Ecology and Environment ›› 2023, Vol. 32 ›› Issue (8): 1478-1486.DOI: 10.16258/j.cnki.1674-5906.2023.08.013
• Research Article [Environmental Sciences] • Previous Articles Next Articles
LI Jiaman1(), WANG Xiaoming1, HU Xinrui1, XIE Yingying1,*(
), WEN Zhen2
Received:
2023-06-04
Online:
2023-08-18
Published:
2023-11-08
Contact:
XIE Yingying
李佳蔓1(), 王晓明1, 胡欣蕊1, 谢莹莹1,*(
), 文震2
通讯作者:
谢莹莹
作者简介:
李佳蔓(2001年生),女,学士,研究方向为水体污染修复。E-mail: 2020137132@stu.hstc.edu.cn
基金资助:
CLC Number:
LI Jiaman, WANG Xiaoming, HU Xinrui, XIE Yingying, WEN Zhen. Effects of Fe-S Ratio on the Microstructure and Cr Adsorption Properties of Schwertmannite[J]. Ecology and Environment, 2023, 32(8): 1478-1486.
李佳蔓, 王晓明, 胡欣蕊, 谢莹莹, 文震. 铁硫比对施氏矿物微观结构及吸附铬性能的影响[J]. 生态环境学报, 2023, 32(8): 1478-1486.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.08.013
样品 | 硫酸钠添加量/g | 质量比/% | Fe-S物质的量之比 | 化学式 | 晶胞参数 | |||
---|---|---|---|---|---|---|---|---|
Fe | S | a/Å | c/Å | V/Å3 | ||||
Sch 1 | 0.00 | 60.0 | 6.06 | 5.65 | Fe8O8(OH)5.16(SO4)1.42 | 10.7 | 6.07 | 695 |
Sch 2 | 8.70 | 54.6 | 5.86 | 5.32 | Fe8O8(OH)5.00(SO4)1.50 | 10.7 | 6.04 | 688 |
Sch 3 | 21.3 | 56.0 | 6.43 | 4.97 | Fe8O8(OH)4.78(SO4)1.61 | 10.7 | 6.03 | 686 |
Sch 4 | 42.7 | 54.6 | 6.61 | 4.72 | Fe8O8(OH)4.62(SO4)1.69 | 10.7 | 6.03 | 686 |
Sch 5 | 85.3 | 68.9 | 6.42 | 6.13 | Fe8O8(OH)5.38(SO4)1.31 | 10.7 | 6.04 | 686 |
Table 1 The chemical composition and cell parameter of the synthetic mineral
样品 | 硫酸钠添加量/g | 质量比/% | Fe-S物质的量之比 | 化学式 | 晶胞参数 | |||
---|---|---|---|---|---|---|---|---|
Fe | S | a/Å | c/Å | V/Å3 | ||||
Sch 1 | 0.00 | 60.0 | 6.06 | 5.65 | Fe8O8(OH)5.16(SO4)1.42 | 10.7 | 6.07 | 695 |
Sch 2 | 8.70 | 54.6 | 5.86 | 5.32 | Fe8O8(OH)5.00(SO4)1.50 | 10.7 | 6.04 | 688 |
Sch 3 | 21.3 | 56.0 | 6.43 | 4.97 | Fe8O8(OH)4.78(SO4)1.61 | 10.7 | 6.03 | 686 |
Sch 4 | 42.7 | 54.6 | 6.61 | 4.72 | Fe8O8(OH)4.62(SO4)1.69 | 10.7 | 6.03 | 686 |
Sch 5 | 85.3 | 68.9 | 6.42 | 6.13 | Fe8O8(OH)5.38(SO4)1.31 | 10.7 | 6.04 | 686 |
样品 | BET比表面积/ (m2∙g-1) | BJH吸附累积孔容/ (m3∙g-1) | BJH吸附平均孔径/ nm |
---|---|---|---|
Sch 1 | 81.8 | 0.201 | 9.30 |
Sch 2 | 70.2 | 0.137 | 7.33 |
Sch 3 | 57.7 | 0.205 | 13.6 |
Sch 4 | 65.9 | 0.248 | 14.5 |
Sch 5 | 70.9 | 0.195 | 11.3 |
Table 2 The specific surface area and average pore size of minerals
样品 | BET比表面积/ (m2∙g-1) | BJH吸附累积孔容/ (m3∙g-1) | BJH吸附平均孔径/ nm |
---|---|---|---|
Sch 1 | 81.8 | 0.201 | 9.30 |
Sch 2 | 70.2 | 0.137 | 7.33 |
Sch 3 | 57.7 | 0.205 | 13.6 |
Sch 4 | 65.9 | 0.248 | 14.5 |
Sch 5 | 70.9 | 0.195 | 11.3 |
[1] |
ANTELO J, FIOL S, GONDAR D, et al., 2012. Comparison of arsenate, chromate and molybdate binding on schwertmannite: Surface adsorption vs anion-exchange[J]. Journal of Colloid and Interface Science, 386: 338-343.
DOI PMID |
[2] |
BIGHAM J M, SCHWERTMANN U, CARLSON L, et al., 1990. A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters[J]. Geochimica Et Cosmochimica Acta, 54(10): 2743-2758.
DOI URL |
[3] |
BIGHAM J M, 1994. Schwertmannite, a new iron oxyhydroxysulphate from Pyh/isalmi, Finland, and other localities[J]. Mineralogical Magazine, 58(393): 641-648.
DOI URL |
[4] |
BIGHAM J M, SCHWERTMANN U, PFAB G, 1996. Influence of pH on mineral speciation in a bioreactor simulating acid mine drainage[J]. Applied Geochemistry, 11: 845-849.
DOI URL |
[5] |
BIGHAM J M, SCHWERTMANN U, TRAINA S J, et al., 1996. Schwertmannite and the chemical modeling of iron in acid sulfate waters[J]. Geochimica et Cosmochimica Acta, 60(12): 2111-2121.
DOI URL |
[6] |
CHEN M Q, LU G N, GUO C L, et al., 2015. Sulfate migration in a river affected by acid mine drainage from the Dabaoshan mining area, South China[J]. Chemosphere, 119: 734-743.
DOI PMID |
[7] |
DING B, WANG X, FENG K, et al., 2022. Efficient adsorption of Cr(Ⅵ) in acidic environment by nano-scaled schwertmannite prepared through pH regulation: Characteristics, performances, and mechanism[J]. Environmental Science and Pollution Research, 29: 77344-77358.
DOI |
[8] | DZOMBAK D A, MOREL F M M, 1990. Surface Complexation Modeling-Hydrous Ferric Oxide[M]. New York: Wiley-Interscience. |
[9] |
ESKANDARPOUR A, ONYANGO M S, TANAHASHI M, et al., 2008. Magnetic fixed-bed column for Cr(Ⅵ) Removal from aqueous solution using schwertmannite[J]. Isij International, 48(2): 240-244.
DOI URL |
[10] |
GRAMP J P, JONES F S, BIGHAM J M, et al. 2008. Monovalent cation concentrations determine the types of Fe(Ⅲ) hydroxysulfate precipitates formed in bioleach solution[J]. Hydrometallurgy, 94(1-4): 29-33.
DOI URL |
[11] |
JAE-YOUNG Y U, PARK M, KIM J, 2002. Solubilities of synthetic schwertmannite and ferrihydrite[J]. Geochemical Journal, 36(2): 119-132.
DOI URL |
[12] |
JONSSON J, PERSSON P, SJOBERG S, et al., 2005. Schwertmannite precipitated from acid mine drainage: phase transformation, sulphate release and surface properties[J]. Applied Geochemistry, 20: 179-191.
DOI URL |
[13] | LIAO Y H, ZHOU L X, LIANG J R, et al., 2009. Biosynthesis of schwertmannite by Acidithiobacillus ferrooxidans cell suspensions under different pH condition[J]. Materials Science & Engineering C, 29(1): 211-215. |
[14] |
LIAO Y H, LIANG J R, ZHOU L X, 2011. Adsorptive removal of As(Ⅲ) by biogenic schwertmarmite from simulated As-contaminated groundwater[J]. Chemosphere, 83: 295-301.
DOI URL |
[15] |
MENG X, WANG X, ZHANG C, et al., 2021 Co-adsorption of As(Ⅲ) and phenanthrene by schwertmannite and Fenton-like regeneration of spent schwertmannite to realize phenanthrene degradation and As(Ⅲ) oxidation[J]. Environmental Research, 195: 110855.
DOI URL |
[16] |
PAIKARAY S, GOTTLICHER J, PEIFFER S, 2011. Removal of As(Ⅲ) from acidic waters using schwertmannite: Surface speciation and effect of synthesis pathway[J]. Chemical Geology, 283(3-4): 134-142.
DOI URL |
[17] | RAKHUNDE R, DESHPANDE L, JUNEJA H D, 2012. Chemical Speciation of Chromium in Water: A Review[J]. Critical Reviews in Environmental Science & Technology, 42(7): 776-810. |
[18] |
RAO R A K, REHMAN F, KASHIFUDDIN M, 2012. Removal of Cr(Ⅵ) from electroplating wastewater using fruit peel of Leechi (Litchi chinensis)[J]. Desalination and Water Treatment, 49: 136-146.
DOI URL |
[19] |
REGENSPURG S, BRAND A, PEIFFER S, 2004. Formation and stability of schwertmannite in acidic mining lake[J]. Geochimica et Cosmochimica Acta, 68(6): 1185-1197.
DOI URL |
[20] |
REGENSPURG S, PEIFFER S, 2005. Arsenate and chromate incorporation in schwertmannite[J]. Applied Geochemistry, 20(6): 1226-1239.
DOI URL |
[21] |
THOMMES M, KANEKO K, NEIMARK A V, et al., 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 87(9-10): 1051-1069.
DOI URL |
[22] | WILKINSON G, GILLARD R D, MCCLEVERTY J A, 1987. Comprehensive Coordination Chemistry[M]. Oxford: Pergamon Print. |
[23] |
XIE Y Y, LU G N, YE H, et al., 2017. Fulvic acid induced the liberation of chromium from CrO42- -substituted schwertmannite[J]. Chemical Geology, 475: 52-61.
DOI URL |
[24] |
XIE Y Y, YE H, WEN Z, et al., 2022. Sulfide-induced repartition of chromium associated with schwertmannite in acid mine drainage: Impacts and mechanisms[J]. Science of the Total Environment, 848: 157863.
DOI URL |
[25] |
XIE Y Y, LU G N, TAO X Q, et al., 2022. A collaborative strategy for elevated reduction and immobilization of Cr (Ⅵ) using nano zero valent iron assisted by schwertmannite: Removal performance and mechanism[J]. Journal of Hazardous Materials, 422: 126952.
DOI URL |
[26] |
YING H, FENG X H, ZHU M Q, et al., 2020. Formation and transformation of schwertmannite through direct Fe3+ hydrolysis under various geochemical conditions[J]. Environmental Science: Nano, 7(8): 2385-2398.
DOI URL |
[27] |
ZHOU J X, ZHOU Y J, ZHANG J, et al., 2022. Effect of pH regulation on the formation of biogenic schwertmannite driven by Acidithiobacillus ferrooxidans and its arsenic removal ability[J]. Environmental Technology, 43(24): 3706-3718.
DOI URL |
[28] | ZHANG Y L, GAO K, DANG Z, et al., 2021. Microbial reduction of As(V)-loaded Schwertmannite by Desulfosporosinus meridie[J]. Science of the Total Environment, 764(1-2): 144279 |
[29] | 陈福星, 2006. 施氏矿物对污染水体中六价铬及三价砷的吸附去除研究[D]. 南京: 南京农业大学. |
CHEN F X, 2006. Removal of chromium(Ⅵ) and arsenite(Ⅲ) in polluted waters through adsorption onto biosynthetic schwertmannite[D]. Nanjing: Nanjing Agricultural University. | |
[30] | 梁剑茹, 李浙英, 刘奋武, 等, 2012. 预处理后生物成因施氏矿物的矿物学特征及对As(Ⅲ)吸附的影响[J]. 环境科学, 33(10): 3606-3612. |
LIANG J Y, LI Z Y, LIU F W, et al., 2012. Mineralogical characteristics of biogenic schwertmannite amended with different pretreatment methods and the effects on As(Ⅲ) absorption[J]. Environmental Science, 33(10): 3606-3612. | |
[31] | 李旭伟, 贺静, 张健, 等, 2020. 透析对施氏矿物微观结构及其砷吸附能力的影响[J]. 环境科学学报, 40(2): 546-553. |
LI X W, HE J, ZHANG J, et al., 2020. Effects of dialysis on the microstructure of schwertmannite and its arsenic removal ability[J]. Acta Scientiae Circum Stantiae, 40(2): 546-553. | |
[32] | 李浙英, 梁剑茹, 柏双友, 等, 2011. 生物成因与化学成因施氏矿物的合成、表征及其对As(Ⅲ)的吸附[J]. 环境科学学报, 31(3): 460-467. |
LI Z Y, LIANG J R, BAI S Y, et al., 2011. Characterization and As(Ⅲ) adsorption properties of schwertmannite synthesized by chemical or biological procedures[J]. Acta Scientiae Circumstantiae, 31(3): 460-467. | |
[33] | 刘奋武, 高诗颖, 王敏, 等, 2015. KOH对富铁富硫酸盐酸性环境中生物成因次生铁矿物合成的影响[J]. 环境科学学报, 35(2): 476-483. |
LIU F W, GAO S Y, WANG M, et al., 2015. Effect of KOH on the formation of biogenic secondary iron minerals in iron-and sulfate-rich acidic environment[J]. Acta Scientiae Circumstantiae, 35(2): 476-483 | |
[34] | 孙红福, 赵峰华, 从志远, 等, 2006. 在我国发现的Schwertmannite矿物及其特征[J]. 岩物学报, 26(1): 38-42. |
SUN H F, ZHAO F H, CONG Z Y, et al., 2006. The mineral schwertmannite found in China and its characteristics[J]. Acta Mineralogica Sinica, 26(1): 38-42. | |
[35] | 谢莹莹, 2018. 溶解性有机质介导下酸性矿山废水中施氏矿物的转化机制及对重金属环境行为的影响[D]. 广州: 华南理工大学. |
XIE Y Y, 2018. Phase transformation of schwertmannite mediated by dissolved organic matter in acid mine drainage and its effects on environmental behaviour of heavy metals[D]. Guangzhou: South China University of Technology. | |
[36] | 郑君里, 罗相萍, 陈凯伟, 等, 2022. 农林材料及其改性材料对水中重金属和染料吸附研究进展[J]. 水处理技术, 48(4): 6-10. |
ZHENG J L, LUO X P, CHEN K W, et al., 2022. Research progress on the adsorption of heavy metals and dyes in water by agroforestry materials and their modifications[J]. Technology of Water Treatment, 48(4): 6-10. | |
[37] | 郑妍婷, 谢莹莹, 赖鹤鋆, 等, 2023. 酸性矿山废水S(-II)对含铬和钼施氏矿物溶解与相转变的影响[J]. 土木与环境工程学报(中英文), 45(4): 201-210. |
ZHENG Y T, XIE Y Y, LAI H Y, et al., 2023. Effect of S(-II) on the dissolution and transformation of chromium and molybdenum-doped schwertmannite under acid mine drainage conditions[J]. Journal of Civil and Environmental Engineering, 45(4): 201-210. | |
[38] | 朱立超, 刘元元, 李伟民, 等, 2017. 施氏矿物的化学合成及其对含Cr(Ⅵ)地下水吸附修复[J]. 环境科学, 38(2): 629-639. |
ZHU L C, LIU Y Y, LI W M, et al., 2017. Adsorptive remediation of Cr(Ⅵ) contaminated groundwater with chemically synthesized schwertmannite[J]. Environmental Science, 38(2): 629-639. |
[1] | WANG Lihua, WANG Lei, XU Duanping, XUE Yang. Adsorption Characteristics of Copper and Cadmium on Coal Colloid [J]. Ecology and Environment, 2023, 32(7): 1293-1300. |
[2] | FANG Xianbao, ZHANG Zhijun, LAI Yangqing, YE Mai, DIAO Zenghui. Remediation of Heavy Metals Cr and Cd in Soil by A Novel Sludge-derived Biochar [J]. Ecology and Environment, 2022, 31(8): 1647-1656. |
[3] | ZHAO Chaofan, ZHOU Dandan, SUN Jiancai, QIAN Kunpeng, LI Fangfang. The Effect of Soluble Components on the Adsorption of Cadmium on Biochar [J]. Ecology and Environment, 2022, 31(4): 814-823. |
[4] | LIU Shasha, CHEN Nuo, YANG Xiaoyin. Research Progress on Adsorption-Desorption Characteristics of Organic Pollutants by Microplastics and Their Combined Toxic Effects [J]. Ecology and Environment, 2022, 31(3): 610-620. |
[5] | CONG Xin, WANG Yu, LI Yao, HE Yangyang. Adsorption Characteristics of Biochars and Graphene Oxide/biochar Composites for Antibiotics from Aqueous Solution [J]. Ecology and Environment, 2022, 31(2): 326-334. |
[6] | TANG Jiaxi, XIANG Biao, LI Yu, TAN Ting, ZHU Yongle, GAN Jianping. Study on Adsorption Characteristics of Fluoride in Water by Diatomite [J]. Ecology and Environment, 2022, 31(2): 335-343. |
[7] | QIN Kun, WANG Zhikang, WANG Zhanghong, YANG Cheng, LIU Jiegang, SHEN Dekui. Cd(II) Adsorption Capability of the Biochar Derived from Co-pyrolysis of Lignin and Polyethylene [J]. Ecology and Environment, 2022, 31(2): 344-353. |
[8] | QIN Qin, DUAN Haiqin, SONG Ke, SUN Lijuan, SUN Yafei, ZHOU Bin, XUE Yong. Effect of Conventional Fertilization on the Adsorption-desorption Characteristics and Chemical forms of Cadmium in Soil Water-stable Aggregates [J]. Ecology and Environment, 2022, 31(12): 2403-2413. |
[9] | JIANG Jing, RUAN Chengjie, CHEN Xiaoyu, WU Yi, WANG Yongchuang. Research Progress on Simulated Aging of Microplastics and Its Effects on Pollutant Adsorption [J]. Ecology and Environment, 2022, 31(11): 2263-2274. |
[10] | LEI Yajie, LI Xue, CHANG Chunyan, MAO Xuefei. Adsorption of Mercury Ions in Water by Polystyrene Microplastics [J]. Ecology and Environment, 2022, 31(10): 2048-2057. |
[11] | JIANG Jing, DENG Jingling, SHENG Guangyao. A Review of Biochar Aging and Its Impact on the Adsorption of Heavy Metals [J]. Ecology and Environment, 2022, 31(10): 2089-2100. |
[12] | ZHANG Suming, ZHANG Jianqiang, ZHOU Kai, CHEN Zhiliang. Adsorption Effect and Mechanism of Iron-based Modified Coconut Shell Biochar to Arsenic [J]. Ecology and Environment, 2021, 30(7): 1503-1512. |
[13] | ZHANG Bingbing, YANG Zhao, XUE Bin, DING Xiaoyan, LOU Jinfen, WANG Sheng, CHEN Weijie, XU Guomin. Adsorption of Aquatic Hg2+ by Biochar Obtained from Coix Straw [J]. Ecology and Environment, 2021, 30(5): 1051-1059. |
[14] | WANG Yazhuo, ZHOU Xiang, XIU Lei, SHAN Rui, YUAN Haoran. Preparation of K2FeO4 Modified Biochar and Its Adsorption Characteristics for Cd(Ⅱ) in Aqueous Solution [J]. Ecology and Environment, 2021, 30(12): 2380-2386. |
[15] | ZHU Qian, ZHANG Naiming, XIA Yunsheng, YANG Xu, ZHANG Chuanguang. Study on the Adsorption Effect of 5 Activated Biochars on Low-concentration Nitrogen and Phosphorus in Water [J]. Ecology and Environment, 2021, 30(12): 2387-2394. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn