Ecology and Environment ›› 2024, Vol. 33 ›› Issue (4): 617-625.DOI: 10.16258/j.cnki.1674-5906.2024.04.012
• Research Article [Environmental Sciences] • Previous Articles Next Articles
WANG Shiping(), LI Mei, AN Ya, QIN Haoli*(
)
Received:
2024-03-25
Online:
2024-04-18
Published:
2024-05-31
Contact:
QIN Haoli
通讯作者:
秦好丽
作者简介:
王室苹(1999年生),女(苗族),硕士研究生,主要从事重金属钝化剂研究。E-mail: wang_shiping_apple@163.com
基金资助:
CLC Number:
WANG Shiping, LI Mei, AN Ya, QIN Haoli. The Effect of Magnesium Modification on Enhancing Cadmium Adsorption Capacity of Wheat Straw Biochar: A Surface Complexation Modeling Approach[J]. Ecology and Environment, 2024, 33(4): 617-625.
王室苹, 李梅, 安娅, 秦好丽. 镁改性增强小麦秸秆生物炭对镉的吸附能力:表面络合模型研究[J]. 生态环境学报, 2024, 33(4): 617-625.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.04.012
参数 | WB | MgWB |
---|---|---|
比表面积/(m2·g-1) | 56.09 | 50.51 |
孔体积/(cm3·g-1) | 0.11 | 0.13 |
平均孔径/nm | 7.788 | 10.641 |
低亲和型官能团/(mmol·g-1) | 0.041 | 0.042 |
中亲和型官能团/(mmol·g-1) | 0.159 | 0.209 |
高亲和型官能团/(mmol·g-1) | 0.360 | 0.384 |
总酸性官能团/(mmol·g-1) | 0.560 | 0.635 |
Table 1 Surface physical and chemical parameters of biochar
参数 | WB | MgWB |
---|---|---|
比表面积/(m2·g-1) | 56.09 | 50.51 |
孔体积/(cm3·g-1) | 0.11 | 0.13 |
平均孔径/nm | 7.788 | 10.641 |
低亲和型官能团/(mmol·g-1) | 0.041 | 0.042 |
中亲和型官能团/(mmol·g-1) | 0.159 | 0.209 |
高亲和型官能团/(mmol·g-1) | 0.360 | 0.384 |
总酸性官能团/(mmol·g-1) | 0.560 | 0.635 |
热力学模型 | 参数 | WB | MgWB | |||||
---|---|---|---|---|---|---|---|---|
293 K | 303 K | 313 K | 293 K | 303 K | 313 K | |||
Langmuir | KL | 0.002 | 0.002 | 0.003 | 0.001 | 0.001 | 0.002 | |
qm | 0.882 | 0.928 | 0.925 | 2.661 | 3.292 | 3.501 | ||
r2 | 0.995 | 0.996 | 0.994 | 0.998 | 0.997 | 0.995 | ||
Freundlich | KF | 0.027 | 0.044 | 0.058 | 2.517 | 3.205 | 5.087 | |
Nf | 0.441 | 0.401 | 0.357 | 0.501 | 0.494 | 0.449 | ||
r2 | 0.978 | 0.965 | 0.945 | 0.979 | 0.965 | 0.947 |
Table 2 Isotherm parameters of Cd2+ adsorption on WB and MgWB
热力学模型 | 参数 | WB | MgWB | |||||
---|---|---|---|---|---|---|---|---|
293 K | 303 K | 313 K | 293 K | 303 K | 313 K | |||
Langmuir | KL | 0.002 | 0.002 | 0.003 | 0.001 | 0.001 | 0.002 | |
qm | 0.882 | 0.928 | 0.925 | 2.661 | 3.292 | 3.501 | ||
r2 | 0.995 | 0.996 | 0.994 | 0.998 | 0.997 | 0.995 | ||
Freundlich | KF | 0.027 | 0.044 | 0.058 | 2.517 | 3.205 | 5.087 | |
Nf | 0.441 | 0.401 | 0.357 | 0.501 | 0.494 | 0.449 | ||
r2 | 0.978 | 0.965 | 0.945 | 0.979 | 0.965 | 0.947 |
参数 | 位点类型 | WB | MgWB |
---|---|---|---|
Q/(μmol·m-2) | B1 | 6.42 | 7.61 |
B2 | 2.83 | 4.15 | |
B3 | 0.74 | 0.83 | |
pKa1 | B1 | 9.2 | 3.5 |
B2 | 4.1 | 2.6 | |
B3 | 3.2 | 2.1 | |
pKa2 | B1 | 10.5 | 9.1 |
B2 | 6.5 | 6.8 | |
B3 | 4.5 | 5.8 |
Table 3 Parameters obtained by SCM fitting potentiometric titration curve
参数 | 位点类型 | WB | MgWB |
---|---|---|---|
Q/(μmol·m-2) | B1 | 6.42 | 7.61 |
B2 | 2.83 | 4.15 | |
B3 | 0.74 | 0.83 | |
pKa1 | B1 | 9.2 | 3.5 |
B2 | 4.1 | 2.6 | |
B3 | 3.2 | 2.1 | |
pKa2 | B1 | 10.5 | 9.1 |
B2 | 6.5 | 6.8 | |
B3 | 4.5 | 5.8 |
样品 | c0/ (μmol·L-1) | pK≡SOCd+ | ||
---|---|---|---|---|
B1 | B2 | B3 | ||
WB | 20 | 1.5 | 2.5 | 3 |
200 | 1.9 | 2.8 | 3.5 | |
MgWB | 20 | 1.1 | 2.1 | 2.2 |
200 | 1.5 | 2.2 | 2.5 |
Table 4 Binding Constants for the Formation of Cd2+ Complexes on Biochar Obtained through SCM Fitting
样品 | c0/ (μmol·L-1) | pK≡SOCd+ | ||
---|---|---|---|---|
B1 | B2 | B3 | ||
WB | 20 | 1.5 | 2.5 | 3 |
200 | 1.9 | 2.8 | 3.5 | |
MgWB | 20 | 1.1 | 2.1 | 2.2 |
200 | 1.5 | 2.2 | 2.5 |
[1] | AKGUL G, MADEN T B, DIAZ E, et al., 2019. Modification of tea biochar with Mg, Fe, Mn and Al salts for efficient sorption of PO43- and Cd2+ from aqueous solutions[J]. Journal of Water Reuse and Desalination, 9(1): 57-66. |
[2] | AL-GHEETHI A A, AZHAR Q M, SENTHIL KUMAR P, et al., 2022. Sustainable approaches for removing Rhodamine B dye using agricultural waste adsorbents: A review[J]. Chemosphere, 287(Part 2): 132080. |
[3] | ALAM M S, GORMAN-LEWIS D, CHEN N, et al., 2018a. Thermodynamic analysis of nickel(II) and zinc(II) adsorption to biochar[J]. Environmental Science & Technology, 52(11): 6246-6255. |
[4] | ALAM M S, GORMAN-LEWIS D, CHEN N, et al., 2018b. Mechanisms of the Removal of U(VI) from Aqueous Solution Using Biochar: A Combined Spectroscopic and Modeling Approach[J]. Environmental Science & Technology, 52(22): 13057-13067. |
[5] | ALAM M S, SWAREN L, VON GUNTEN K, et al., 2018c. Application of surface complexation modeling to trace metals uptake by biochar-amended agricultural soils[J]. Applied Geochemistry, 88(Part A): 103-112. |
[6] | BOEHM H P, 1994. Some aspects of the surface chemistry of carbon blacks and other carbons[J]. Carbon, 32(5): 759-769. |
[7] | CHEN S S, CAO Y, TSANG D C W, et al., 2020. Effective Dispersion of MgO Nanostructure on Biochar Support as a Basic Catalyst for Glucose Isomerization[J]. ACS Sustainable Chemistry & Engineering, 8(18): 6990-7001. |
[8] | DEVI P, SAROHA A K, 2017. Utilization of sludge based adsorbents for the removal of various pollutants: A review[J]. Science of the Total Environment, 578: 16-33. |
[9] | FENG Y Y, LUO Y, HE Q P, et al., 2021. Performance and mechanism of a biochar-based Ca-La composite for the adsorption of phosphate from water[J]. Journal of Environmental Chemical Engineering, 9(3): 105267. |
[10] | FIOL N, VILLAESCUSA I, 2009. Determination of sorbent point zero charge: usefulness in sorption studies[J]. Environmental Chemistry Letters, 7: 79-84. |
[11] | GAO L, LI Z H, YI W M, et al., 2021. Impacts of pyrolysis temperature on lead adsorption by cotton stalk-derived biochar and related mechanisms[J]. Journal of Environmental Chemical Engineering, 9(4): 105602. |
[12] | GAO Y, FU X Z, YUE T, et al., 2022. Quantitative analysis of surface adsorption reactivity during flotation process by surface complexation model: diaspore and kaolinite[J]. Minerals Engineering, 183: 107623. |
[13] | GHOSH S, NANDASANA M, WEBSTER T J, et al., 2023. Agrowaste-generated biochar for the sustainable remediation of refractory pollutants[J]. Frontiers in Chemistry, 11: 1266556. |
[14] | HUDCOVá B, FEIN J B, TSANG D C W, et al., 2022. Mg-Fe LDH-coated biochars for metal(loid) removal: Surface complexation modeling and structural change investigations[J]. Chemical Engineering Journal, 432: 134360. |
[15] | KHAN Z H, GAO M L, QIU W W, et al., 2021. Mechanism of novel MoS2-modified biochar composites for removal of cadmium (II) from aqueous solutions[J]. Environmental Science and Pollution Research, 28(26): 34979-34989. |
[16] | KOMÁREK M, KORETSKY C M, STEPHEN K J, et al., 2016. Response to Comment on “Competitive Adsorption of Cd(II), Cr(VI), and Pb(II) onto Nanomaghemite: A Spectroscopic and Modeling Approach”[J]. Environmental Science & Technology, 50(3): 1634-1635. |
[17] | LI A Y, YE C H, JIANG Y H, et al., 2023. Enhanced removal performance of magnesium-modified biochar for cadmium in wastewaters: Role of active functional groups, processes, and mechanisms[J]. Bioresource Technology, 386: 129515. |
[18] | LIN H, YANG D S, ZHANG C H, et al., 2023. Selective removal behavior of lead and cadmium from calcium-rich solution by MgO loaded soybean straw biochars and mechanism analysis[J]. Chemosphere, 319: 138010. |
[19] | LING Y, GU Q Y, JIN B S, 2023. Density functional theory study on the formation mechanism of CaClOH in municipal solid waste incineration fly ash[J]. Environmental Science and Pollution Research, 30: 106514-106532. |
[20] | LIU G N, WANG J, XUE W, et al., 2017. Effect of the size of variable charge soil particles on cadmium accumulation and adsorption[J]. Journal of Soils and Sediments, 17(12): 2810-2821. |
[21] | LIU L N, YANG X Z, AHMAD S, et al., 2023. Silicon (Si) modification of biochars from different Si-bearing precursors improves cadmium remediation[J]. Chemical Engineering Journal, 457: 141194. |
[22] | GUO M X, SONG W P, TIAN J, 2020. Biochar-Facilitated Soil Remediation: Mechanisms and Efficacy Variations[J]. Frontiers in Environmental Science, 8: 512512. |
[23] | MOHAN D, SARSWAT A, OK Y S, et al., 2014. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent - A critical review[J]. Bioresource Technology, 160: 191-202. |
[24] | PEI T, SHI F, HOU D F, et al., 2023. Enhanced adsorption of phenol from aqueous solution by KOH combined Fe-Zn bimetallic oxide co-pyrolysis biochar: Fabrication, performance, and mechanism[J]. Bioresource Technology, 388: 129746. |
[25] |
PENG H B, GAO P, CHU G, et al., 2017. Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars[J]. Environmental Pollution, 229: 846-853.
DOI PMID |
[26] |
RAJAPAKSHA A U, CHEN S S, TSANG D C W, et al., 2016. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification[J]. Chemosphere, 148: 276-291.
DOI PMID |
[27] | SEN T K, 2023. Agricultural Solid Wastes Based Adsorbent Materials in the Remediation of Heavy Metal Ions from Water and Wastewater by Adsorption: A Review[J]. Molecules, 28(14): 5575. |
[28] |
VITHANAGE M, RAJAPAKSHA A U, AHMAD M, et al., 2015. Mechanisms of antimony adsorption onto soybean stover-derived biochar in aqueous solutions[J]. Journal of Environmental Management, 151: 443-449.
DOI PMID |
[29] | WAN S L, WU J Y, ZHOU S S, et al., 2018. Enhanced lead and cadmium removal using biochar-supported hydrated manganese oxide (HMO) nanoparticles: Behavior and mechanism[J]. Science of the Total Environment, 616-617: 1298-1306. |
[30] | WANG Y, WANG L, LI Z T, et al., 2021. MgO-laden biochar enhances the immobilization of Cd/Pb in aqueous solution and contaminated soil[J]. Biochar, 3: 175-188. |
[31] | XIONG J, XU J, ZHOU M, et al., 2021b. Quantitative Characterization of the Site Density and the Charged State of Functional Groups on Biochar[J]. ACS Sustainable Chemistry & Engineering, 9(6): 2600-2608. |
[32] | XIONG J, ZHOU M G, QU C C, et al., 2021a. Quantitative analysis of Pb adsorption on sulfhydryl-modified biochar[J]. Biochar, 3: 37-49. |
[33] | YANG K P, CHENG Z Y, LUO W X, et al., 2023. Adsorption performance and mechanisms of MgO-modified palygorskite/biochar composite for aqueous Cd (II): Experiments and theoretical calculation[J]. Applied Surface Science, 638: 157965. |
[34] | ZHANG J Z, HOU D Y, SHEN Z T, et al., 2020a. Effects of excessive impregnation, magnesium content, and pyrolysis temperature on MgO-coated watermelon rind biochar and its lead removal capacity[J]. Environmental Research, 183: 109152. |
[35] | ZHANG S S, DU Q, SUN Y Q, et al., 2020c. Fabrication of L-cysteine stabilized α-FeOOH nanocomposite on porous hydrophilic biochar as an effective adsorbent for Pb2+ removal[J]. Science of the Total Environment, 720: 137415. |
[36] | ZHANG S P, WANG J X, ZHU S G, et al., 2020b. Effects of MgCl2 and Mg(NO3)2 loading on catalytic pyrolysis of sawdust for bio-oil and MgO-impregnated biochar production[J]. Journal of Analytical and Applied Pyrolysis, 152: 104962. |
[37] | ZHANG Y, VALLEY N, BROZENA A H, et al., 2013. Propagative sidewall alkylcarboxylation that induces red-shifted near-IR photoluminescence in single-walled carbon nanotubes[J]. The Journal of Physical Chemistry Letters, 4(5): 826-830. |
[38] | 刘桐欣, 2018. 共热解法制备ZnCl2改性生物炭及其吸附性能[D]. 石家庄: 河北师范大学. |
LIU T X, 2018. Preparation of ZnCl2-modified biochar by co-pyrolysis and its adsorption performance[D]. Shijiazhuang: Hebei Normal University. | |
[39] | 刘艳, 宋瑞明, 杨阳, 等, 2022. 贵州砂页岩母质黄壤镉吸附及表面络合模型研究[J]. 环境科学研究, 35(7): 1715-1724. |
LIU Y, SONG R M, YANH Y, et al., 2022. Cadmium adsorption and surface complexation model of sand shale yellow soil in Guizhou province[J]. Research of Environmental Sciences, 35(7): 1715-1724. | |
[40] | 刘艳, 2022. 贵州省两种母质黄壤中镉的吸附行为及表面络合模型[D]. 贵阳: 贵州师范大学. |
LIU Y, 2022. Adsorption behavior of cadmium in two types of lateritic soils in Guizhou Province and surface complexation modeling[D]. Guiyang: Guizhou Normal University. | |
[41] | 杨阳, 彭叶棉, 王莹, 等, 2019. 稻田土壤镉的表面络合模型及其生物有效性验证[J]. 科学通报, 64(33): 3449-3457. |
YANG Y, PENG Y J, WANG Y, et al., 2019. Surface complexation model of cadmium in paddy soil and verification of its bioavailability[J]. Science Bulletin, 64(33): 3449-3457. |
[1] | XIAO Jiang, LI Xiaogang, ZHAO Bo, CHEN Yan, CHEN Guangcai. Effect of Micro/nano Scale Phosphorus-enriched Biochar on Cu and Pb Stabilization in Soil-Salix jiangsuensis ‘172’ System [J]. Ecology and Environment, 2024, 33(3): 439-449. |
[2] | LI Gaofan, XU Wenzhuo, WEI Haoming, YAN Zaisheng, YOU Jia, JIANG Helong, HUANG Juan. Preparation of 3D Porous Biochar Adsorbent and Its Adsorption Behavior for Phenanthrene [J]. Ecology and Environment, 2024, 33(2): 261-271. |
[3] | CONG Xin, CAO Ping, WANG Xiaobo. Degradation of Pentachlorobiphenyl in Soil Using Persulfate Activated by Biochar-supported Nano Zero-valent Iron [J]. Ecology and Environment, 2024, 33(2): 282-290. |
[4] | LI Danyi, HUANG Xianting, LI Jichao, LI Yingjie, YAN Jiapu, LIN Wei. Advances in the Removal of Antibiotics from Water by Graphene Oxide and Its Composites [J]. Ecology and Environment, 2024, 33(1): 144-155. |
[5] | LI Jiaman, WANG Xiaoming, HU Xinrui, XIE Yingying, WEN Zhen. Effects of Fe-S Ratio on the Microstructure and Cr Adsorption Properties of Schwertmannite [J]. Ecology and Environment, 2023, 32(8): 1478-1486. |
[6] | WANG Lihua, WANG Lei, XU Duanping, XUE Yang. Adsorption Characteristics of Copper and Cadmium on Coal Colloid [J]. Ecology and Environment, 2023, 32(7): 1293-1300. |
[7] | ZHAO Weibin, TANG Li, WANG Song, LIU Lingling, WANG Shufeng, XIAO Jiang, CHEN Guangcai. Improvement Effect of Two Biochars on Coastal Saline-Alkaline Soil [J]. Ecology and Environment, 2023, 32(4): 678-686. |
[8] | LI Zhuoxuan, PENG Ziran, HE Wenhui, WEI Ruilu, GAO Linxi. Response Surface Optimization and Adsorption Mechanism of Sheep Manure Charcoal on Nitrogen and Phosphorus Adsorption Conditions [J]. Ecology and Environment, 2023, 32(12): 2216-2227. |
[9] | SU Dan, LUO Qiaobing, DONG Yushan, YANG Caixia, WANG Xin. Strengthening Effect of Mixed Biochar on Microbial Remediation of PAHs Contaminated Soil in Cold Areas [J]. Ecology and Environment, 2023, 32(11): 1942-1951. |
[10] | ZHAO Dandan, LI Wenjian, JIANG Lixia, SHAN Rui, CHEN Dezhen, YUAN Haoran, CHEN Yong. Progress in the Preparation and Performance of Biochar-based Photocatalysts [J]. Ecology and Environment, 2023, 32(11): 2019-2029. |
[11] | ZHOU Yongkang, YU Shengpin, LI Jiale, DONG Yihui, WANG Meng, ZHAO Qiling, LI Yeyu. Research Progress on Adsorption Behavior and Mechanism of Antibiotics in Soil [J]. Ecology and Environment, 2023, 32(11): 2072-2082. |
[12] | HOU Dongmei, ZHANG Lan, LI Chuncheng, CHEN Lutong, WANG Panpan, ZOU Jianping. Enhanced Removal of Sb(III) and Sb(V) Using Biological Iron and Manganese Oxides Modified Chitosan: Performance and Mechanism Study [J]. Ecology and Environment, 2023, 32(10): 1842-1853. |
[13] | CHEN Guihong. Remediation of Cadmium Contaminated Soil by Sulfur/Silicon Doped Biochar [J]. Ecology and Environment, 2023, 32(10): 1854-1860. |
[14] | WANG Jie, SHAN Yan, MA Lan, SONG Yanjing, WANG Xiangyu. Effects of Straw and Biochar Synergistic Returning on the Improvement of Salt-affected Soil in the Yellow River Delta [J]. Ecology and Environment, 2023, 32(1): 90-98. |
[15] | YOU Hongjian, ZHANG Wenwen, LAN Zhengfang, MA Lan, ZHANG Baodi, MU Xiaokun, LI Wenhui, CAO Yune. Effects of Earthworm in-situ Composting and Biochar on Cucumber Root-knot Nematodes and Rhizosphere Microorganisms [J]. Ecology and Environment, 2023, 32(1): 99-109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn