭菌防控作物土传病的应用研究[J]. 土壤学报, 52(3): 469-476. |
CAI Z C, ZHANG J B, HUANG X Q, et al., 2015. Application of reductive soil disinfestation to suppress soil-borne pathogens[J]. Acta Pedologica Sinica, 52(3): 469-476. | |
[25] | 龚勍, 王震, 邢剑波, 等, 2023. 四环素降解对厌氧反硝化产甲烷性能的影响[J]. 中国环境科学, 43(6): 2899-2907. |
GONG Q, WANG Z, XING J B, et al., 2023. Degradation of tetracycline under denitrification and methanogenesis system and its performance change[J]. China Environmental Science, 43(6): 2899-2907. | |
[26] | 李斌绪, 朱昌雄, 宋婷婷, 等, 2020. 电动力修复四环素类抗生素污染土壤的效果研究[J]. 环境科学与技术, 43(5): 187-194. |
LI B X, ZHU C X, SONG T T, et al., 2020. Effect of electrodynamic remediation on tetracycline-contaminated soil[J]. Environmental Science & Technology, 43(5): 187-194. | |
[27] | 李彦文, 莫测辉, 赵娜, 等, 2009. 菜地土壤中磺胺类和四环素类抗生素污染特征研究[J]. 环境科学, 30(6): 1762-1766. |
LI Y W, MO C H, ZHAO N, et al., 2009. Investigation of sulfonamides and tetracyclines antibiotics in soils from various vegetable fields[J]. Environmental Science, 30(6): 1762-1766. | |
[28] | 刘款, 孙明明, 刘满强, 等, 2017. 土壤反硝化对磺胺嘧啶及抗性基因消减的影响[J]. 土壤, 49(3): 482-491. |
LIU K, SUN M M, LIU M Q, et al., 2017. Effects of anaerobic denitrification on the dissipation of sulfadiazine and resistance genes in soil[J]. Soils, 49(3): 482-491. | |
[29] | 刘元望, 李兆君, 冯瑶, 等, 2016. 微生物降解抗生素的研究进展[J]. 农业环境科学学报, 35(2): 212-224. |
LIU Y W, LI Z J, FENG Y, et al., 2016. Research progress in microbial degradation of antibiotics[J]. Journal of Agro-Environment Science, 35(2): 212-224. | |
[30] | 聂璐, 吴奎海, 陈文静, 等, 2019. 插入序列IS6100介导DNA序列转移的机制研究[J]. 中国医药生物技术, 14(4): 341-346. |
NIE L, WU K H, CHEN W J, et al., 2019. The mechanism of insertion sequence IS6100 mediated transfer of DNA sequences[J]. Chinese Medicinal Biotechnology, 14(4): 341-346. | |
[31] | 裴孟, 梁玉婷, 易良银, 等, 2017. 黑麦草对土壤中残留抗生素的降解及其对微生物活性的影响[J]. 环境工程学报, 11(5): 3179-3186. |
PEI M, LIANG Y T, YI L Y, et al., 2017. Degradation of residual antibiotics in soils by ryegrass and its effect on microbial activity[J]. Chinese Journal of Environmental Engineering, 11(5): 3179-3186. | |
[32] | 邰义萍, 莫测辉, 李彦文, 等, 2011. 长期施用粪肥菜地土壤中四环素类抗生素的含量与分布特征[J]. 环境科学, 32(4): 1182-1187. |
TAI Y P, MO C H, LI Y W, et al., 2011. Concentrations and distribution of tetracycline antibiotics in vegetable field soil chronically fertilized with manures[J]. Environmental Science, 32(4): 1182-1187. | |
[33] | 王广印, 郭卫丽, 陈碧华, 等, 2023. 强还原土壤灭菌法防控瓜菜土壤连作障碍效果的影响因素[J]. 中国瓜菜, 36(2): 11-18. |
WANG G Y, GUO W L, CHEN B H et al., 2023. The factors affecting reductive soil disinfection (RSD) on overcoming mono-cropping obstacles of cucurbits and vegetables[J]. China Cucurbits and Vegetables, 36(2): 11-18. | |
[34] | 王晓洁, 赵蔚, 张志超, 等, 2021. 兽用抗生素在土壤中的环境行为、生态毒性及危害调控[J]. 中国科学: 技术科学, 51(6): 615-636. |
WANG X J, ZHAO W, ZHANG Z C et al., 2021. Veterinary antibiotics in soils: environmental processes, ecotoxicity, and risk mitigation[J]. Scientia Sinica Technologica, 51(6): 615-636. | |
[35] | 肖磊, 王海芳, 2020. 四环素类抗生素在土壤环境中的残留及环境行为研究进展[J]. 应用化工, 49(12): 3178-3184. |
XIAO L, WANG H F, 2020. Tetracycline residues and environmental behavior of tetracycline antibiotics in soil: A review[J]. Applied Chemical Industry, 49(12): 3178-3184. | |
[36] | 于文豪, 李舒, 林于蓝, 等, 2024. 棉隆熏蒸和强还原处理对农田土壤抗生素抗性基因的影响研究[J]. 土壤学报, [待发表]. |
YU W H, LI S, LIN Y L, et al., 2024. Effects of dazomet fumigation and reductive soil disinfestation on antibiotic resistance genes in farmland soil[J]. Acta Pedologica Sinica, [In Press]. | |
[37] | 袁钰龙, 刘冬梅, 向荣程, 等, 2021. 大环内酯类抗生素微生物降解的研究进展[J]. 生物工程学报, 37(9): 3129-3141. |
YUAN Y L, LIU D M, XIANG R C, et al., 2021. Advances in biodegradation of macrolide antibiotics[J]. Chinese Journal of Biotechnology, 37(9): 3129-3141. | |
[38] | 赵军, 张晶清, 林于蓝, 等, 2024. 强还原土壤处理驱动的微生物群落稳定性与功能的关联性[J]. 土壤学报, 61(1): 187-199. |
ZHAO J, ZHANG J Q, LIN Y L, et al., 2024. Correlation between the stability and function of soil microbial community driven by reductive soil disinfestation[J]. Acta Pedologica Sinica, 61(1): 187-199. | |
[39] | 赵晓东, 乔青青, 秦宵睿, 等, 2023. 近15年我国土壤抗生素污染特征与生物修复研究进展[J]. 环境科学, 44(7): 4059-4076. |
ZHAO X D, QIAO Q Q, QIN X R, et al., 2023. Characteristics of antibiotic contamination of soil in China in past fifteen years and the bioremediation technology: A review[J]. Environmental Science, 44(7): 4059-4076. | |
[40] | 朱同彬, 孙盼盼, 党琦, 等, 2014. 淹水添加有机物料改良退化设施蔬菜地土壤[J]. 土壤学报, 51(2): 335-341. |
ZHU T B, SUN P P, DANG Q, et al., 2014. Improvement of degraded greenhouse vegetable soil by flooding and/or amending organic materials[J]. Acta Pedologica Sinica, 51(2): 335-341. |
[1] | CHEN Hongjie, LIAO Hongkai, LONG JIAN, ZHAO Yuxin, ZHAN Kaixian, RAN Taishan, YANG Guomei. Effects of Reductive Soil Disinfestation on Soil Protist Community [J]. Ecology and Environment, 2024, 33(4): 539-547. |
[2] | ZHAO Xuli, YAO Yutian, CHEN Chao, HUANG Xinqi, MENG Tianzhu. Response of Soil pH and SO42- Content to Remediation by Reductive Soil Disinfestation in Degraded Greenhouse Vegetable Soil [J]. Ecology and Environment, 2023, 32(7): 1218-1225. |
[3] | GAO Xiaoyu, WANG Lei. The Accumulation, Transfer and Elimination of Antibiotic Resistance Genes in Soil: A Review [J]. Ecology and Environment, 2023, 32(11): 2062-2071. |
[4] | ZHOU Yongkang, YU Shengpin, LI Jiale, DONG Yihui, WANG Meng, ZHAO Qiling, LI Yeyu. Research Progress on Adsorption Behavior and Mechanism of Antibiotics in Soil [J]. Ecology and Environment, 2023, 32(11): 2072-2082. |
[5] | XIE Xudong, HOU Zhihao, LI Nan, YUE Cuixia, LI Ya, YANG Fangshe. Occurrence, Distribution and Ecological Risk of Antibiotics in Sediments and Soils over the Four Areas Below the Heihe-Tengchong Line of China [J]. Ecology and Environment, 2021, 30(5): 1023-1033. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn